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Reliable Microwave Modeling by Means of
Variable-Fidelity Response Features
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Abstract—In this work, methodologies for low-cost and reli-
able microwave modeling are presented using variable-fidelity
response features. The two key components of our approach are:
1) a realization of the modeling process at the level of suitably
selected feature points of the responses (e.g., -parameters versus
frequency) of the structure at hand and 2) the exploitation of
variable-fidelity EM simulation data, also for the response feature
representation. Due to the less nonlinear dependence between the
coordinates of the feature points on the geometrical parameters
of the structure of interest, the amount of training data can be
greatly reduced. Additional cost reduction is obtained by means
of generating the majority of the training data at a coarse-dis-
cretization EM simulation level and exploiting the correlations
between the EMmodels of various fidelities. We propose two ways
of combining the low- and high-fidelity data sets: 1) an external
approach, through space mapping (simpler to implement) and 2)
an internal approach, using co-kriging (more flexible and poten-
tially offering better accuracy). The operation and performance
of our modeling techniques are demonstrated by three microstrip
filter examples and a compact rat-race coupler. A comprehensive
verification and comparisons with several benchmark techniques,
as well as application examples (filter optimization) are also
provided.

Index Terms—Co-kriging, computer-aided design, fea-
ture-based modeling, kriging, microwave component modeling,
space mapping (SM), surrogates modeling.

I. INTRODUCTION

A CCURATE evaluation of the electrical performance of
microwave structures can be obtained through high-fi-

delity full-wave electromagnetic (EM) analysis. Unfortunately,
this comes at considerable computational cost, particularly for
complex devices/circuits and when interactions (EM couplings)
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with the environment are included. Consequently, the utilization
of EM simulations in a design process, e.g., for parametric opti-
mization, uncertainty quantification, or tolerance-aware design
(design centering), may be prohibitive, as multiple evaluations
of the structure at hand are involved. Executing such tasks in
a reasonable timeframe requires fast and accurate replacement
models (surrogates).
Fast surrogate models can be constructed using two classes

of techniques: 1) response surface approximation (RSA) [1] and
2) physics-based surrogate modeling [2], [3]. The first relies on
approximating sampled high-fidelity EM simulation data. The
most popular methods include neural networks [4], [5], kriging
interpolation [6], support vector regression [7], [8], radial-basis
function interpolation [9], the Cauchy method [10], as well as
Gaussian process regression (GPR) [11], [12]. The advantages
of the RSA surrogates include their versatility (as data-driven
models they are easily transferable between various problem do-
mains) and speed (once established, the RSA model is compu-
tationally cheap to evaluate). On the other hand, approximation
models are not suitable for handling multi-dimensional param-
eter spaces. If the number of parameters exceeds just a few, the
amount of training data necessary to ensure sufficient accuracy
of the model (typically, below 5% of the relative RMS error
[13]) grows very quickly so that the effort for model construc-
tion may not be practically justified (unless the model is to be
reused under various design scenarios) or even feasible.
The second class of techniques for constructing fast sur-

rogates—physics-based modeling—relies on appropriate
correction of an underlying low-fidelity model such as an
equivalent circuit (popular method: space mapping (SM)
[14], [15]). Physics-based surrogates require less training
data and-due to the problem-specific knowledge embedded in
the low-fidelity model-offer better generalization. However,
they are less generic, more complex to implement, and their
applicability is typically limited to cases when fast low-fidelity
models are available; their accuracy depends on the reliability
of the low-fidelity model; and it might not be straightforward
to accommodate additional training data (if available) [16]. To
some extent, these issues can be alleviated by combining SM
with an approximation-based correction layer (e.g., [17], [18]).
Reduction of the number of training points for approxima-

tion-based surrogates can be achieved by realizing the modeling
process in an alternative representation of the system responses,
where the dependence of the alternative responses on the des-
ignable parameters is less nonlinear. This approach has been ex-
plored, e.g., in the shape-preserving response prediction (SPRP)
technique [19] or in [20] for inverse modeling of filters. A recent
modeling technique [21] utilizes the concept of feature points
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similar to those in SPRP but with considerably simpler imple-
mentation (achieved by abandoning the use of so-called refer-
ence designs [21]). Feature-based modeling has been demon-
strated to ensure good accuracy using a fraction of the training
points required by conventional methods [21].
As indicated in [21], further reduction of the setup cost of

the surrogate model can be achieved by using variable-fidelity
EM simulation within the feature-based modeling framework.
In [22], densely sampled low-fidelity EM model data was sup-
plemented by sparsely sampled high-fidelity EM data with the
two data sets blended (at the level of response features) into a
single surrogate using co-kriging [23].
In this work, we provide extensive numerical validation of

this approach. In addition, in Section II, we propose an alter-
native (external) way of combining low- and high-fidelity fea-
ture-based surrogates using SM. The latter is simpler and easier
to implement than [22] while ensuring similar accuracy. Our
test cases provided in Section III include three microstrip filter
examples and a compact rat-race coupler. Application of the
variable-fidelity feature-based models for design optimization
is also demonstrated.

II. VARIABLE-FIDELITY FEATURE-BASED MODELING

In this section, we formulate the surrogate modeling problem,
recall the concept of feature-based surrogates, and redefine the
concept within a variable-fidelity setting.

A. Surrogate Modeling

We denote by , the response
vector of the microwave device of interest. In particular,
may represent at chosen frequencies, to , i.e.,

. is assumed to be
evaluated using high-fidelity EM analysis. Consequently, it is
computationally expensive. The task is to build a fast surrogate
(replacement) model that represents in . Given suffi-
cient accuracy of , it can be used in place of for solving
design tasks that require multiple, high-cost evaluations of the
latter.
Let be the training set so

that the responses of the high-fidelity model at , are
known. Conventional response surface modeling attempts to di-
rectly model , . In many cases, the sur-
rogate is created as an ensemble of RSA models constructed for
individual frequencies, i.e., obtained by approximating the data
sets , for . Sometimes
[23], frequency is treated as an additional designable parameter,
so that the RSA surrogate is constructed by approximating the
data pairs .

B. Variable-Fidelity Response Features

Given the high nonlinearity of typical responses of mi-
crowave devices with respect to their designable parameters,
particularly for filters, the direct modeling of the high-fi-
delity model responses is a challenging task that
requires large data sets using (cf.

Fig. 1. Family of responses for a microstrip bandpass filter evaluated
along a selected line segment , : high-fidelity model

(—) and low-fidelity model . Selected feature points and groups
of corresponding points marked (o) for and for .

Fig. 2. Selected feature point plots between designs and
: (a) frequency and (b) levels. They correspond to two feature points: center

frequency of the filter (– – –) and 10 dB level on the left-hand side of the
passband (—); thick and thin lines are used for high- and low-fidelity model
feature points, respectively.

Section II-A) and which is virtually impossible in high-dimen-
sional design spaces.
The key concept behind the modeling techniques considered

here that allow reduction of the number of training points in the
modeling process are certain response features [21]. The feature
points (cf. Fig. 1) may include points corresponding to specific
response levels (e.g., 10 dB, 3 dB), as well as those allo-
cated in between fixed-level points (e.g., uniformly spaced in
frequency). As indicated in Fig. 2 the dependence of the fea-
ture points on the design parameters is much less nonlinear than
those of the original responses (here, -parameters), and thus
easier to model. Feature-based modeling was originally intro-
duced in [21]. It relies on extracting the feature points from the
sampled EM-simulated responses at the training locations, con-
structing the RSA models of the individual feature points, and
synthesizing the surrogate response at a design of interest from
these RSA models.
In this work, we utilize training data acquired from vari-

able-fidelity simulations: from sparsely-sampled points
and from densely-sampled data ob-

tained from coarse-discretization EM simulations (low-fidelity
model ), . Although and
are misaligned (cf. Fig. 1), they are also well correlated so that
the initial surrogate model obtained from the data can be en-
hanced by using a few points to construct the accurate, final
surrogate model. We use the notation ,

, and to denote the th feature point
of , and to denote the th feature
point of ; and denote the frequency and
magnitude (level) components of (similarly for ).
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Fig. 3. Co-kriging concept: model (—), model (– – –), model sam-
ples , model samples . Kriging interpolation of model samples

is not an adequate representation of the model (limited data set).
Co-kriging interpolation of blended and data provides better ac-
curacy at a lower computational cost.

C. Variable-Fidelity Feature-Based Modeling: The
Internal Approach

Multi-fidelity feature-based modeling is a two-step process.
First, we construct approximation surrogates and

, , corresponding to the feature points.
In the internal approach presented in this section, the
construction of and is based on both
high-fidelity and low-fidelity training points and their
corresponding feature points , and

, . Blending these
two types of data sets is realized through co-kriging [20] as
described in the next paragraph.
Let be the set of responses associated with the

training set (i.e., low-fidelity feature points through
). The kriging interpolant is given as [13]

(1)

where and are Vandermonde matrices of the test
point and the base set , respectively; is determined
by generalized least squares (GLS), is an
vector of correlations between the point and the base set

, where the entries are , and is
a correlation matrix, whose entries are given by

). We use the exponential correlation
function . The
regression function is constant, and .
Co-kriging is a type of kriging where the and model
data are combined to enhance the prediction accuracy (cf.
Fig. 3). Co-kriging is a two-step process: first a kriging model

of the coarse data is constructed and,
on the residuals of the fine data , a second kriging
model is applied, where ;

can be approximated as . The
co-kriging interpolant is defined as [25]

(2)

Definitions of , , , and can be found in [25].
The multi-fidelity feature-based surrogate (the internal ap-

proach) is defined as

(3)

with

(4)

where and
are predicted feature point locations

corresponding to , the design being considered; ,
, is a discrete set of frequencies at which the

response of the structure is being evaluated (cf. Section II-A).
According to the internal approach, both and
are implemented through co-kriging as in (2).
denotes a function that interpolates the level vector and
frequency vector into the response at a given frequency .
Because and (i.e., frequencies and levels of the

feature points) are less nonlinear than the original responses
, a substantially smaller number of training points is

necessary to ensure faithful modeling. Also, excellent correla-
tion between and (cf. Fig. 2) allows for further reduc-
tion of the surrogate model setup cost because a very limited
number of samples is sufficient to elevate the -based
kriging model to high-fidelity accuracy through co-kriging.

D. Variable-Fidelity Feature-Based Modeling: The External
Approach
The internal approach presented in Section II-C combines the

low- and high-fidelity training data at the level of the feature
points. In the external approach outlined below, the high-fidelity
data is included through a SM correction of the initial feature-
based surrogate model obtained as in (1), (2), however,
using the low-fidelity training data only. The SM correction is
realized at the level of the original responses as follows [15]:

(5)

where is a frequency scaled model such that
,

with , , being components of .
Here, the model parameters (diagonal matrix), (square ma-
trix), (column vector), and are obtained from the standard
parameter extraction procedure needed by SM, namely,

(6)

If the correlation between the low- and high-fidelity models
is sufficient (which is normally the case when both models
are based on EM analysis), the correction given by (5) and (6)
should significantly improve the accuracy of the surrogate.
It should also be noted that the computational cost of sur-

rogate model identification [i.e., solving the parameter extrac-
tion process (6)] can be neglected compared to the high-fidelity
data acquisition because it is realized at the level of a fast fea-
ture-based model .

E. Internal Versus External Approach
Apart from considerable conceptual differences between the

internal and external approaches, i.e., blending in the high-fi-
delity model data at the level of the response features rather than
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at the level of the original responses, the external approach is
simpler to implement. On the other hand, the internal approach
can be more flexible because the inclusion of a larger amount
of high-fidelity training data should lead to an improvement
of model accuracy. This may not be the case for the external
approach (beyond a certain number of points) due to the fixed
number of degrees of freedom of the surrogate (5) (the number
of model parameters depends on the problem's dimensionality
but not on the cardinality of the data set).

III. VERIFICATION EXAMPLES

In this section, we provide a comprehensive benchmarking
of the multi-fidelity feature-based modeling techniques of
Section II and demonstrate applications of the feature-based
surrogate models in design optimization.

A. Test Cases and Experimental Setup

In order to illustrate the operation and performance of the
proposed modeling techniques we consider three microstrip
filter examples and a compact coupler. The first example (Filter
1) is the stacked slotted resonators bandpass filter [26] shown
in Fig. 4(a). The high-fidelity filter model is simulated in
Sonnet em using a grid of 0.05 mm 0.05 mm. The low-fi-
delity model is also simulated in Sonnet on a 2 mm 2 mm
grid. The substrate parameters are thickness 0.635 mm,
and permittivity . The designable parameters are

. The region of interest is defined as the
interval with
and .
The second structure (Filter 2) is the fourth-order ring

resonator bandpass filter [27] shown in Fig. 4(b). The
high-fidelity filter model is simulated in FEKO using 952
triangular meshes. The low-fidelity FEKO model utilizes
174 meshes. The substrate parameters are thickness
1.52 mm, and permittivity . The designable
parameters are . The region
of interest is defined as the interval
with and

.
The last filter structure considered here (Filter 3) is

the microstrip bandpass filter with open stub inverter
[28]shown in Fig. 4(c). The high-fidelity filter model is
simulated in FEKO using 432 triangular meshes. The
low-fidelity FEKO model utilizes 112 meshes. The sub-
strate parameters are thickness 0.508 mm, and
permittivity . The designable parameters are

. The region of interest is defined as the
interval with
and .
The final test structure is a folded rat-race coupler (RRC)

[29] shown in Fig. 4(d). The structure is implemented on RF-35
substrate , 0.762 mm, ). The
designable parameters are given by: , with

, fixed (all dimensions in millimeters). The
high- and low-fidelity models of the structure are both imple-
mented in CSTMicrowave Studio ( mesh cells, sim-
ulation time 15 min for and 8000 mesh cells, simulation

Fig. 4. Filter structures used for feature-based modeling verification: (a)
stacked slotted resonators filter [26]; (b) fourth-order ring resonator bandpass
filter [27]; (c) bandpass filter with open stub inverter [28]; (d) rat-race coupler
[29].

time 20 s for ). The region of interest is defined as the in-
terval with and

.
Model accuracy is verified using the relative error measure

expressed in percent and averaged
over 100 random test designs. The multi-fidelity feature-based
models (both the internal and external versions) are compared
with the following modeling methods:
• regular (single-fidelity) feature-based modeling [21];
• generalized shape-preserving response prediction
(GSPRP) [19];

• direct kriging interpolation of the high-fidelity data [6];
• response surface modeling using radial-basis functions [9].

The kriging model utilizes a Gaussian correlation function [6],
whereas the radial-basis function model uses Gaussian basis
functions [6]. The length-scale parameter of the latter is opti-
mized using cross-validation [6]. For all the above modeling

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


KOZIEL AND BANDLER: RELIABLE MICROWAVE MODELING BY MEANS OF VARIABLE-FIDELITY RESPONSE FEATURES 4251

Fig. 5. Model responses at the selected (random) test designs: high-fidelity
model (—) and multi-fidelity feature-based model (set up with and

points) (o): (a) Filter 1; (b) Filter 2; and (c) Filter 3; and (d) RRC.

methods, five different cases are considered with the number
of training points varying between and .

B. Numerical Results and Comparisons With Benchmark
Methods

The results are gathered in Tables I–IV. Fig. 5 shows the high-
fidelity and feature-basedmodel responses at selected test points
for Filters 1 to 3 and for the RRC. The following observations
can be made.

TABLE I
MODELING RESULTS FOR FILTER 1

TABLE II
MODELING RESULTS FOR FILTER 2

• Both the internal and external multi-fidelity feature-based
models ensure excellent accuracy even with a very small
number of high-fidelity training samples (specifically, 20
and 50).

• The internal feature-based modeling approach is generally
better than the external approach, however, the latter is still
considerably better than a single-level feature-based sur-
rogate for a small number of training samples and compa-
rable or better overall.

• Asymptotically (i.e., for the number of high-fidelity
training points increasing to 400), both multi-fidelity
feature-based modeling methods are comparable or better
than the single-fidelity feature-based models and ones
based on GSPRP.

• All modeling approaches exploiting the concept of re-
sponse features are considerably more accurate than
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TABLE III
MODELING RESULTS FOR FILTER 3

TABLE IV
MODELING RESULTS FOR THE RRC

conventional modeling techniques working directly with
the original system responses, here, -parameters versus
frequency.

The above conjectures are consistent throughout all the test
cases considered in this paper. It should also be emphasized that
the benchmarking is quite comprehensive, both with respect to
the competitive methods (four techniques) and with respect to
the training set size (from 20 to 400 samples).
Perhaps themost important point is that—according to the au-

thors' knowledge—multi-fidelity feature-based modeling (both
the internal and external approaches) are the only methods that

Fig. 6. Optimization results: (a) Filter 1; (b) Filter 2; (c) Filter 3; (d) RRC. For
(a)–(c), responses shown as (– – –) and (—) for the multi-fidelity feature-based
surrogate model responses (the internal approach) at the initial design and at the
optimized design; corresponding verification by high-fidelity model responses
shown as (o). For (d), thin lines show surrogate responses at the initial design,
thick lines show the surrogate responses as the optimized design; corresponding
verification by high-fidelity model responses shown as (o); 280-MHz bandwidth
of the optimized coupler marked with horizontal line.

result in excellent (and practically usable) accuracy for an ex-
tremely small number of training points (20 and 50 samples).
At the same time, one should bear in mind the limitations of

the method, namely, the necessity of maintaining consistency of
the feature points across the entire training set. For certain struc-
tures, such as the ones utilized in this work, as well as other
structures with well-defined response “shapes” (e.g., coupling
structures, narrow-band antennas, certain integrated photonic
components such as microring resonators) it is easy to achieve.
For other structures, such as high-order filters, feature-based
modeling may be the method of choice for local modeling for,
e.g., statistical design purposes [30].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


KOZIEL AND BANDLER: RELIABLE MICROWAVE MODELING BY MEANS OF VARIABLE-FIDELITY RESPONSE FEATURES 4253

C. Application Examples: Design Optimization

As an additional verification, the multi-fidelity feature-based
surrogate models have been utilized for parametric optimization
of the Filters 1 through 3 as well as the RRC.
The following design specifications are considered.
• Filter 1: 1 dB for 2.35 GHz 2.45 GHz,

20 dB for 2.2 GHz and 2.6 GHz.
• Filter 2: 1 dB for 1.75 GHz 2.25 GHz,

20 dB for 1.5 GHz and 2.5 GHz.
• Filter 3: 1 dB for 1.95 GHz 2.05 GHz,

20 dB for 1.8 GHz and 2.2 GHz.
• RRC: Obtain an equal power split, i.e., at
the operating frequency of 1 GHz; simultaneously
maximize the 20 dB bandwidth (symmetrically) around

for and .
In all cases, the multi-fidelity feature-based surrogate con-

structed using the internal approach and 50 high-fidelity training
samples (200 low-fidelity samples) has been used in the process.
The initial and final responses obtained by optimizing the fea-
ture-based surrogate model (the final design is verified by the
high-fidelity model) are shown in Fig. 6. The design specifica-
tions for the filter structures are marked using thick horizontal
lines. Because of the very good accuracy of the surrogates, no
further design tuning was found necessary. In the case of RRC,
the bandwidth of the optimized coupler is 280 MHz with the
power split error 0.2 dB at 1 GHz.

IV. CONCLUSION

Variable-fidelity feature-based techniques for low-cost sur-
rogate modeling of microwave structures have been proposed.
Reduction of the computational cost associated with setting up
surrogate models has been achieved by combining two basic
components: 1) the exploitation of certain feature points, which
allows us to move the modeling process to an alternative repre-
sentation of the system response, where the functional landscape
is much less nonlinear than for the original responses (in partic-
ular, the frequency-dependent -parameters) and 2) the utiliza-
tion of variable-fidelity EM simulations, where an initial sur-
rogate created with densely sampled coarse-discretization EM
simulation data is enhanced by sparsely sampled high-fidelity
EM data. Two approaches to blending the variable-fidelity EM
data into the final surrogate have been proposed, i.e., an internal
one (based on co-kriging at the level of the feature points), and
an external one (based on SM).
As demonstrated by three microstrip filters and a rat race

coupler example and comparisons with several benchmark
techniques, both of our multi-fidelity feature-based approaches
outperform not only conventional approximation modeling
methods but also feature-based approaches that exploit
single-fidelity EM simulations. Significant improvement of the
predictive power of the surrogate is especially observed for
small high-fidelity training sets. This opens new opportunities
for construction of quasi-global surrogates for applications
such as parametric design optimization (also demonstrated in
this work).
According to our knowledge, no surrogate modeling tech-

nique reported in the literature so far exhibits comparable

performance. At the same time, one needs to bear in mind the
limitations of the method, namely, the necessity of maintaining
consistency of the feature point sets across the surrogate model
domain. Consequently, our method is less versatile than gen-
eral-purpose approximation techniques. On the other hand,
with careful definition of the response features, as well as for
numerous cases where the system response is well-defined
in terms of its shape (microwave couplers, low-order filters,
narrow-band antennas, phased array antennas, various classes
of integrated photonic devices, wireless power transfer systems,
etc.) but also higher-order filters in terms of local modeling for
statistical/robust design application and uncertainty quantifica-
tion, multi-fidelity feature-based modeling may be the method
of choice for rapid construction of fast, accurate and reusable
surrogates.
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