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The view of a node in a port-labeled network is an infinite tree encoding all walks in the 
network originating from this node. We prove that for any integers n ≥ D ≥ 1, there exists 
a port-labeled network with at most n nodes and diameter at most D which contains a 
pair of nodes whose (infinite) views are different, but whose views truncated to depth 
�(D log(n/D)) are identical.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The notion of a view was introduced and first studied by Yamashita and Kameda in [19] in the context of distributed 
message passing algorithms. In so-called anonymous networks (without unique identifiers accessible to a distributed al-
gorithm), the view is a fundamental concept which allows for identification of the network topology and for breaking of 
symmetries between nodes. Different views for a pair of nodes guarantee that the corresponding nodes are distinguishable, 
which is useful in, e.g., leader election algorithms. View-based approaches have been successfully used when designing algo-
rithms for various network problems, including map construction [3,9], leader election [4,6,8,12,17,20], rendezvous [5,7,13], 
and other tasks [10,18].

The view from a node of a network is by definition (cf. Section 2) an infinite rooted tree, and therefore distributed 
algorithms (both for agents exploring the network or for the nodes in message passing models) can only know a finite 
subtree of the view. This motivates the question about the minimum integer l such that the view truncated to depth l
contains all crucial information an algorithm may need.

Yamashita and Kameda proved that if views of two nodes truncated to depth n2 are identical, then their infinite views 
are identical [19], where n is the number of nodes of the network. The bound has been improved to n − 1 by Norris [15]. 
Although this bound is asymptotically tight [1,15], it is far from being accurate for many networks. Hence, one may ask 
for bounds expressed as a function of different graph invariants. Fraigniaud and Pelc proved in [11] that if two nodes have 
the same views to depth n̂ − 1 then their views are the same, where n̂ is the number of nodes having different views 
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1 Partially supported by National Science Centre of Poland grant DEC-2011/02/A/ST6/00201 and by ANR project DISPLEXITY.
http://dx.doi.org/10.1016/j.tcs.2015.03.018
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.03.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:deren@eti.pg.gda.pl
mailto:adrian.kosowski@inria.fr
mailto:dsp39@cl.cam.ac.uk
http://dx.doi.org/10.1016/j.tcs.2015.03.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.03.018&domain=pdf


28 D. Dereniowski et al. / Theoretical Computer Science 582 (2015) 27–34

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

(or equivalently, n̂ is the size of the quotient graph [19]). For some works on view computation see, e.g., [2,16]. Recently, 
Hendrickx [14] proved (for simple graphs with symmetric port labeling) an upper bound of O (D log(n/D)) on the depth to 
which views need to be checked in order to be distinguished, where D is the diameter of the network, leaving the tightness 
of this bound as an open problem.

In this work we provide a corresponding lower bound of �(D log(n/D)). In particular, for each D ′ ≥ 3 and n′ ≥ D ′ ·212/3, 
we construct an n′-node graph G ′ with diameter at most D ′ such that taking truncations of the view to depth D ′−5

6 log2
n′
D ′ −

0.41D ′ does not guarantee distinguishing a pair of nodes of this graph, which do in fact have different (infinite) views. Our 
construction is done in two steps. First, a list of graphs Gl , l ≥ 1, is defined with the following properties: (a) diam(Gl) = 3
for each l ≥ 1, and (b) Gl contains two nodes al and bl such that the views from them to depth l = �(log n) are identical but 
their (infinite) views are different, where n is the size of Gl . Next, in order to extend the bound for arbitrarily large diameter 
D ′ we then modify Gl by subdividing each of its edges roughly D ′/3 times so that the new graph: (a) has diameter roughly 
D ′ , and (b) contains two nodes al and bl such that their views are the same till depth �(D ′ log2(n

′/D ′)) but their views are 
different, where n′ is the size of the subdivided graph.

We remark that very recently [12], a construction of a class of labeled graphs has been put forward in the context of 
lower bounds for the leader election problem on anonymous graphs, which can also be used to obtain a separation of node 
views at distance �(log n) in a graph of diameter D = O (1). The analysis of that class appears somewhat more involved 
than for our construction.

2. Preliminaries

In this work we consider anonymous port labeled networks (the terms graph and network are used interchangeably 
throughout) in which the nodes do not have identifiers and each edge {u, v} has two integers assigned to its endpoints, 
called the port numbers at u and v , respectively. The port numbers are assigned in such a way that for each node v they 
are pairwise different and they form a consecutive set of integers {1, . . . , k}, where k is the number of neighbors of v in G . 
The number of neighbors of v in G is called the degree of v and is denoted by degG(v). To simplify some statements we 
introduce a port labeling function λ for G defined in such a way that for each pair u, v of adjacent nodes, λ(u, v) is the 
port label at u of the edge {u, v}. For each node v of G and for each p ∈ {1, . . . , degG(v)}, nextp(v) is the node u such that 
λ(v, u) = p, whereas endp(v) = λ(nextp(v), v) is the port label at the other end of the edge.

We recall the definition of a view [19]. Let G be a graph, v be a node of G and let λ be a port labeling for G . Given 
any l ≥ 0, the (truncated) view up to level l, Vl(v), is defined as follows. V0(v) is a tree consisting of a single node x0. Then, 
Vl+1(v) is the port-labeled tree rooted at x0 and constructed as follows. For every node vi , i ∈ {1, . . . , degG(v)}, adjacent to 
v in G there is a child xi of x0 in Vl+1(v) such that the port number at x0 corresponding to edge {x0, xi} equals λ(v, vi), 
and the port number at xi corresponding to edge {x0, xi} equals λ(vi, v). For each i ∈ {1, . . . , degG(v)} the node xi is the 
root of the truncated view Vl(vi).

The view from v in G is the infinite port-labeled rooted tree V(v) such that Vl(v) is its truncation to level l, for each 
l ≥ 0.

We remark that by adopting the above definitions, we are considering so-called symmetric networks in the sense that 
the port-labeled network corresponds to an unlabeled graph which is undirected, and that the encoding of port numbers at 
both endpoints of each edge appears in the labeling of the edges of the view.

A path in G is denoted as a sequence of nodes, P = (v0, v1, . . . , vk), such that {v0, . . . , vk} ⊆ V (G) and {vi, vi+1} is an 
edge in G for each i ∈ {0, . . . , k − 1}. Note that nodes may repeat in a path, i.e., we do not assume that vi �= v j for i �= j. 
We say that two paths P1 = (u0, u1, . . . , uk) and P2 = (v0, v1, . . . , vk) in G are isomorphic if λ(ui, ui+1) = λ(vi, vi+1) and 
λ(ui+1, ui) = λ(vi+1, vi) for each i ∈ {0, . . . , k − 1}. We will call a path non-backtracking2 if it never follows the same edge 
twice on end in opposite directions, i.e., λ(vi, vi−1) �= λ(vi, vi+1) for all i ∈ {1, . . . , k − 1}.

Claim 2.1. (See [19].) Let G be a graph, let u, v be two nodes of G, and let l ≥ 0 be an integer. We have Vl(u) = Vl(v) if and only if, for 
any path of length l starting at u, there exists an isomorphic path of length l starting at v, and vice versa. The claim also holds when 
restricting considerations to non-backtracking paths.

We write diam(G) to denote the diameter of G , i.e., the maximum (taken over all pairs of nodes u and v) length of a 
shortest path between u and v in G .

3. The lower bound

For each l > 1 we define the graph Gl which consists of nodes laid out on a regular grid with l + 2 levels and 2l columns, 
where the node in level i ∈ {0, 1, . . . , l + 1} and column j ∈ {0, 1, . . . , 2l − 1} is denoted by vi( j). Note that all levels are of 
size 2l , and nl = |V (Gl)| = (l + 2)2l .

2 Boldi and Vigna used in [1] the term “non-stuttering” to denote such paths.
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The construction of the edge set of Gl proceeds in four stages. Before giving a formal construction, we first provide some 
intuitions regarding the purpose served by edges introduced in different stages. The edges added to Gl in Stages 2 and 3 
ensure that the graph is connected and has diameter of fixed size. The aim of Stage 3 is to add edges between consecutive 
levels in such a way that if one wants to detect a difference between some pairs of nodes in level l + 1 (e.g., vl+1(0) and 
vl+1(2l−1)), then two paths of sufficient length from those nodes need to be selected. In particular, the paths first need to 
go through all levels and reach level 0 (in the mentioned case, these are the nodes v0(0) and v0(1)). The edges added to 
Gl in Stage 1 ensure that nodes in level 0 from two consecutive columns have different views truncated to depth 2.

Stage 1. Edges within level 0. In level 0, the edges form a matching between nodes v0( j) and v0( j ⊕ 1), j ∈ {0, . . . , 2l − 1}, 
with ports with labels {1, 2}, given as follows:

for j := 0, . . . , 2l − 1 do
λ(v0( j), v0( j ⊕ 1)) := 1 + (( j + 1) mod 2);

In the above, ⊕ denotes the xor operation (bitwise modulo-2 addition of non-negative integers).

Stage 2. Edges within level l + 1. The edges in level l + 1 form a clique on all 2l nodes of the level, with port labels corre-
sponding to the difference of identifiers of the connected nodes, computed modulo 2l .

for j := 0, . . . , 2l − 1 do
for p := 1, . . . , 2l − 1 do

λ(vl+1( j), vl+1(( j + p) mod 2l)) := p.

Stage 3. Edges connecting level l + 1 with all lower levels. Each node vl+1( j) from level l + 1 is connected to all nodes 
lying in lower levels, in the same column. The port numbers at node vl+1( j) leading to successive levels are successive 
integers starting from 2l , and the port numbers at the other end of such edges are always equal to 1, except for level 0, 
where the port label is either 1 or 2 (depending on which port was not used at the considered node in Stage 1 of the 
construction):

for j := 0, . . . , 2l − 1 do
for i := 0, . . . , l do

λ(vl+1( j), vi( j)) := 2l + i;
if i > 0 then

λ(vi( j), vl+1( j)) := 1.
else

λ(v0( j), vl+1( j)) := 1 + ( j mod 2).

Stage 4. Edges connecting adjacent levels. Each node belonging to a level i ∈ {0, . . . , l − 1} is connected by an edge to 
exactly one node of the level i + 1 directly above, so that the set of edges between such two adjacent levels is a matching. 
Specifically, we introduce a permutation πi on the set of integers {0, . . . , 2l −1}, defined for i = 0 as the identity permutation 
π0( j) = j, and for i > 0 as the involution (a function that is its own inverse) which swaps the values of the i-th and (i −1)-th 
rightmost bits in the binary notation of its argument:

πi( j) = ( j − 2ibi( j) − 2i−1bi−1( j)) + 2ibi−1( j) + 2i−1bi( j), (1)

where for k ≥ 0, bk( j) = 1 if ( j mod 2k+1) ≥ 2k , and bk( j) = 0, otherwise. For each node at level i ∈ {1, . . . , l − 1}, the 
port label used on the edge leading to level i − 1 is always 2, and the port label leading to level i + 1 is always 3, as 
follows:

for j := 0, . . . , 2l − 1 do
for i := 0, . . . , l − 1 do

λ(vi( j), vi+1(πi( j))) := 3;
λ(vi+1(πi( j)), vi( j)) := 2.

The graph G4 with some edges omitted is shown in Fig. 1. In particular, the edges between nodes in level l + 1 and level 
i, i ≤ l, are given only in column 0, and edges from the clique in level l + 1 are omitted.

Claim 3.1. For each l ≥ 6 it holds that |E(Gl)| < 22l and diam(Gl) ≤ 3.

Proof. The number of edges of Gl can be bounded by counting the number of edges added in Stages 1 to 4 and bounding 
for l ≥ 6.

To bound the diameter, note that any node of Gl either belongs to level l + 1 or is within distance 1 from a node in level 
l + 1. Also, any two nodes in level l + 1 are adjacent. �

For a pair of integers 0 ≤ j1, j2 < 2l , we will denote by δ( j1, j2) the number of rightmost bits in their binary represen-
tations which are all identical, i.e., δ( j1, j2) is the largest integer δ ∈ {0, . . . , l} such that ( j1 ≡ j2) mod 2δ (or equivalently, 
such that bk( j1) = bk( j2) for all 0 ≤ k < δ). The function δ( j1, j2) has several important properties with respect to transfor-
mations of its parameters.

http://mostwiedzy.pl


30 D. Dereniowski et al. / Theoretical Computer Science 582 (2015) 27–34

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Fig. 1. The construction of Gl for l = 4.

Lemma 3.1. Let j1, j2, d ∈ {0, . . . , 2l − 1} and i ∈ {1, . . . , l − 1} be arbitrarily chosen. Then:

(i) δ( j1 ⊕ d, j2 ⊕ d) = δ( j1, j2).
(ii) δ(( j1 + d) mod 2l, ( j2 + d) mod 2l) = δ( j1, j2).

(iii) δ(πi( j1), πi( j2)) ≥ δ( j1, j2) − 1, where involution πi is defined by (1).

Proof. Claims (i) and (ii) can be attributed to folklore. To prove claim (iii), note that the involution πi consists in swapping 
adjacent bits at positions i and i −1, only. Consequently, we have by definition of δ( j1, j2) that if δ(πi( j1), πi( j2)) �= δ( j1, j2)

then either δ( j1, j2) = i − 1 or δ( j1, j2) = i. In both cases, we have δ(πi( j1), πi( j2)) ≥ i − 1, and claim (iii) follows. �
In the following, for two nodes vi( j1) and vi( j2) belonging to the same level i of Gl , we will use the notation: 

δ(vi( j1), vi( j2)) ≡ δ( j1, j2).

Lemma 3.2. Consider a pair of nodes vi( j1), vi( j2) of Gl with δ(vi( j1), vi( j2)) > 0. Then:

(i) Nodes vi( j1) and vi( j2) are of the same degree d.
(ii) For any port p ∈ {1, . . . , d}, nodes nextp(vi( j1)) and nextp(vi( j2)) belong to the same level in Gl.

(iii) For any port p ∈ {1, . . . , d}, δ(nextp(vi( j1)), nextp(vi( j2)) ≥ δ(vi( j1), vi( j2)) − 1.
(iv) For any port p ∈ {1, . . . , d}, endp(vi( j1)) = endp(vi( j2)).

Proof. By the construction of Gl , all nodes in the same level are of the same degree, and claim (i) follows. Claim (ii) also 
follows directly from the construction of Gl .

The construction of the port labeling in Gl is such that the Stage a ∈ {1, 2, 3, 4}, during which an edge along any port p
is added to a vertex vi( j), depends only on the value of its level i and the parity j mod 2 of its column number (this parity 
is only relevant for the case of i = 0 and p = 2, distinguishing edges added in Stage 1 and Stage 3). The nodes vi( j1) and 
vi( j2) belong to the same level. Moreover, since δ( j1, j2) > 0, we have that

( j1 ≡ j2)mod 2. (2)

It follows that the edges e1 = {vi( j1), nextp(vi( j1))} and e2 = {vi( j2), nextp(vi( j2))}, corresponding to a traversal of the 
same port p starting from nodes vi( j1) and vi( j2), must necessarily have been defined in the same Stage a of the con-
struction of the edge set of Gl . To complete the proofs of claims (iii) and (iv), we consider the corresponding four cases of 
a ∈ {1, 2, 3, 4}.

• Edges e1 and e2 were defined in Stage 1. Then, i = 0, p ∈ {1, 2}, and we have:

nextp(vi( j1)) = vi( j1 ⊕ 1), endp(vi( j1)) = 1 + ( j1 mod 2),

nextp(vi( j2)) = vi( j2 ⊕ 1), endp(vi( j2)) = 1 + ( j2 mod 2).

By Lemma 3.1(i), we have:

δ(nextp(vi( j1)),nextp(vi( j2))) = δ(vi( j1), vi( j2)).

Moreover, taking into account (2), we obtain endp(vi( j1)) = endp(vi( j2)). This completes the proof of claims (iii) and (iv) 
for this case.
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• Edges e1 and e2 were defined in Stage 2. Then, i = l + 1, p ∈ {1, . . . , 2l − 1}, and we have:

nextp(vi( j1)) = vi(( j1 + p)mod 2l), endp(vi( j1)) = (2l − p)mod 2l,

nextp(vi( j2)) = vi(( j2 + p)mod 2l), endp(vi( j2)) = (2l − p)mod 2l.

We immediately have endp(vi( j1)) = endp(vi( j2)), and moreover, by Lemma 3.1(ii):

δ(nextp(vi( j1)),nextp(vi( j2))) = δ(vi( j1), vi( j2)).

• Edges e1 and e2 were defined in Stage 3. Then, we need to consider two cases: either i = l + 1, or i ∈ {0, . . . l}.
If i = l + 1, then p = 2l + i′ for some i′ ∈ {0, . . . l}. We have for i′ > 0:

nextp(vi( j1)) = vi′( j1), endp(vi( j1)) = 1,

nextp(vi( j2)) = vi′( j2), endp(vi( j2)) = 1,

whereas for i′ = 0:

nextp(vi( j1)) = v0( j1), endp(vi( j1)) = 1 + ( j1 mod 2),

nextp(vi( j2)) = v0( j2), endp(vi( j2)) = 1 + ( j2 mod 2).

Claims (iii) and (iv) follow directly, taking into account Eq. (2) in the latter case.
Otherwise, if i < l + 1, then p = 2 (if i = 0 and j1 ≡ j2 ≡ 1 mod 2), or p = 1 (in all other cases). We have:

nextp(vi( j1)) = vl+1( j1), endp(vi( j1)) = 2l + i,

nextp(vi( j2)) = vl+1( j2), endp(vi( j2)) = 2l + i,

and claims (iii) and (iv) immediately follow as well.
• Edges e1 and e2 were defined in Stage 4. Then, p ∈ {2, 3} and i ∈ {0, . . . , l}.

We first consider the case of p = 3, i.e., when i < l and port p leads up to level i + 1. We have:

nextp(vi( j1)) = vi+1(πi( j1)), endp(vi( j1)) = 2,

nextp(vi( j2)) = vi+1(πi( j2)), endp(vi( j2)) = 2.

Claim (iv) follows directly, and so does claim (iii), taking into account that by Lemma 3.1(iii):

δ(nextp(vi( j1)),nextp(vi( j2))) = δ(πi( j1),πi( j2)) ≥ δ( j1, j2) − 1 = δ(vi( j1), vi( j2)) − 1.

In the case of p = 2, i.e., when i > 0 and port p leads down to level i − 1, we have:

nextp(vi( j1)) = vi−1(π
−1
i−1( j1)), endp(vi( j1)) = 3,

nextp(vi( j2)) = vi−1(π
−1
i−1( j2)), endp(vi( j2)) = 3.

We obtain the claims as in the previous case, this time noting that since πi−1 is an involution, we have π−1
i−1 ≡ πi−1, 

and we can apply Lemma 3.1(iii) for πi−1 to show Claim (iii). �
Lemma 3.3. Consider a pair of nodes vi( j1), vi( j2) of Gl with δ ≡ δ(vi( j1), vi( j2)) > 0. Then, the views of nodes vi( j1) and vi( j2)

are equal at least up to depth δ, Vδ(vi( j1)) = Vδ(vi( j2)).

Proof. The proof proceeds by induction with respect to δ.
When δ = 1, by Lemma 3.2(i), the nodes vi( j1) and vi( j2) have the same degree d, and by Lemma 3.2(iv), after traversing 

an edge labeled with any port p ∈ {1, . . . , d} from either node, we enter the adjacent node by the same port: endp(vi( j1)) =
endp(vi( j2)). Hence, V1(vi( j1)) = V1(vi( j2)).

Now, let δ > 1 and suppose that the claim of the lemma holds for all δ′ ≤ δ−1. Again, by Lemma 3.2(i) and (iv), the nodes 
vi( j1) and vi( j2) have the same degree, and after traversing an edge labeled with any port p ∈ {1, . . . , d} from either node, 
we enter the adjacent node by the same port. Moreover, we have by Lemma 3.2(iii) that δ(nextp(vi( j1)), nextp(vi( j2))) ≥
δ − 1, and, by Lemma 3.2(ii), nextp(vi( j1)) and nextp(vi( j2)) belong to the same level of Gl . Hence, by the inductive 
assumption, Vδ−1(nextp(vi( j1))) = Vδ−1(nextp(vi( j2))). Since port p was arbitrarily chosen, it follows from the recursive 
definition of the view that Vδ(vi( j1)) = Vδ(vi( j2)), and so we have the claim. �

Observe that the nodes al = vl(0) and bl = vl(2l−1) have distinct views in Gl . Indeed, consider a sequence of l traversals 
along port 2, starting from nodes al and bl . We argue, by induction on i ∈ {0, . . . , l − 1}, that after i edge traversals the node 
reached from al is vl−i(0), and the node reached from bl is vl−i(2l−1−i). For i = 0 the claim is trivial and hence assume 
that it holds for some 0 ≤ i < l − 1. The edge with port number 2 at vl−i(0) clearly leads to vl−1−i(0) as required. Hence, 
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it remains to argue that there is an edge between vl−i−1(2l−2−i) and vl−i(2l−1−i) in G . According to construction of edges 
between the levels l − 2 − i and l − 1 − i in Stage 4, we need to argue that

πl−1−i( j) = 2l−1−i, where j = 2l−2−i. (3)

By (1),

πl−1−i( j) =
(

j − 2l−1−ibl−1−i( j) − 2l−2−ibl−2−i( j)
)

+ 2l−1−ibl−2−i( j) + 2l−2−ibl−1−i( j).

We have bl−1−i( j) = 0 because 2l−2−i mod 2l−i = 0 < 2l−1−i , and bl−2−i( j) = 1 because 2l−2−i mod 2l−1−i ≥ 2l−2−i . Thus, 
πl−1−i( j) = j − 2l−2−i + 2l−1−i = 2l−1−i as required, which completes the proof of (3). Thus, for i = l − 1, we reach nodes 
v1(0) and v1(1), respectively. Then, after following port 2 for the l-th time, we reach nodes v0(0) and v0(1), respectively. 
Finally, after following port 2 for the (l + 1)-th time, We reach nodes v0(1) and vl+1(1), respectively.

In the last step of the traversal of this sequence of ports, node v0(1) is entered by port 1, while node vl+1(1) is entered 
by port 2l . Hence, V(al) �= V(bl). On the other hand, δ(vl(0), vl(2l−1)) = l − 1, so by Lemma 3.3, Vl−1(al) = Vl−1(bl). We 
obtain the following claim.

Proposition 3.1. For any integer l ≥ 6, there exists a graph Gl on (l + 2)2l nodes, at most 22l edges, and diameter at most 3, which 
contains a pair of nodes al, bl having distinct views and having the same views up to depth l − 1.

This result completes our proof for the case of graphs of diameter 3. Now, in order to obtain an asymptotic lower bound 
of �(D log(n/D)), where n and D are, respectively, the size and the diameter of a graph, we modify each of Gl ’s to obtain 
graphs of arbitrarily large diameter.

Let D be an odd integer. For each Gl , l ≥ 1, define ξD(Gl) to be a graph constructed by replacing each edge {u, v}
from Gl by a path P ({u, v}) of length D with endpoints u and v . Note that |V (ξD(Gl))| = |V (Gl)| + (D − 1)|E(Gl)| and 
|E(ξD(G))| = D|E(Gl)|. Also, ξ1(Gl) = Gl . We define the port labeling λD for ξD(Gl) as follows. For each {u, v} ∈ E(Gl) take 
the corresponding path P ({u, v}) = (u, x1, . . . , xD−1, v) and set λD(u, x1) = λ(u, v), λD(v, xD−1) = λ(v, u). The remaining 
port labels of P ({u, v}) are assigned arbitrarily but in such a way that whenever two edges of Gl have the same port 
labels at the endpoints, then we select isomorphic port labelings for the two corresponding paths in ξD (Gl). Formally, 
for any two edges {u, v} and {u′, v ′} of Gl satisfying λ(u, v) = λ(u′, v ′) and λ(v, u) = λ(v ′, u′), for the two corresponding 
paths P ({u, v}) = (u = x0, x1, . . . , xD−1, xD = v) and P ({u′, v ′}) = (u′ = x′

0, x
′
1, . . . , x

′
D−1, x

′
D = v ′) it holds that λD (x j, x j+1) =

λD(x′
j, x

′
j+1) and λD(x j+1, x j) = λD(x′

j+1, x
′
j) for each j ∈ {0, . . . , D − 1}. The latter is possible for any D when λ(u, v) �=

λ(v, u) and it is possible for odd D for ‘symmetric’ edges, i.e., when λ(u, v) = λ(v, u). As an example of such labeling 
consider the following. If D is odd and λ(u, v) = λ(v, u), then we set

λD(x j, x j−1) = 1 and λD(x j, x j+1) = 2 for each j ∈ {1, . . . , �D/2�},
and

λD(x j, x j−1) = 2 and λD(x j, x j+1) = 1 for each j ∈ {�D/2� + 1, . . . , D − 1}.
If, on the other hand, λ(u, v) �= λ(v, u), then one can set

λD(x j, x j−1) = 1 and λD(x j, x j+1) = 2 for each j ∈ {1, . . . , D − 1}.
We also have the following claim.

Claim 3.2. For each l ≥ 1 and D ≥ 1 it holds that diam(ξD(Gl)) ≤ 3D.

We now consider the nodes al, bl ∈ V (Gl) satisfying Proposition 3.1, and characterize their (truncated) views within graph 
ξD(Gl).

Lemma 3.4. For any l ≥ 1, i ≤ l − 1, and odd D ≥ 1, in graph ξD(Gl) we have: VDi(al) = VDi(bl) and V(al) �= V(bl).

Proof. In order to prove that VDi(al) = VDi(bl), we will use the characterization from Claim 2.1. Let P j = (u j
0, u

j
1, . . . , u

j
kD), 

j ∈ {1, 2}, be any two non-backtracking paths in ξD (Gl) such that u1
0 = al and u2

0 = bl .

By construction, P ′
j = (u j

0, u
j
D , u j

2D , . . . , u j
kD) is a path in Gl for each j ∈ {1, 2}. By the definition of port labeling of ξD (Gl), 

for paths ending at nodes within V (Gl), the port labelings of P1 and P2 are identical if and only if the port labelings of 
P ′

1 and P ′
2 are identical. Thus, P1 and P2 are isomorphic in ξD(Gl) if and only if P ′

1 and P ′
2 are isomorphic in Gl . Since 

i ≤ l − 1, by Claim 2.1 we obtain that VDi(al) = VDi(bl). The fact that V(al) �= V(bl) follows from similar arguments. �
Theorem 3.1. Let D ′ ≥ 3 and n′ ≥ 1 be arbitrary integers with n′ ≥ D ′ · 212/3. There exists a graph G with at most n′ nodes and 
diameter at most D ′, which contains two nodes having distinct views which are identical when truncated up to depth D ′−5

6 log2
n′
D ′ −

0.41D ′ .
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Proof. Let D be the largest odd integer such that 3D ≤ D ′ . Note that D ≥ (D ′ − 5)/3 and 1 ≤ D ≤ D ′/3. Take G = ξD(Gl), 
a = al and b = bl , where l is selected so that n = |V (G)| ≥ n′ . Observe that, by Claim 3.1, the number of nodes of G satisfies:

n = |V (Gl)| + (D − 1)|E(Gl)| < D|E(Gl)| < D22l ≤ D ′22l/3.

Thus, n ≤ n′ is satisfied if D ′22l/3 ≤ n′; we put l = � 1
2 log2(3n′/D ′)�. (Note that l ≥ 6 by assumption.)

By Lemma 3.4, the views of al and bl are different in G , but the same when truncated up to depth D(l − 1). We have:

D(l − 1) ≥ D ′ − 5

3
·
(

1

2
log2

3n′

D ′ − 2

)
= D ′ − 5

6
log2

n′

D ′ + D ′

3

(
1

2
log2 3 − 2

)
− 5

3

(
1

2
log2 3 − 2

)
>

>
D ′ − 5

6
log2

n′

D ′ − 0.41D ′. �
4. Final remarks

We have shown a tight lower bound of �(D log(n/D)) on the depth to which the views of a pair of nodes of a symmetric 
anonymous network need to be checked in order to decide if their views in the graph are different. We remark that our 
problem of view distinction can be generalized in the following two directions:

• One may consider scenarios in which some information (labels) is also encoded at nodes of the network, and also 
appears as a node-labeling in the definition of the view. (Such an extended definition of views has appeared, e.g., in the 
context of leader election in networks where not all identifiers are distinct [20].)

• One may ask about the depth of the view which suffices not only to distinguish a pair of nodes of the same graph 
having distinct views, but also any pair of nodes of two arbitrary graphs, which have the same view. (This type of 
distinction is required in, e.g., in so-called map construction problems [3].)

Since our lower bound concerns a more restricted scenario, it immediately applies to both of the above cases as well. 
Formally, when considering a pair of graphs, as n and D we take the maximum order and diameter of the two graphs.

At the same time, the techniques used by Hendrickx [14] to show a corresponding upper bound of O (D log2(n/D)) for 
distinguishing a pair of nodes of a connected graph can be adapted to apply to all of the above cases as well, including the 
scenario of distinguishing a pair of views in two different graphs. Indeed, suppose that there exist a graph G1 on n1 nodes 
with diameter D1 containing a node v1, and a graph G2 on n2 nodes with diameter D2 containing a node v2, such that 
nodes v1 and v2 have views in their respective graphs indistinguishable up to some distance l > 1. Then, one can construct 
a new connected graph G on n = n1 + n2 nodes with diameter D ≤ D1 + D2, in which there exists a pair of nodes with 
views indistinguishable also up to distance l. To achieve this, denoting by d the degrees of v1 in G1 and of v2 in G2, which 
are necessarily equal, we form G by taking the disjoint union of graphs G1 and G2, and connecting vertices v1 and v2 by 
an edge labeled with port d + 1 at both ends.

Thus, we can say that the question of the necessary depth of view reconstruction with respect to the diameter of a 
symmetric port-labeled networks has been completely resolved.
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