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Virtual Engineering Object (VEO): Towards Experience-based design 

and manufacturing for Cyber-Physical Systems and   Industry 4.0 

 

In this article we propose the concept, its framework and implementation 

methodology for Virtual Engineering Objects (VEO). A VEO is the knowledge 

representation of an engineering object having embodiment of its associated 

knowledge and experience. A VEO is capable of adding, storing, improving and 

sharing knowledge through experience. Moreover, it is demonstrated that VEO is 

a specialization of Cyber-Physical System (CPS). In this paper, it is shown 

through test models how the concept of VEO can be implemented with the Set of 

Experience Knowledge Structure (SOEKS) and Decisional DNA. The test model 

confirmed that the concept of VEO is able to capture and reuse the experience of 

engineering artefacts, which can be beneficial for efficient decision making in 

industrial design and manufacturing. 

Keywords:  Virtual engineering objects (VEO), Set of Experience Knowledge 

Structure (SOEKS), Decisional DNA (DDNA) 

Background 

Knowledge and experience hve been important assets for manufacturing organizations 

through the ages. Today’s enterprises need to react and adapt to changes rapidly, and 

they are conscious that proper Knowledge Management (KM) processes will help them 

survive in a dynamic environment. Industrial designers and decision makers base their 

current decisions on lessons learned from previous similar situations (Sanin and 

Szczerbicki 2005b). However, much of an organization’s experience is not properly 

capitalized at all because of inappropriate knowledge administration, leading to 

reprocessing decisions, high-response times, and lack of flexibility to adapt in dynamic 

environments. Knowledge-based industrial design and manufacturing techniques have 

been used in the past with considerable success. However, they have limitations such as 
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being time-consuming, costly, domain-specific, unreliable in their intelligence, and 

unable to take previous experience into account (Danilowicz and Nguyen 1988, Qiu, 

Chui, and Helander 2008, Duong, Nguyen, and Jo. 2010). The role of knowledge in 

industrial design and engineering management has therefore become increasingly 

important for manufacturing companies. 

Furthermore there is a lot of interest globally in ‘Industry 4.0’, which is termed 

as the fourth industrial revolution —following the steam engine, the conveyor belt, and 

the first phase of IT and automation technology. Industry 4.0 is a powerful concept, 

which promotes the computerization of traditional manufacturing plants and their 

ecosystems towards a connected and continuously available resources handling scheme 

through the use of Cyber Physical Systems (CPS) (n.a. 2014, Weber 2014). The goal is 

the intelligent factory, which is characterized by adaptability, resource efficiency, 

and ergonomics as well as the integration of customers and business partners in business 

and value processes (Weber 2014, Böhler 2012). 

A number of authors exemplify  the point that CPS is emerging as a “must have” 

technology crucial for industry (Baheti and Gill 2011, Lee 2008). CPS are integrations 

of computation with physical processes (Lee 2006, Lee 2008). Embedded computers 

and networks monitor and control the physical processes, usually with feedback loops 

where physical processes affect computations and vice versa.  In the physical world, the 

passage of time is inexorable and concurrency is intrinsic. Neither of these properties is 

present in today’s computing and networking abstractions (Lee 2008). CPS aims to 

integrate knowledge and engineering principles across the computational and 

engineering disciplines (networking, control, software, human interaction, learning 

theory, as well as electrical, mechanical, chemical, biomedical, material science, and 
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other engineering disciplines) to develop new CPS science and supporting technology.  

 

In manufacturing, the potential for cyber-physical systems to improve 

productivity in the production process is vast. Consider processes that govern 

themselves, where smart products can take corrective action to avoid damages,  and 

where individual parts are automatically replenished. Scalable CPS architectures for 

adaptive and smart manufacturing systems which dynamically enable the continuous 

design, configuration, monitoring and maintenance of operational capability, quality, 

and efficiency are, in fact, true and current requirements for the industry (Garcia-Crespo 

et al. 2010) . According to the European Commission under the Horizons 2020 

programme, the self-learning closing feedback loop between production and design 

should be included in future factories for optimizing energy expenditure and minimizing 

waste as a direct relation to the enhancement in control and immediate information 

processing that a CPS will provide. 

The Internet of Things will make a new wave of technological changes that will 

decentralize production control and trigger a paradigm shift in manufacturing. It is 

highly likely that the world of production will become more and more networked until 

everything is interlinked with everything else. 

Considering the importance of  the above mentioned aspects, this research 

proposes a novel approach to provide engineering artefacts with an experience-based 

representation. We introduce the concept of ‘Virtual Engineering Object’ (VEO), which 

permits dual computerized/real-world representation of an engineering artefact (Shafiq 

et al. 2014c, Shafiq, Sanin, and Szczerbicki 2014). VEO is a specialization of Cyber-

Physical System (CPS) in terms of its extension in knowledge gathering and reuse, 

whereas CPS is only aimed towards data and information management. A VEO is a 
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generalization of a CPS and  its proposed  conceptualization  falls  into a homogenous 

line of thinking aligned with our research presented  previously  (Shafiq et al. 2013, 

2014a, b). 

The concept of Virtual engineering Object uses a standard knowledge 

representation technique called Set of Experience Knowledge Structure (SOEKS), 

which comprises Decisional DNA (DDNA) (Sanin and Szczerbicki 2008a, 2005a). 

Decisional DNA is proposed as a unique and single structure for capturing, storing, 

improving and reusing decisional experience. Its name is a metaphor related to human 

DNA, and the way it transmits genetic information among individuals through time. 

Figure1 summarizes the general idea of this research in an industrial domain 

where  smart decisions can be made based on intelligent virtual objects and systems 

representing real-life machines, material, parts etc. 

 

FIGURE 1. Cyber-physical perspective of our research 
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The structure of this paper is as follows. Section 2 presents the concept of 

SOEKS and DDNA which is the backbone of VEO. Section 3 illustrates conceptual 

background and architecture of Virtual Engineering. Section 4 describes the case study 

of  VEO implementation with a number of experiments performed and their results. 

Finally, section 5 presents the conclusions and future work. 

SET OF EXPERIENCE KNOWLEDGE STRUCTURE (SOEKS) 

A Set of Experience (SOE) knowledge structure has been developed to store formal 

decision events in an explicit way (Sanin and Szczerbicki 2005a, 2006, 2007, 2008b, 

2009, Sanin et al. 2012, Zhang, Sanín, and Szczerbicki 2013). SOE is a formal model of 

experience-based knowledge related to every-day decision-making events. Four basic 

components surround decision-making events: variables, functions, constraints, and 

rules. They are stored in a combined dynamic structure that comprises a Set of 

Experience. Identification of the Variables that intervene in the process of decision-

making is the first step in the construction of the Set of Experience. These variables are 

the root of the structure, because they are the origin of the other components. Functions, 

the second component, describe associations between a dependent variable and a set of 

input variables; moreover, functions can be applied for reasoning optimal states, 

because they come out from the goals of the decision event. Therefore, a Set of 

Experience uses Functions, and establishes links among the variables constructing 

multi-objective goals. A Constraint, the third component of a Set of Experience, is a 

restriction of the feasibility of solutions in a decision problem, and a factor that limits 

the performance of a system with respect to its goals. Finally, Rules are suitable for 

associating actions with the conditions under which the actions should be performed. 

Rules, the fourth component of Set of  Experience, are another form of expressing 
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relationships among variables. They are conditional relationships that operate in the 

universe of variables. Rules are relationships between a condition and a consequence 

connected by the statements IF-THEN-ELSE. In conclusion, the Set of Experience 

consists of Variables, Functions, Constraints and Rules, which are uniquely combined 

to represent a formal decision event. SOEKS can be used in platforms to support 

decision-making, and new decisions can be made based on existing sets of experience. 

SOEKS is able to collect and manage explicit knowledge of different forms of formal 

decision events.  

The concept of DDNA is the metaphor of human DNA. A group of SOE of the same 

category comprises of a kind of artificial decision making chromosome, as DNA does 

with genes. These chromosomes or groups of SOE make a category, and they are 

foundations for making decisions. Each module of chromosomes forms an entire 

inference tool, and a number of chromosons creates a Decisional DNA 

VIRTUAL ENGINEERING OBJECT (VEO) 

A VEO is knowledge representation of an engineering artefact. It has three features: 

(i) the embedding of the decisional model expressed by the set of experience, (ii) a 

geometric representation, and (iii) the necessary means to relate such virtualization 

with the physical object being represented. 

 A VEO acts as the object’s living representation, capable of capturing, 

adding, storing, improving, sharing and reusing knowledge through experience, in a 

way similar to a human expert (Shafiq, Sanin, and Szczerbicki 2014). 

Architecture of VEO 

A VEO can encapsulate knowledge and experience of each important feature 

related with an engineering object. This can be achieved by gathering information 
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from six different aspects of an object: Characteristics, Functionality, 

Requirements, Connections, Present State and Experience as illustrated in Fig. 2. 

 

FIGURE 2. VEO Structure 

  

The main features of a VEO (shown in Fig. 2) are represented as follows: 

 Characteristics - by describing the set of physical features and expected 

benefits offered by the artefact represented by the VEO. Not only will the 

information on its geometry dimensions, appearance, weight etc. be 

captured in this module, but also the possible concurrency attributes, for 

example, ‘versatility’ or ‘ease of operation’. Knowledge stored in 

Characteristics will assist in enhanced decision making, answering 

questions of the type: “Which VEO is best suited for a given physical 

condition?”  

 The Functionality - by describing the basic workings of the VEO and 

principles on which it accomplishes its operation. Operational knowledge 
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related to an object such as time consumed, its working boundary limits, and 

the outcome of the process that is performed, will be stored in Functionality. 

This module of the VEO will assists in storing, selecting and reusing 

operation-specific details. 

 Requirements - by describing the set of “necessities” of the VEO required 

for its precise working. Information on  the kind and  amount of  power the 

VEO needs, on  the required space, and on  the extent of user expertise 

necessary for operating a VEO will be stored here.   

 Connections - by describing how the VEO is related to other VEOs. Many 

engineering objects work in conjunction with other objects; these 

connecting VEO’s may be a “part” or may be a “need” of each other. This 

module of VEO structure will be essential for the scaling up and 

establishing the interconnection of VEO’s in a manufacturing scenario. 

 The Present State of the VEO - by highlighting parameters of the VEO at 

the current moment. It will answer the question whether the VEO is ready 

for a particular operation. If the required VEO is busy, it will predict the 

expected time when it is free for the next operation. 

 The Experience of the VEO - by including knowledge and information 

which is dynamic in nature and keeps on changing with each new decision, 

operation, or event. In other words, every formal decision related to the 

VEO will be stored in the Experience. This element of the VEO will keep 

on updating in real time together with every activity in which VEO takes 

place (Shafiq, Sanin, and Szczerbicki 2014). 

 As discussed previously, VEO is a knowledge representation for an 

engineering artifact. We must take into account that when we say ‘an engineering 
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artifact’, we can be talking about something simple like a valve, or we can be 

talking about something complex like a painting cell. For such reason, the VEO 

specification must have a complexity level concurring its functionality. In our very 

first approximation, we identified four different levels of VEO, as can be seen in 

Figure 3.  

 

FIGURE 3. VEO complexity pyramid. 

 At Component level, VEO represent just a component (usually a part of 

kind of machinery). By itself, this component has not any functionality that can be 

considered “useful” in a production process. Of course, it has its functionality in the 

machinery where it is part of. Examples of VEO at this level can be valves, printed 

circuit boards, etc. 

 Above the Component level there is the Tool level. VEOs placed here 

represent those artefacts that have a basic functionality, being considered as useful 

unities in an industrial process. Nevertheless, they do not constitute an industrial 

process by itself. An example of VEO at this level can be a robot that picks an 

object and moves it to another position. 

 Next level is Simple Process level.  In this level, we consider that VEO 

represent artefacts which accomplish a full simple process. We consider a simple 
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process those processes that made a simple change in the ‘product’ that is involved 

in it. An example could be a painter cell (where the simple process is painting; the 

product enters in one color and exits in another one).  

 Finally, at the top of the complexity pyramid is the Complex Process 

level. The complex process level VEO is a combination of various simple process 

level VEOs. An example could be car door manufacturing (where many simple 

processes take place, like welding, painting etc.).  

Implementation of VEO 

For the purpose of implementation of VEO, we integrated it with the Decisional 

DNA consisting of SOEKS containing  Variables, Functions, Constraints and 

Rules.  In Section 3, we also discussed that a VEO structure includes elements like 

Characteristics, Functionality, Requirements, Connections, Present State and 

Experience. SOEKS are created  for each of the above  elements of the 

individually. The goal behind this approach is to provide a more scalable setting, 

similar to the one that could be found in describing a diverse range of engineering 

objects. Weights are assigned to the attributes of the variables of an artefact, and 

then the six sets of SOEKS are generated. These individual SOEKS are combined 

under an umbrella of VEO, representing experience and knowledge (Figure 4). 
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FIGURE 4. Structure of a VEO 

Case Study 

As a case study, we considered a manufacturing set up having three different drilling 

machines, drilling tools, and work holding devices (Fig. 5). Information and 

specifications about these above mentioned engineering objects were gathered from 

standard sources and data is stored according to the SOEKS format. Moreover, every 

formal decision taken is also stored as a SOE, which leads to the formation of 

interconnected VEO’s. 

 

FIGURE 5. Framework for the case study 
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The objective of this case study is not only to develop VEO’s for engineering 

artefacts but also to demonstrate that different VEOs connect and form a network. 

Furthermore, to prove that the experience captured from this VEO network can be 

reused for better future decision making and efficient utilization of resources. 

First, the necessary drilling associated information was identified and effort was 

made to capture and store the relevant information of the VEO adhering to the format 

shown in Fig 4.  CSV (Comma Separated Values) files for Characteristics, 

Functionality, Requirements, Present State, Connections and Experience were build. 

Table 1 shows the structure of one a CSV file for Characteristics. Similar files were 

developed for other VEO elements.  

Table 1. CSV file format for VEO Experience  

 

 

With CSV files in hand, a parser was written in Java programming language. 

Figure 6 shows the simplified JAVA class diagram for the parser (veoParserCSV) 

which reads variables, functions, and constraints from Table 1 and creates SOEKS. 
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FIGURE 6.  JAVA Class Diagram for VEO Parser 

The above parsing procedure is repeated for all VEO elements for which there 

are corresponding CSV files similar to the one shown in Table 1 collecting SOEs in the 

final form of Decisional DNA that can be queried (Sanin, Szczerbicki, and Toro 2007). 

A query is used to exemplify this case study (Figure 7). 

 

 

FIGURE 7. Graphical User Interface (GUI)  for building a query 

Figure 7 shows  GUI for creating a query. User selects variables and their values to be 
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queried.  These variables are converted into a SOE and then this new SOE is compared 

for similarity with each SOEs already stored in the VEO Decisional DNA (VEO 

DDNA). For each comparison a similarity factor is calculated and top 5 most similar 

SOEKS from VEO DDNA are returned. Figure 8 sums up in a  flowchart the above 

process.   

 

FIGURE 8. Flowchart for running a query 

Results and discussion 

This VEO architecture was implemented in Java programming language on a Windows 

7 operating system. The VEO DDNA consists of  SOEs  representing  Characteristics, 

Functionality, Requirements, Present State, Connections and Experience, each one 

having 53 variables, 3 functions and 28 constraints. For testing purposes, we query the 
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repository of 2256 SOEKS.  

The parsing process of the VEO DDNA was executed, producing a parsing time 

of 703.0 ms as it can be observed from Fig.  9 (with Experience CSV file taking 509.0 

ms). This is considered a very good time taking into account that those SOE are quite 

complex due to the substantial number of variables, functions and constraints, adding up 

to a total of 84 key features per formal decisional event. 

 

FIGURE 9. Parsing time versus VEO elements 

The detailed parsing process of the VEO decisional chromosome produced an 

average parsing time per SOE of 228.0 ms (Variables = 537.0, Functions = 67.0 ms, 

Constraints = 80.0 ms). It can be noticed from Fig. 10 that most of the time is dedicated 

to the variables due to their large number in VEO knowledge representation. 
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FIGURE 10. Parsing time versus SOEKS elements 

The searching process for a similar SOE within the VEO DDNA was executed 

100 times, producing an average time around 6.49 ms to find the closest existing match. 

Figure 11 illustrates the plot for time taken to parse VEO DDNA 100 times to search for 

similar SOE. And average parsing time for each SOEKS is 0.0131ms, Figure 12 plots 

time taken for each 2254 SOEKS to find top 5 similar SOEKS. This is considered an 

excellent time for such  large group of SOE and the required number  of similarity 

comparisons performed  
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FIGURE 11. Parsing times for 100 iterations for VEO 

 

FIGURE 12.  Parsing time per SOEKS 

CONCLUSIONS AND FUTURE WORK 

The main contribution of the work presented throughout this article is the formal 

definition of mechanisms leading to implementation of knowledge engineering in the 

manufacturing field for future cyber-physical systems as required by Industry 4.0. It 

explains through a practical case the process of collecting experience from engineering 

artefacts, and then using this information for the construction VEO Decisional DNA. 

Decisional DNA and the Set of Experience were applied as a knowledge representation 

structure for capturing and storing experience. Afterwards, they were used as  tools for 

decision making processes that can enhance different manufacturing systems with 

predicting capabilities and facilitates knowledge engineering processes for decision 

making. The relation between CPS and VEO is evident in the sense that a VEO is a 

specialized kind of CPS system aiming towards the gathering of experiential knowledge 

and re-use whereas a standard  CPS is aimed at data and information gathering and 

management. 
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Future work on this proposal includes developing a network of VEOs having a wide 

variety of engineering objects ranging from simple standalone artefacts to a complex 

multitasking machines. In addition, it is desirable to evaluate the proposed techniques in 

real-life operational contexts in order to refine, improve, and determine the actual 

applicability of the proposal presented in this article.  

REFERENCES 

Baheti, Radhakisan, and Helen Gill. 2011. Cyber Physical Systems. In The Impact of Control 

Technology, edited by T. Samad and A.M. Annaswamy: www.ieeecss.org. 

Böhler, T. M. 2012. Industrie 4.0-Smarte Produkte und Fabriken revolutionieren die Industrie. 

Produktion Magazin. 

Danilowicz, C., and N. T. Nguyen. 1988. "Consensus-Based Partitions in the Space of Ordered 

Partitions." Pattern Recognition Letters no. 21 (3):269-273. 

Duong, T. H., N. T. Nguyen, and G. S. Jo. 2010. "Constructing and Mining—A Semantic-Based 

Academic Social Network." Journal of Intelligent & Fuzzy Systems no. 21 (3):197-207. 

Garcia-Crespo, A., B. Ruiz-Mezcua, J. L. Lopez-Cuadrado, and J. M. Gomez-Berbis. 2010. 

"Conceptual model for semantic representation of industrial manufacturing processes." 

Computers in Industry no. 61 (7):595-612. doi: 

http://dx.doi.org/10.1016/j.compind.2010.01.004. 

Lee, Edward. 2008. Cyber Physical Systems: Design Challenges. University of California, 

Berkeley. 

Lee, Edward A. 2006. Cyber-Physical Systems - Are Computing Foundations Adequate? In In 

Position Paper for NSF Workshop On Cyber-Physical Systems: Research Motivation, 

Techniques and Roadmap. Austin, TX. 

n.a. Zukunftsprojekt Industrie 4.0. http://www.bmbf.de/de/9072.php 2014. 

Qiu, Yuan Fu, Yoon Ping Chui, and Martin G. Helander. 2008. "Cognitive understanding of 

knowledge processing and modeling in design." Journal Of Knowledge 

Managementimited no. 12 (2):156-168. doi: 10.1108/13673270810859587. 

Sanin, Cesar, and Edward Szczerbicki. 2005a. "A complete example of set of experience 

knowledge structure in XML." In Knowledge Mangement:Slected issues, edited by A. 

Szuwarzynski, 99-112. Gdank: Gdansk University Press. 

Sanin, Cesar, and Edward Szczerbicki. 2005b. "Set of Experience: A Knowledge Structure for 

Formal Decision Events." Foundations of Control and Management Sciences no. 3:95-

113. 

Sanin, Cesar, and Edward Szczerbicki. 2006. "Extending Set Of Experience Knowledge 

Structure into a Transportable Language extensible Markup Language." Cybernetics 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://www.ieeecss.org/
http://dx.doi.org/10.1016/j.compind.2010.01.004
http://www.bmbf.de/de/9072.php
http://mostwiedzy.pl


20 

 

and Systems no. 37 (2-3):97-117. doi: 10.1080/01969720500425046. 

Sanin, Cesar, and Edward Szczerbicki. 2007. "Towards the construction of Decisional DNA: A 

Set of Experience Knowledge Structure JAVA Class within an Ontology System." 

Cybernetics and Systems no. 38 (8):859-878. doi: 10.1080/01969720701601189. 

Sanin, Cesar, and Edward Szczerbicki. 2008a. Decisional DNA and the Smart Knowledge 

Mangement System: A process of transforming information into knowledge Edited by 

A. Gunasekaran, Techniques and Tool for the Design and Implemention of Enterprise 

Information Systems. New York: IGI. 

Sanin, Cesar, and Edward Szczerbicki. 2008b. "Towards Decisional DNA: Developing Holistic 

Set of Experience Knowledge Structure." Foundation of Control and Management 

Science no. 9:109-122. 

Sanin, Cesar, and Edward Szczerbicki. 2009. "Application of a Multi-domain Knowledge 

Structure: The Decisional DNA, in Intelligent Systems for Knowledge Management." 

In, 65-86. Springer-Verlag. 

Sanin, Cesar, Edward Szczerbicki, and Carlos Toro. 2007. "An OWL Ontology of Set of 

Experience Knowledge Structure." Journal of Universal Computer Science no. 13 

(2):209--223. 

Sanin, Cesar, Carlos Toro, Zhang Haoxi, Eider Sanchez, Edward Szczerbicki, Eduardo 

Carrasco, Wang Peng, and Leonardo Mancilla-Amaya. 2012. "Decisional DNA: A 

multi-technology shareable knowledge structure for decisional experience." 

Neurocomputing no. 88 (0):42-53. doi: http://dx.doi.org/10.1016/j.neucom.2011.08.029. 

Shafiq, Syed Imran, Cesar Sanin, and Edward Szczerbicki. 2014. "Set of Experience 

Knowledge Structure (SOEKS) and Decisional DNA (DDNA): Past, Present and 

Future." Cybernetics and Systems no. 45 (02):200-215. doi: 

10.1080/01969722.2014.874830. 

Shafiq, Syed Imran, Cesar Sanin, Edward Szczerbicki, and Carlos Toro. 2013. Using Decisional 

DNA To Enhance Industrial And Manufacturing Design: Conceptual Approach. In 

Information Systems Architecture and Technology, edited by Leszek Borzemski Jerzy 

Świątek, Adam Grzech, Zofia Wilimowska. Szklarska Poreba, Poland: Wrocław 

University of Technology, Wrocław. 

Shafiq, Syed Imran, Cesar Sanin, Edward Szczerbicki, and Carlos Toro. 2014a. "Implementing 

Virtual Engineering Objects (VEO) with the Set of Experience Knowledge Structure 

(SOEKS)." Procedia Computer Science no. 35 (0):644-652. doi: 

http://dx.doi.org/10.1016/j.procs.2014.08.146. 

Shafiq, Syed Imran, Cesar Sanin, Edward Szczerbicki, and Carlos Toro. 2014b. "Virtual 

Engineering Objects (VEO): Designing, Developing and Testing Models." In System 

Analysis Approach to the Design,Control and Decision Support, edited by L Borzecki 

A Grzech, J. Swiatek, Z. Wilimowska, 183-192 Wroclaw: Wroclaw University of 

Technology Press. 

Shafiq, SyedImran, Cesar Sanin, Edward Szczerbicki, and Carlos Toro. 2014c. "Decisional 

DNA Based Framework for Representing Virtual Engineering Objects." In Intelligent 

Information and Database Systems, edited by NgocThanh Nguyen, Boonwat Attachoo, 

Bogdan Trawiński and Kulwadee Somboonviwat, 422-431. Springer International 

Publishing. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://dx.doi.org/10.1016/j.neucom.2011.08.029
http://dx.doi.org/10.1016/j.procs.2014.08.146
http://mostwiedzy.pl


21 

 

Weber, M. Industry 4.0. http://www.pt-it.pt-dlr.de/de/3069.php 2014. 

Zhang, Haoxi, Cesar Sanín, and Edward Szczerbicki. 2013. "Implementing Fuzzy Logic To 

Generate User Profile In Decisional DNA Television: The Concept and Initial Case 

Study." Cybernetics and Systems no. 44 (2-3):275-283. doi: 

10.1080/01969722.2013.762280. 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://www.pt-it.pt-dlr.de/de/3069.php
http://mostwiedzy.pl

