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POSITIVE SOLUTIONS TO ADVANCED FRACTIONAL

DIFFERENTIAL EQUATIONS WITH NONLOCAL

BOUNDARY CONDITIONS

Tadeusz Jankowski

We study the existence of positive solutions for a class of higher order frac-
tional differential equations with advanced arguments and boundary value
problems involving Stieltjes integral conditions. The fixed point theorem due
to Avery–Peterson is used to obtain sufficient conditions for the existence of
multiple positive solutions. Certain of our results improve on recent work in
the literature.

1. INTRODUCTION

Fractional differential equations (FDEs) can describe many phenomena in
various fields of science and engineering. FDEs have been discussed in many papers,
for example, see [3], [5], [9]–[18]. Many authors have studied the existence of
positive solutions by using corresponding fixed point theorems in cones, for example,
see [3], [12], [15], [17], [18].

Put J = [0, 1], J0 = (0, 1). In this paper, we are interested in the existence
of multiple positive solutions to boundary value problem:

(1)











Dqx(t) + f(t, x(α(t))) = 0, t ∈ J0, n− 1 < q ≤ n, n ≥ 3,

x(i)(0) = 0, 0 ≤ i ≤ n− 2,
[

Dkx(t)
]

t=1
= λ[x], k is a fixed number and k ∈ [1, n− 2],
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210 Tadeusz Jankowski

for n ≥ 3, where λ denotes a linear functional on C(J) given by

λ[x] =

∫ 1

0

x(t)dΛ(t)

involving a Stieltjes integral with a suitable function Λ of bounded variation. Lin-
ear functional λ[x] covers the multi–point Boundary Conditions (BCs) and also
integral BCs, see Section 4. It is important to indicate that it is not assumed that
λ[x] is positive to all positive x. The measure dΛ can be a signed measure (see
Remark 3). It is important to indicate that the situation with a signed measure
has been discussed, for example, in [13], [4], [6], [7] for second or third-order or-
dinary differential equations. A unified approach for higher order problems with
nonlocal conditions and signed measure has been given in [14]. A physical applica-
tion to heat–flow problems of second–order nonlocal boundary value problems with
deviated arguments has been studied in [2].

Some authors studied higher order fractional differential equations (FDEs)
with different BCs, for example,

x(i)(0) = 0, 0 ≤ i ≤ n− 2, x(1) = 0,

x(i)(0) = 0, 0 ≤ i ≤ n− 2, x(1) = λ[x],

x(i)(0) = 0, 0 ≤ i ≤ n− 2, x(n−2)(1) = 0,

x(i)(0) = 0, 0 ≤ i ≤ n− 2,
[

Dkx(t)
]

t=1
= 0, k ∈ [1, n− 2],

x(i)(0) = 0, 0 ≤ i ≤ n− 2,
[

Dkx(t)
]

t=1
=

m
∑

i=1

βix(ξi), k ∈ [1, n− 2],

see [3], [12], [15], [17], [18], see also [8]. In the mentioned papers, FDEs without
deviating arguments have been discussed using the Krasnoselskii’s fixed point the-
orem in a cone or a monotone iterative method to obtain the existence of positive
solutions.

Motivated by [3], [12], [15], [17], [18] and [13], [14], in this paper, we ap-
ply the Avery–Peterson fixed point theorem to obtain sufficient conditions for the
existence of positive solutions to problem (1). In this paper we improve certain
results obtained in papers [3], [12], [17]. Note that the existence results have been
obtained for quite general problems of type (1) with advanced arguments α. The
measure dΛ in BCs of (1) can change the sign, see Remark 3. In Section 4, special
cases of functional λ[x] have been discussed.

2. GREEN’S FUNCTION PROPERTIES

First we introduce the following assumptions:

H1 : f ∈ C(J × IR+ × IR, IR+), α ∈ C(J, J), α(t) ≥ t with IR+ = [0,∞),
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H2 : 0 ≤
∫ 1

0
tq−1dΛ(t) <

Γ(q)

Γ(q − k)
, n− 1 < q ≤ n, k ∈ [1, n− 2], n ≥ 3,

H3 :
∫ 1

0
dΛ(t) ≥ 0.

ByDqx, we denote the Riemann-Liouville fractional derivative of order q > 0,
and by Iqx, the Riemann-Liouville fractional integral of order q > 0, see [9],[11],
so

Dqx(t) =
1

Γ(n− q)

(

d

dt

)n
∫ t

0

(t− s)−q+n−1x(s)ds, n = [q] + 1, q > 0, t < 1,

Dnx(t) = y(n)(t), n ∈ {1, 2, 3, · · · },

Iqx(t) =
1

Γ(q)

∫ t

0

(t− s)q−1x(s)ds, q > 0, t < 1,

where [q] means the integer part of q.

Consider the following boundary value problem:

(2)











Dqu(t) + y(t) = 0, t ∈ J0, n− 1 < q ≤ n, n ≥ 3,

u(i)(0) = 0, 0 ≤ i ≤ n− 2,
[

Dku(t)
]

t=1
= λ[u], k is a fixed number and k ∈ [1, n− 2],

We require the following assumption:

H0 : Λ is a function of bounded variation and

∆1 ≡ Γ(q)− Γ(q − k)A 6= 0, ∆ =
∆1

Γ(q − k)
,

A =

∫ 1

0

tq−1dΛ(t), G(s) =
∫ 1

0

G1(t, s)dΛ(t)

G1(t, s) =
1

Γ(q)

{

tq−1(1− s)q−k−1 − (t− s)q−1, if s ≤ t,

tq−1(1− s)q−k−1, if t ≤ s.

Lemma 1. Assume that Assumption H0 holds. Let y ∈ L(J0, IR). Then, problem

(2) has the unique solution given by the following formula

u(t) =

∫ 1

0

Gq(t, s)y(s)ds,

where

Gq(t, s) = G1(t, s) +G2(t, s), G2(t, s) =
G(s)
∆

tq−1.

Proof. The general solution of (2) is given by

u(t) = −Iqy(t) + c1t
q−1 + c2t

q−2 + · · ·+ cnt
q−n.
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212 Tadeusz Jankowski

Indeed, c2 = c3 = · · · = cn = 0 in view of conditions u(i)(0) = 0, i = 0, 1, . . . , n− 2,
so

(3) u(t) = −Iqy(t) + c1t
q−1.

Hence, in view of the property DkIq = Iq−k,

Dku(t) = −DkIqy(t) + c1D
k[tq−1]

= − 1

Γ(q − k)

∫ t

0

(t− s)q−k−1y(s)ds+ c1
Γ(q)

Γ(q − k)
tq−k−1.

This and condition
[

Dku(t)
]

t=1
= λ[u] give

− 1

Γ(q − k)

∫ 1

0

(1− s)q−k−1y(s)ds+ c1
Γ(q)

Γ(q − k)
= λ[u].

Finding c1 and substituting in (3) we obtain

(4) u(t) = tq−1Γ(q − k)

Γ(q)
λ[u] +

∫ 1

0

G1(t, s)y(s)ds.

In the next step, we have to eliminate λ[u] from (4). If u is a solution of (4),
then

λ[u] =
Γ(q)

∆1

∫ 1

0

G(s)y(s)ds.

Substituting it to formula (4) we finally get the assertion of this lemma.

Remark 1. Note that Gq is the Green function of problem (1).

Lemma 2. Function G1 from Assumption H0 has the following property:

tq−1Φ1(s) ≤ G1(t, s) ≤ Φ1(s), t, s ∈ J,

where

Φ1(s) =
1

Γ(q)
(1− s)q−k−1[1− (1− s)k].

Proof. Let s ≤ t. In view of q > 2, q − k − 1 ≤ q − 2, t− s ≤ t(1− s), we have

d

dt
Γ(q)G1(t, s) = (q − 1)

[

tq−2(1− s)q−k−1 − (t− s)q−2
]

≥ (q − 1)tq−2
[

(1− s)q−k−1 − (1 − s)q−2
]

≥ 0,

so

Γ(q)G1(t, s) ≤ (1− s)q−k−1 − (1− s)q−1

= (1− s)q−k−1
[

1− (1− s)k
]

= Γ(q)Φ1(s).D
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Moreover,

Γ(q)G1(t, s) = tq−1(1 − s)q−k−1 − (t− s)q−1

= tk[t(1− s)]q−k−1 − (t− s)k(t− s)q−k−1

≥ [t(1− s)]q−k−1[tk − (t− s)k] ≥ [t(1− s)]q−k−1[tk − (t(1− s))k]

= tq−1(1 − s)q−k−1
[

1− (1− s)k
]

= tq−1Γ(q)Φ1(s).

Now, we consider the case when t ≤ s. Indeed,
d

dt
Γ(q)G1(t, s) ≥ 0, so

Γ(q)G1(t, s) ≤ sq−1(1− s)q−k−1 ≤ s(1 − s)q−k−1 ≤ Γ(q)Φ1(s)

because s = 1− (1− s) ≤ 1− (1− s)k.

Moreover,

Γ(q)G1(t, s) = tq−1(1− s)q−k−1 ≥ tq−1(1− s)q−k−1
[

1− (1− s)k
]

= tq−1Γ(q)Φ1(s)

because 1 ≥ 1− (1− s)k. The proof is complete.

Remark 2. Let ∆ > 0, G(s) ≥ 0, s ∈ [0, 1]. In view of Lemma 2 and the definition of Gq,

we have the estimation

t
q−1Φ(s) ≤ Gq(t, s) ≤ Φ1(s) +

1

∆
G(s) ≡ Φ(s), t, s ∈ J.

Define the operator T by

Tu(t) =

∫ 1

0

Gq(t, s)Fu(s)ds with Fu(t) = f(t, u(α(t))).

Take 0 < η < 1 and put ρ = ηq−1. Let E = C(J, IR) with the norm ‖u‖.
Define the set K ⊂ E by

K = {u ∈ E : u(t) ≥ 0, t ∈ J, min
[η,1]

u(t) ≥ ρ‖u‖, λ[u] ≥ 0}.

The set K is a cone, see Definition 1.

Lemma 3. Let Assumptions H1, H2, H3 hold. Moreover, we assume that Assump-

tion H4 holds with

H4 : Λ is of bounded variation and G(s) ≥ 0, where A,∆,G are defined as in

Assumption H0.

Then T : K → K and T is completely continuous.

Proof. Indeed, T : C(J, IR) → C(J, IR). Problem (1) has a solution u if and only
if u solves the operator equation u = Tu. Assumptions H1–H4 and the positivity
of the Green’s function Gq prove that Tu(t) ≥ 0.
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214 Tadeusz Jankowski

Next, in view of Remark 2, we obtain

‖Tu‖ = max
t∈J

∫ 1

0

Gq(t, s)Fu(s)ds ≤
∫ 1

0

Φ(s)Fu(s)ds,

min
[η,1]

Tu(t) = min
[η,1]

∫ 1

0

Gq(t, s)Fu(s)ds ≥ ρ‖Tu‖.

Indeed,

λ[Tu] =

∫ 1

0

(
∫ 1

0

Gq(t, s)Fu(s)ds

)

dΛ(t) =
(

1 +
A

∆

)

∫ 1

0

G(s)Fu(s)ds ≥ 0.

This proves that T : K → K.

Note that

Tu(t) = tq−1

∫ 1

0

[

1

Γ(q)
(1− s)q−k−1 +

G(s)
∆

]

Fu(s)ds− 1

Γ(q)

∫ t

0

(t− s)q−1Fu(s)ds.

Now, a standard argument, which we omit, shows that T is equicontinuous and
bounded, so the Arzela-Ascoli theorem may be applied to deduce the continuity of
T. This ends the proof.

Remark 3. Take dΛ(t) = (at − 1)dt, a > 1. Note that the measure changes the sign.
Then

A =

∫
1

0

t
q−1(at− 1)dt =

q(a− 1)− 1

q(q + 1)
,

∫
1

0

dΛ(t) =
a− 2

2
.

Note that Assumptions H2,H3 hold if

2 ≤ a < 1 +
1

q
+ (q + 1)

Γ(q)

Γ(q − k)
.

For example, if q =
5

2
, then k = 1 and 2 ≤ a <

133

20
.

3. POSITIVE SOLUTIONS TO PROBLEM (1)

First, we present the necessary definitions from the theory of cones in Banach
spaces.

Definition 1. Let E be a real Banach space. A nonempty convex closed set P ⊂ E

is said to be a cone provided that

(i) ku ∈ P for all u ∈ P and all k ≥ 0, and

(ii) u,−u ∈ P implies u = 0.

Note that every cone P ⊂ E induces an ordering in E given by x ≤ y if
y − x ∈ P.
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Definition 2. A map Φ is said to be a nonnegative continuous concave functional

on a cone P of a real Banach space E if Φ : P → IR+ is continuous and

Φ(tx+ (1− t)y) ≥ tΦ(x) + (1− t)Φ(y)

for all x, y ∈ P and t ∈ [0, 1].

Similarly, we say the map ϕ is a nonnegative continuous convex functional
on a cone P of a real Banach space E if ϕ : P → IR+ is continuous and

ϕ(tx + (1− t)y) ≤ tϕ(x) + (1− t)ϕ(y)

for all x, y ∈ P and t ∈ [0, 1].

Definition 3. An operator is called completely continuous if it is continuous and

maps bounded sets into precompact sets.

Let ϕ and Θ be nonnegative continuous convex functionals on P, let Ω be
a nonnegative continuous concave functional on P, and let Ψ be a nonnegative
continuous functional on P. Then, for positive numbers a, b, c, d, we define the
following sets:

P (ϕ, d) = {x ∈ P : ϕ(x) < d},
P (ϕ,Ω, b, d) = {x ∈ P : b ≤ Ω(x), ϕ(x) ≤ d},
P (ϕ,Θ,Ω, b, c, d) = {x ∈ P : b ≤ Ω(x), Θ(x) ≤ c, ϕ(x) ≤ d},
R(ϕ,Ψ, a, d) = {x ∈ P : a ≤ Ψ(x), ϕ(x) ≤ d}.

We will use the following fixed point theorem of Avery and Peterson to es-
tablish multiple positive solutions to problem (1).

Theorem 1 (see [1]). Let P be a cone in a real Banach space E. Let ϕ and Θ be

nonnegative continuous convex functionals on P , let Ω be a nonnegative continuous

concave functional on P, and let Ψ be a nonnegative continuous functional on P

satisfying Ψ(kx) ≤ kΨ(x) for 0 ≤ k ≤ 1, such that for some positive numbers M̄

and d,

Ω(x) ≤ Ψ(x) and ‖x‖ ≤ M̄ϕ(x)

for all x ∈ P (ϕ, d). Suppose

T : P (ϕ, d) → P (ϕ, d)

is completely continuous and there exist positive numbers a, b, c with a < b, such

that

(S1) : {x ∈ P (ϕ,Θ,Ω, b, c, d) : Ω(x) > b} 6= 0 and Ω(Tx) > b for x ∈ P (ϕ,Θ,Ω, b,
c, d);

(S2) : Ω(Tx) > b for x ∈ P (ϕ,Ω, b, d) with Θ(Tx) > c,
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216 Tadeusz Jankowski

(S3) : 0 6∈ R(ϕ,Ψ, a, d) and Ψ(Tx) < a for x ∈ R(ϕ,Ψ, a, d) with Ψ(x) = a.

Then, T has at least three fixed points x1, x2, x3 ∈ P (ϕ, d), such that

ϕ(xi) ≤ d, for i = 1, 2, 3,

b < Ω(x1), a < Ψ(x2), with Ω(x2) < b and Ψ(x3) < a.

We apply Theorem 1 with the cone K instead of P and let P̄r = {x ∈ K :
‖x‖ ≤ r}. Now, we define the nonnegative continuous concave functional Ω on K

by
Ω(x) = min

[η,1]
|x(t)|.

Note that Ω(x) ≤ ‖x‖. Put Ψ(x) = Θ(x) = ϕ(x) = ‖x‖.
Now, we can formulate the main result of this section giving sufficient condi-

tions under which problem (1) has positive solutions.

Theorem 2. Let Assumptions H1–H4 hold. In addition, we assume that there

exist positive constants a, b, c, d, a < b and such that

µ >

∫ 1

0

Φ(s)ds, 0 < L < ρ

∫ 1

0

Φ(s)ds

with Φ defined as in Remark 2, and

(A1) : f(t, u) ≤ d

µ
for (t, u) ∈ J × [0, d],

(A2) : f(t, u) ≥ b

L
for (t, u) ∈ [η, 1]×

[

b,
b

ρ

]

,

(A3) : f(t, u, v) ≤ a

µ
for (t, u) ∈ J × [0, a].

Then, problem (1) has at least three positive solutions x1, x2, x3 satisfying

‖xi‖ ≤ d, i = 1, 2, 3,

b ≤ Ω(x1), a < ‖x2‖ with Ω(x2) < b and ‖x3‖ < a.

Proof. Let x ∈ P (ϕ, d). Assumption (A1) implies f(t, x(α(t))) ≤ d

µ
. By Remark

2,

ϕ(Tx) = max
[0,1]

|(Tx)(t)| ≤
∫ 1

0

Φ(s)Fx(s)ds ≤ d

µ

∫ 1

0

Φ(s)ds < d.

This proves that T : P (ϕ, d) → P (ϕ, d).

Now we need to show that condition (S1) is satisfied. Take

x0(t) =
1

2

(

b+
b

ρ

)

, t ∈ J,
b

ρ
< d.
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Advanced fractional differential equations 217

Then x0(t) > 0, t ∈ J, and

λ[x0] =
1

2

(

b+
b

ρ

)
∫ 1

0

dΛ(t) ≥ 0.

Moreover,

Θ(x0) = ϕ(x0) = ‖x0‖ =
b(ρ+ 1)

2ρ
<

b

ρ
= c, ‖x0‖ > b,

Ω(x0) = min
[η,1]

x0(t) =
b(ρ+ 1)

2ρ
> b =

b

ρ
ρ > ρ‖x0‖.

This proves that

{

x0 ∈ P
(

ϕ,Θ,Ω, b,
b

ρ
, d
)

: b < Ω(x0)

}

6= ∅.

Let b ≤ x(t) ≤ b

ρ
for t ∈ [η, 1]. Then also b ≤ x(α(t)) ≤ b

ρ
, because t ≤ α(t) ≤

1 for t ∈ [η, 1]. In view of Remark 2 and Assumption (A2),

Ω(Tx) = min
[η,1]

(Tx)(t) = min
[η,1]

∫ 1

0

Gq(t, s)Fx(s)ds

≥ ρ

∫ 1

0

Φ(s)Fx(s)ds ≥ ρb

L

∫ 1

0

Φ(s)ds > b.

This proves that condition (S1) holds.

Now we need to prove that condition (S2) is satisfied. Take x ∈ P (ϕ,Ω, b, d)

and ‖Tx‖ >
b

ρ
= c. Then

Ω(Tx) = min
[η,1]

(Tx)(t) ≥ ρ‖Tx‖ > ρ
b

ρ
= b,

so condition (S2) holds.

Indeed, ϕ(0) = 0 < a, so 0 6∈ R(ϕ,Ψ, a, d). Suppose that x ∈ R(ϕ,Ψ, a, d)
with Ψ(x) = ‖x‖ = a. By Remark 2 and condition (A3), we get

Ψ(Tx) = ‖Tx‖ ≤
∫ 1

0

Φ(s)Fx(s)ds ≤ a

µ

∫ 1

0

Φ(s)ds < a.

This shows that condition (S3) holds, which completes the proof.

Remark 4. If f(t, 0) ≡ 0, then x(t) ≡ 0 is a solution of problem (1).
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218 Tadeusz Jankowski

4. SOME COMMENTS

1. Remark 3 shows that the measure dΛ can be a signed measure.

2. As the function α we can take, for example, α(t) =
√
t or α(t) = 4

√
t.

Theorem 2 holds also in the case when α(t) = t, t ∈ J.

3. Let

λ[x] =

m
∑

i=1

βix(γi), 0 < γ1 < γ2 < · · · < γm < 1, βi ∈ IR, i = 1, 2, . . . ,m.

In this case, we need the following conditions to be satisfied:

m
∑

i=1

βi ≥ 0, 0 ≤
m
∑

i=1

βiγ
q−1
i <

Γ(q)

Γ(q − k)
, G(s) =

m
∑

i=1

βiG1(γi, s) ≥ 0, s ∈ J.

4. Let

λ[x] =

∫ 1

0

x(t)g(t)dt, g ∈ C(J, IR).

Now, we need the conditions:

∫ 1

0

g(t)dt ≥ 0, 0 ≤
∫ 1

0

tq−1g(t)dt <
Γ(q)

Γ(q − k)
,

G(s) =
∫ 1

0

G1(t, s)g(t)dt ≥ 0, s ∈ J.

5. An example, which also cowers multi–point and integral boundary condi-
tions as a special case of functional λ is

λ[x] =

m
∑

i=1

βix(γi) +

∫ 1

0

x(t)g(t)dt,

where γi are distinct points in (0, 1) and g ∈ C(J, IR).

5. SPECIAL CASES OF PROBLEM (1)

For example, if q =
7

2
, then (1) reduces to the equation

(5) D7/2x(t) + f(t, x(α(t))) = 0, t ∈ J0

with BCs

(6) x(i)(0) = 0, i = 0, 1, 2, x′(1) = λ[x]

with k = 1, or

(7) x(i)(0) = 0, i = 0, 1, 2, D3/2x(1) = λ[x]
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Advanced fractional differential equations 219

if k =
3

2
. Then, Assumption H2 takes the form

(8) 0 ≤
∫ 1

0

t5/2dΛ(t) <
5

2
,

for BCs (6), and

(9) 0 ≤
∫ 1

0

t5/2dΛ(t) <
15

8

√
π ≈ 3.3,

for BCs (7).

Moreover, the measure dΛ = (at − 1)dt from Remark 3, both changes the
sign and it satisfies Assumptions H2, H3 if

2 ≤ a <
351

28
≈ 12.5 in case of BCs (6),

2 ≤ a <
144 + 945

√
π

112
≈ 16.2 in case of BCs (7).

Then, basing on Theorem 2, we can formulate the following results for prob-
lems (5) with BCs (6) or (7).

Theorem 3. Put q =
7

2
, k = 1. Let all assumptions of Theorem 2 hold with

(8) instead of Assumption H2. Then the assertion of Theorem 2 holds for problem

(5)–(6).

Theorem 4. Put q =
7

2
, k =

3

2
. Let all assumptions of Theorem 2 hold with

(9) instead of Assumption H2. Then the assertion of Theorem 2 holds for problem

(5)–(7).
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