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Finite element discrete models of various engineering 1D structures may be considered as structures of certain periodic
characteristics. The source of this periodicity comes from the discontinuity of stress/strain field between the elements. This
behaviour remains unnoticeable, when low frequency dynamics of these structures is investigated. At high frequency regimes,
however, its influence may be strong enough to dominate calculated structural responses distorting or even falsifying them
completely. In this paper, certain computational aspects of structural periodicity of 1D FE discrete models are discussed by the
authors. In this discussion, the authors focus their attention on an exemplary problem of 1D rod modelled according to the
elementary theory.

1. Introduction

Periodic structures due to their unique dynamic properties
are widely applied in many real engineering structures,
such as isolation devices, acoustic filters, and dampers. The
dynamic behaviour of periodic structures, especially the exis-
tence of frequency band gaps and negative refraction indexes,
has been under investigation by many researchers [1–5].
Many analytical and discrete methods have been developed
and employed for the analysis of dynamic characteristics of
periodic structures.

Based on the literature of the subject, the following list
of the applied methods can be made: the lump mass method
[6], the multiple scattering method [7], the transfer matrix
method [8], the plane wave expansion (PWE) method [9],
the finite difference method (FDM) [10], the finite element
method (FEM) [11], thewaveletmethod [12], theDirichlet-to-
Neumann map method [13], the boundary element method
(BEM) [14], as well as the spectral finite element method in
the frequency domain (FD-SFEM) [15], and the spectral finite
element method in the time domain (TD-SFEM) [16].

It should be realised that the methods mentioned above
have numerous limitations. Analytical methods such as
the lump mass method, multiple scattering method, and

the FD-SFEM are not suitable for investigation of geometri-
cally complex structures.These limitations are nonexistent in
the case of discrete methods such as the FEM and the TD-
SFEM. On the other hand, the results of numerical simula-
tions obtained by the use of the FEM or the TD-SFEM are
not as accurate as the results obtained by the use of analytical
methods. Their accuracy can be improved by an adaptive
increase in the number of FEs (ℎ-method) or in the degree of
approximation polynomials (𝑝-method) [17]. It is worth not-
ing that the accuracy of ℎ- and 𝑝-methods has been studied
extensively bymany researchers in the context of global, local,
pollution, or dispersion errors [18–22]. Interesting results on
the comparison between adaptive ℎ- and 𝑝-methods and
nonuniform rational B-splines (NURBS) can be found in [23,
24]; however, periodic properties of the numerical models
used have stayed beyond such interest.

It is known that an increase in the number of FEs (ℎ-
method) is not as effective as an increase in the degree
of approximation polynomials (𝑝-method). In the case
of equidistant node, distribution within FEs a significant
increase in the degree of approximation polynomials may
lead to their uncontrollable oscillations near the edges of FEs,
known as Runge’s phenomenon [25, 26]. For this reason in
numerical simulations by use of the FEM, the degree of
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approximation polynomials is typically not higher than 3.
Contrary to this, Runge’s phenomenon is not observed in the
case of the TD-SFEM,which is based on nonequidistant node
distributions.The degree of approximation polynomials used
by the TD-SFME is theoretically unlimited, but in numerical
simulations mainly Chebyshev or Legendre polynomials of
the fifth degree are applied. A further increase in the degree
of approximation polynomials improves the accuracy of
numerical results, but visible frequency band gaps appear at
the high end of the natural frequency spectra [26].This effect
is very similar to the behaviour of periodic structures, but the
source of structural periodicity has a different nature.

The source of this periodicity comes from the discontinu-
ity of stress/strain field between FEs [17, 27]. Thus, the silent
assumption about the representation of FE discrete models
of continuous media/structures is not valid, despite the fact
that it is not always visible based on their structural dynamic
responses at low frequency regimes. However, there are cer-
tain regimes (i.e., high frequency dynamics and wave propa-
gation) where this silent assumption may lead to significant
errors due to the fact that overlooked structural periodicity of
FE discrete models strongly manifests itself, as presented in
this paper.

In this paper certain computational aspects of structural
periodicity of 1D FE discrete models are discussed by the
authors. Discrete models characterised by equidistant node
distribution and nonequidistant distributions based on the
roots of Chebyshev and Legendre polynomials were investi-
gated. As approximation functions, Chebyshev and Legendre
as well as cubic B-spline polynomials were tested. In this
discussion, the authors focus their attention on an exemplary
problem of 1D rod modelled according to the elementary
theory of rods.

2. Finite Element Models as
Periodic Structures

Bloch’s theorem is a very powerful tool used by physicists
to investigate the behaviour of electrons in crystalline struc-
tures. However, Bloch’s theorem is applicable in a much
broader context.This is thanks to the dual nature of electrons
that can be treated as matter waves, also known as de Broglie
waves. In fact, Bloch’s theorem can be successfully applied not
only to explain the behaviour of wave related phenomena in
periodic media, such as photonic and phononic crystals, but
also to explain the behaviour of other types of mechanical
structures characterised by certain periodic properties.

In a 1D case, Bloch’s theorem states that solution𝑓(𝑥) to a
wave propagation problem in a periodicmedium, also known
as a Bloch wave, can be split up into the product of two waves:
periodicwave𝑔(𝑥) of the sameperiodicity as themediumand
plane-wave 𝑒𝑖𝑘𝑥 [28]:

𝑓 (𝑥) = 𝑒
𝑖𝑘𝑥

𝑔 (𝑥) , (1)

where 𝑘 denotes the wave number and 𝑖 is the imaginary unit.
A 1D bimaterial periodic medium built up from period-

ically spaced cells is presented in Figure 1. The lengths of
particularmaterial regions within a single cell can be denoted
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Figure 1: A schematic representation of a 1D bimaterial periodic
medium.
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1
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1

,

𝑐
2
= √

𝐸
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.

(3)

For cells spaced at regular intervals 𝑎 the periodicity of
the medium requires that 𝑔(𝑥 + 𝑎) = 𝑔(𝑥) and therefore it
can be written as

𝑓 (𝑥 + 𝑎) = 𝑒
𝑖𝑘(𝑥+𝑎)

𝑔 (𝑥 + 𝑎) = 𝑒
𝑖𝑘𝑎

𝑒
𝑖𝑘𝑥

𝑔 (𝑥)

= 𝑒
𝑖𝑘𝑎

𝑓 (𝑥) .

(4)

Despite the fact that Bloch’s theorem assumes infinite
periodic media, it can also provide valuable information
about the behaviour of finite structures built up from a num-
ber of𝑁 periodically spaced cells, assuming that𝑁 ≫ 1.This
can be achieved under assumption of cyclic boundary condi-
tions 𝑓(𝑥 + 𝑎𝑁) = 𝑓(𝑥) in a similar manner as in the case of
Fourier series expansion of aperiodic functions. It can be
written as

𝑓 (𝑥 + 𝑎𝑁) = 𝑓 (𝑥) = 𝑒
𝑖𝑘𝑎𝑁

𝑓 (𝑥) 󳨀→ 𝑒
𝑖𝑘𝑎𝑁

= 1 (5)

leading to the following relation:

𝑒
𝑖𝑘𝑎𝑁

= 1 󳨀→ 𝑘 =
2𝜋𝑛

𝑎𝑁
, 𝑛 = 1, 2, . . . , 𝑁, (6)

where 𝑁 denotes the total number of cells within the
structure under consideration. In practice at least 100 cells are
required in order to reveal the periodic nature of structural
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characteristics without the assumption about boundary con-
ditions.

The characteristic equation of the problem, binding
together cell properties and their periodic distribution
through wave numbers 𝑘, 𝑘

1
, and 𝑘

2
, can be obtained in a rel-

atively simple manner after necessary mathematical manipu-
lation. For this, it should be assumed that both Bloch’s waves
𝑓
1
(𝑥) and 𝑓

2
(𝑥) and their derivatives remain continuous

across the boundaries of the cells, as well as associated peri-
odic waves 𝑔

1
(𝑥) and 𝑔

2
(𝑥) across the boundaries of the two

materials [28]:

𝑓
1
(0
+
) = 𝑓
2
(0
−
) ,

𝑔
1 (𝑎 − 𝑏) = 𝑔

2 (𝑏) ,

𝑓
󸀠

1
(0
+
) = 𝑓
󸀠

2
(0
−
) ,

𝑔
󸀠

1
(𝑎 − 𝑏) = 𝑔

󸀠

2
(𝑏) ,

(7)

where periodic waves 𝑔
1
(𝑥) and 𝑔

2
(𝑥) can be expressed as

follows:

𝑔
1 (𝑥) = 𝐴

1
𝑒
𝑖(𝑘
1
−𝑘)𝑥

+ 𝐴
2
𝑒
−𝑖(𝑘
1
+𝑘)𝑥

,

𝑔
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1
𝑒
𝑖(𝑘
2
−𝑘)𝑥

+ 𝐵
2
𝑒
−𝑖(𝑘
2
+𝑘)𝑥

.

(8)

This leads to the characteristic equation of the following form:

cos (𝑘𝑎) = cos [𝑘
1 (𝑎 − 𝑏)] cos (𝑘2𝑏)

−
𝑘
2

1
+ 𝑘
2

2

2𝑘
1
𝑘
2

sin [𝑘
1 (𝑎 − 𝑏)] sin (𝑘

2
𝑏)

(9)

which defines certain bands of frequencies 𝜔, within which
real solutions exist or, alternatively, within which wave
propagation phenomena can take place.

In the case of periodicmediamade out of a singlematerial
characterised by discontinuity of its properties between the
cells, (9) can be further simplified under assumption that
𝑏 → 0 and 𝑘

2
→ ∞ at 𝑘

2
𝑏 = const, which can be written as

cos (𝑘𝑎) = cos (𝑘
1
𝑎) − 𝐴

sin (𝑘
1
𝑎)

𝑘
1
𝑎

, (10)

where 𝐴 is a certain nondimensional constant that sets the
intensity of the discontinuity [28].

A typical frequency spectrum of a 1D periodic medium,
calculated based on (9), is presented in Figure 2. It reveals
a number of frequency band gaps within the spectrum that
are denoted as FG

1
, . . . , FG

4
, where no solutions exist. This

behaviour is a direct consequence of the discontinuity of the
wave propagation phase velocities between the cells, which
may result from different values of elastic moduli and/or
material densities. It should be noted that frequency band
gaps FG

1
, . . . , FG

4
appear at multiples of total number of cells

𝑁.
At this point, it should be understood that FE discrete

models of various engineering structures may be considered
as structures of certain periodic characteristics.The source of
the periodicity comes from the discontinuity of stress/strain
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Figure 2: A frequency spectrum of a 1D periodic medium (𝑐
1

=

5 km/s, 𝑐
2
= 0.5𝑐

1
, 𝑎 = 0.025m, and 𝑏 = 0.05𝑎).

field between FEs themselves [17, 26].This behaviour remains
unnoticeable at low frequency regimes, when low frequency
dynamics of these structures is investigated. At high fre-
quency regimes, however, its influence may become strong
enough to dominate calculated structural responses distort-
ing or even falsifying them completely.

The intensity of the stress/strain field discontinuities can
be straightforwardly estimated for equidistant node distribu-
tions within FEs. In this case, the 1D medium under inves-
tigation can be assumed as modelled by FEs of equal length
𝑎 based on the elementary rod theory. In order to conform
with (10), the periodic type of boundary conditions is used.
Stress 𝜎

𝑗
(𝑥) and Strain 𝜖

𝑗
(𝑥) within a particular FE 𝑗 are

linked together by the following very well-known formula:

𝜎
𝑗
(𝑥) = 𝐸𝜖

𝑗
(𝑥) = 𝐸𝑢

󸀠𝑗
(𝑥) , 𝑗 = 1, 2, . . . , 𝐽, (11)

where 𝐸 denotes the elastic modulus, 𝑢𝑗(𝑥) is a FE solution
representing the longitudinal displacement, and 𝑥 is a coor-
dinate in the local coordinate system of the element, while 𝐽

is the total number of FEs of a discrete model. The symbol 󸀠
denotes the 1st derivative in respect of 𝑥.

It can be seen from (11) that the stress/strain discontinu-
ities between two adjacent FEs 𝑗 and 𝑗+1 connected together
at node 𝑠 are in the current case related to the discontinuity
of displacement derivative 𝑢

󸀠𝑗|𝑗+1
(𝑥
𝑠
) due to finite degree 𝑝

of approximation polynomials used. It should be noted that
this problem is not present in the FE formulation based on
the so-called analytical shape functions [29].

For different degrees of approximation polynomials𝑝, the
discontinuity of the displacement derivative 𝑢󸀠𝑗|𝑗+1(𝑥

𝑠
) can be

evaluated based on its Taylor series expansion around node 𝑠.
In the case of the degree of approximation polynomial 𝑝 = 1,
it can be written as

𝑢
𝑗
(𝑥
𝑠
− ℎ) = 𝑢

𝑗
(𝑥
𝑠
) − 𝑢
󸀠𝑗
(𝑥
−

𝑠
) ℎ

𝑢
𝑗+1

(𝑥
𝑠
+ ℎ) = 𝑢

𝑗+1
(𝑥
𝑠
) + 𝑢
󸀠𝑗+1

(𝑥
+

𝑠
) ℎ,

𝑗 = 1, 2, . . . , 𝐽,

(12)
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Figure 3: Analytical solution 𝑓(𝑥) and its FE representations 𝑢𝑗(𝑥)
and 𝑢

𝑗+1
(𝑥) for the degree of approximation polynomial 𝑝 = 1.

where all higher order terms are zero due to the assumed
degree of approximation polynomial 𝑝 = 1, while ℎ may
be considered here as the distance between element nodes.
Noting that 𝑢

𝑗
(𝑥
𝑠
) = 𝑢

𝑗+1
(𝑥
𝑠
) and based on (12), it can

be found that the discontinuity of displacement derivative
𝑢
󸀠𝑗|𝑗+1

(𝑥
𝑠
) at node 𝑠 can be expressed as

Δ
𝑝=1

𝑠
= 𝑢
󸀠
(𝑥
−

𝑠
) − 𝑢
󸀠
(𝑥
+

𝑠
) = −

1

ℎ
(𝑢
𝑠−1

− 2𝑢
𝑠
+ 𝑢
𝑠+1

)

≈ −𝑓
(2)

𝑠|3
ℎ,

(13)

where the superscripts 𝑗 and 𝑗 + 1 have been omitted, where
𝑢
𝑠
= 𝑢(𝑥

𝑠
) and 𝑓

(2)

𝑠|3
is the central difference representation of

the 2nd order derivative of exact solution𝑓(𝑥) of the problem
under investigation supported on 3 nodes of 2 adjacent FEs,
as shown in Figure 3.

In a very similar manner, the discontinuity of displace-
ment derivative 𝑢

󸀠𝑗|𝑗+1
(𝑥
𝑠
) at node 𝑠 for higher degrees of

approximation polynomials 𝑝 can be obtained as

𝑝 = 2 󳨀→ Δ
𝑝=2

𝑠
≈

1

2
𝑓
(4)

𝑠|5
ℎ
3
, (14)

where 𝑓
(4)

𝑠|5
is the central difference representation of the 4th

order derivative of the exact solution 𝑓(𝑥) supported on 5
nodes of 2 adjacent FEs, as well as

𝑝 = 3 󳨀→ Δ
𝑝=3

𝑠
≈ −

5

12
𝑓
(6)

𝑠|7
ℎ
5
+

1

2
𝑓
(4)

𝑠|7
ℎ
3
, (15)

and where 𝑓
(6)

𝑠|7
and 𝑓

(4)

𝑠|7
are the central difference represen-

tations of the 6th and 4th order derivatives of exact solution
𝑓(𝑥) supported on 7 nodes of 2 adjacent FEs, respectively.

The discontinuity of displacement derivative 𝑢
󸀠𝑗|𝑗+1

(𝑥)

calculated above can be conveniently expressed in a nondi-
mensional manner, which allows one to use it together with
(10) in place of constant𝐴. In such a case, it may be expressed
as

𝑝 = 1 󳨀→ Δ̃
𝑝=1

𝑠
≈ −

1

22
𝑓
(2)

𝑠|3
,

𝑝 = 2 󳨀→ Δ̃
𝑝=2

𝑠
≈ +

1

44
𝑓
(4)

𝑠|5
,

𝑝 = 3 󳨀→ Δ̃
𝑝=3

𝑠
≈ −

5

4

1

66
𝑓
(6)

𝑠|7
+

3

2

1

64
𝑓
(4)

𝑠|7
.

(16)
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Figure 4: Frequency band gaps of a 1D periodicmedium, calculated
analytically based on (10) and (16), for various degrees of approxima-
tion polynomials 𝑝 = 1, 2, 3 (𝑐 = 5 km/s, 𝐿 = 2m).

It should be realised that for higher degrees of approxi-
mation polynomials 𝑝 > 3 or for nonuniform distribution
of nodes within Fes, corresponding relations for the discon-
tinuity of displacement derivatives 𝑢󸀠𝑗|𝑗+1(𝑥) are much more
complex and require additional computational effort.

Frequency band gaps of the 1D periodic medium under
investigation can be calculated analytically, based on (10)
and (16), or numerically by the FEM for various degrees of
approximation polynomials 𝑝 = 1, 2, 3.

The results on analytical calculations presented in Fig-
ure 4 clearly indicate that the frequency band gaps in
the natural frequency spectra of FEM numerical models
have their source in the stress/strain discontinuity between
adjacent FEs. The number of frequency band gaps 𝑞 that can
be observed is directly related to the degree of approximation
polynomials 𝑝 and equal to 𝑞 = 𝑝 − 1. So there are no fre-
quency band gaps (𝑞 = 0) in the calculated frequency spectra
for the FEM numerical model based on the first degree of
approximation polynomials 𝑝 = 1, while in the case of the
third degree of approximation polynomials 𝑝 = 3 there are
two frequency band gaps (𝑞 = 2).

The widths of frequency band gaps are also directly
related to the degree of approximation polynomials 𝑝. They
appear for wavelengths 𝜆 equal to the FE length 𝑎 or its
multiples/fractions, that is, for 𝑝 = 2 at 𝜆/𝑎 = 2 or for
𝑝 = 3 at 𝜆/𝑎 = 1, 2. However, it should also be noted that
for multiple frequency band gaps associated with degrees of
approximation polynomials 𝑝 > 2 those band gaps that are
related to long wavelengths 𝜆 are small and can be practically
neglected—as seen from Figure 4 in the case of FG𝑝=3

1
in

comparison with FG𝑝=3
2

.
The results presented in Figure 5 correspond to numerical

calculations by the FEM for the same three degrees of approx-
imation polynomials𝑝 = 1, 2, 3.They correspond very well to
the results presented in Figure 4, but the frequency band gaps
observed are broader than those predicted analytically based

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Mathematical Problems in Engineering 5
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10 FEM solution
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p = 3

Figure 5: Frequency band gaps of a 1D periodic medium, calculated
numerically by the FEM, for various degrees of approximation
polynomials 𝑝 = 1, 2, 3—a numerical model of 300 DOFs according
to the elementary theory of rods [36], based on equidistant node
distribution (𝑐 = 5 km/s, 𝐿 = 2m).

on exact solution 𝑓(𝑥). This is due to overstiffening of FEM
solutions above the Nyquist frequency [25, 30] because above
this frequency FEM solutions try to represented a continuous
analytical solution that is based on infinite degrees of freedom
by a discrete numerical solution based on the finite number
of degrees of freedom.

It turns out that the behaviour observed in Figures 4 and
5 stays closely correlated not only with the degree of approxi-
mation polynomials 𝑝, but also with the element formulation
(stress or displacement). These aspects of FE modelling are
discussed in more detail in the following sections of this
paper. As before, frequency band gaps FG

1
, . . . , FG

4
appear

at multiples of total number 𝑁 of cells/elements within the
discrete numerical model.

3. Numerical Simulations

All results of numerical calculations presented in the follow-
ing parts of this paper were selected by the authors in order to
reveal the periodicity nature of FE models in the most legible
manner. However, it should be noted that in a general case
FE models employed nowadays to solve numerous scientific
problems combine together various types of FEs (1D, 2D,
or 3D) and material properties (isotropic, orthotropic, or
anisotropic), as well as discretisation techniques (regular,
spectral, or adaptive). This results in a very complex and
coupled numerical behaviour, in which particular influences
related to either modelling or discretisation are difficult
to separate from each other. In fact a great variety of FE
techniques used [17, 26, 29, 31, 32] (time domain, frequency
domain, classical, spectral, or semianalytical) additionally
adds up to the complexity of the problem under considera-
tion.

In order to avoid such complex and coupled effects,
the authors decided to focus attention on an exemplary 1D

z

x

y

L

a

b

F(t)

k = 𝜔√ 𝜌
E

Figure 6: Geometry of an isotropic rod of free ends.

problem. In this problem, an isotropic rod is considered that
is modelled according to the elementary theory of rods [29,
33]. Since this rod theory results in a nondispersive behaviour
[29, 33], thanks to this any dispersion effects observed in
results of numerical simulationsmust have numerical origins.

The geometry of the rod under investigation is shown in
Figure 6. It is assumed that the rod is made out of aluminium
alloy of elastic modulus 𝐸 = 67.5GPa, material density
𝜌 = 2700 kg/m3, and remains free—its both ends remain
unsupported.The length of the rod is𝐿 = 5m,while its height
and width are the same 𝑎 = 𝑏 = 10mm. For the assumed rod
theory, phase 𝑐

𝑝
and group 𝑐

𝑔
velocity of propagating elastic

waves are the same. For the givenmaterial properties, they are
equal to 𝑐 = 5 km/s. In such a case, longitudinal waves prop-
agating within the rod require 1ms to travel over length 𝐿 of
the rod from point P

1
(𝑥 = 0) to point P

2
(𝑥 = 𝐿).

At first, the analysis of rod natural frequency spectra for
various degrees of approximation polynomials 𝑝 was per-
formed. The analysis aimed to reveal the periodic behaviour
of FE models related to their discretisation into FEs. In the
analysis, numericalmodels of 736DOFswere used forCheby-
shev node distribution within the elements. It can be clearly
seen from Figure 7 that an increase in the degree of approx-
imation polynomials 𝑝 increases the number of frequency
band gaps, denoted as FG

1
, . . . , FG

6
. Their number is directly

related to the degree of approximation polynomials 𝑝 and is
equal to 𝑝 − 1. As a consequence, for linear approximation
polynomials 𝑝 = 1 no frequency band gaps are observed.
Moreover, the frequency band gaps in the part of the
frequency spectra corresponding to lower natural frequencies
are relatively small, therefore inmost cases their presencemay
remain unnoticed.

Based on the results presented in Figure 7, it may seem
reasonable to reduce the degree of approximation polynomi-
als 𝑝 down to 𝑝 = 1 to get rid of any unwanted periodic
behaviour of FE models. It is well known [22] that in such
a case the approximation error is strongly increased in com-
parisonwith higher degrees of approximation polynomials𝑝.
Additionally, it should be noticed that the degree of approx-
imation polynomials 𝑝 = 1 corresponds to equidistant node
distribution characteristic for the classical FEM.
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Figure 7: Frequency spectra of an isotropic rod of free ends for various degrees of approximation polynomials 𝑝—a numerical model of
736 DOFs according to the elementary theory of rods [36], based on Chebyshev node distribution used for calculations by the TD-FEM
(𝑐 = 5 km/s, 𝐿 = 5m).

This behaviour is well illustrated by Figure 8, in which rel-
ative errors 𝜖

𝑛
of rod natural frequency spectra are presented

for the same degrees of approximation polynomials 𝑝, which
is the second part of the analysis. Relative error 𝜖

𝑛
was cal-

culated based on well-known analytical formula [34] for the
type of boundary condition considered:

𝜖
𝑛
=

𝑓
𝑛
− 𝑓
𝑛

𝑓
𝑛

× 100%,

𝑓
𝑛
=

𝑛

2𝐿
√

𝐸

𝜌
, 𝑛 = 1, . . . ,DOF,

(17)

where 𝑓
𝑛
denote values of natural frequencies calculated

numerically, while𝑓
𝑛
is their corresponding analytical values.

It is well seen from Figure 8 that the use of higher
degrees of approximation polynomials results in a significant
increase in relative error 𝜖

𝑛
in the part of the frequency

spectra corresponding to higher natural frequencies, where
frequency gaps become considerable. Despite this fact in the
part of the frequency spectra corresponding to lower natural
frequencies, FE models based on higher degrees of approxi-
mation polynomials𝑝 are characterised bymuch lower values
of relative error 𝜖

𝑛
.

This error depends not only on the degrees of approx-
imation polynomial 𝑝, but also on the node distributions
(nonequidistant or equidistant) within FEs associated with
the type of approximation polynomials (nonequidistant
Chebyshev and Legendre and equidistant B-spline), as pre-
sented in Table 1. Errors 𝜖

1
and 𝜖

2
were defined in a very

simple manner as

𝜖
1
=

1

𝑁
1

𝑁
1

∑

𝑛=1

𝜖
𝑛
,

𝜖
2
=

1

𝑁
2

𝑁
2

∑

𝑛=1

𝜖
𝑛
,

2𝑁
1
= 𝑁
2
= DOF.

(18)

The results collected in Table 1 indicate that the type
of approximation polynomials plays a significant role as a
factor determining the accuracy of FE models. In the case
of nonequidistant distributions of nodes within elements,
based on either Chebyshev or Legendre polynomials [26], it
can be noted that for the same degrees of approximation
polynomials 𝑝 errors 𝜖

1
and 𝜖
2
are smaller for approximation

polynomials based on Legendre node distribution. As before,
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Figure 8: Relative errors of frequency spectra of an isotropic rod of free ends for various degrees of approximation polynomials 𝑝—a
numerical model of 736 DOFs according to the elementary theory of rods [36], based on Chebyshev node distribution used for calculations
by the TD-FEM (𝑐 = 5 km/s, 𝐿 = 5m).

Table 1: Average errors of frequency spectra of an isotropic
rod of free ends for various types and degrees of approximation
polynomials 𝑝—a numerical model of 736 DOFs according to the
elementary theory of rods [36] used for calculations by the TD-FEM
(𝑐 = 5 km/s, 𝐿 = 5m).

Polynomial type Polynomial degree 𝑝 𝜖
1
[%] 𝜖

2
[%]

Chebyshev

1 3.47 9.92
3 0.44 11.73
5 0.13 15.36
7 0.05 18.75

Legendre

1 3.39 12.76
3 0.25 3.81
5 0.06 8.95
7 0.02 13.01

B-spline 3 0.01 0.85

it should be emphasised that the degree of approximation
polynomials 𝑝 = 1 corresponds to equidistant node distri-
bution characteristic for the classical FEM.

In the part of frequency spectra considered for computa-
tional practice and corresponding to lower natural frequen-
cies, error 𝜖

1
decreases rapidly with an increase in the degree

of approximation polynomial 𝑝. In the case of approximation
polynomials based on Chebyshev node distribution, error 𝜖

1

decreases 73 times, while in the case of Legendre polynomials
it decreases 192 times. Lower errors 𝜖

1
and 𝜖
2
observed for

Legendre node distribution are a direct consequence of the
numerical integration scheme used for computation of ele-
mental characteristic inertia matrices by Lobatto quadrature
that leads to their diagonal form. Lobatto quadrature under-
estimates values of elemental characteristic inertia matrices
[35] as exact up to the degree of approximation polynomials
equal to 2𝑝 − 2.

Gauss quadrature employed in the case of Chebyshev
node distribution is exact up to the degrees of approximation
polynomials equal to 2𝑝 but leads to full forms of elemental
characteristic inertia matrices. For the same quadrature B-
spline cubic approximation, polynomials based on equidis-
tant node distribution evidently offer the best results. This is
because of the fact that B-spline approximation polynomials
enforce not only the continuity of approximated functions,
but also the continuity of their derivatives up to 𝑝 − 1

degree, which results in no frequency gaps observed since
stress/strain fields between FEs remain continuous. The nat-
ural frequency spectrum of the rod under consideration for
B-spline cubic approximation polynomials and equidistant
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Figure 9: Frequency spectrum of an isotropic rod of free ends for
B-spline cubic approximation polynomials—a numerical model of
736 DOFs according to the elementary theory of rods [36], based
on equidistant node distribution used for calculations by the FEM
(𝑐 = 5 km/s, 𝐿 = 5m).
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Figure 10: Relative error of the frequency spectrum of an isotropic
rod of free ends for B-spline cubic approximation polynomials—
a numerical model of 736 DOFs according to the elementary
theory of rods [36] based on equidistant node distribution used for
calculations by the FEM (𝑐 = 5 km/s, 𝐿 = 5m).

node distribution is presented in Figure 9, while correspond-
ing relative error 𝜖

𝑛
is presented in Figure 10.

4. Known Issues and Their Consequences

The third part of the current analysis is concerned with
certain numerical issues that are typical examples of the
problems related with the application of the FEM or the TD-
SFEM. In this analysis, force vibration responses and time
responses of the rod under investigation were also examined.

Two types of rod discretisation were selected for the anal-
ysis. In the first case, a numerical model of the rod was based
on Chebyshev node distribution and approximation polyno-
mials of the fifth degree. In the second case, the correspond-
ing numerical model of the rod was based on equidistant

FG1
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Figure 11: Forced vibration response of an isotropic rod of free ends
within a frequency band from 200 kHz to 250 kHz for Chebyshev
approximation polynomials—a numerical model of 736 DOFs
according to the elementary theory of rods [36], based onChebyshev
node distribution used for calculations by the TD-FEM (𝑐 = 5 km/s,
𝐿 = 5m).

node distribution and B-spline cubic approximation polyno-
mials. As before a numerical model of 736 DOFs according
to the elementary theory of rods was employed.

In order to conform with the results presented in Figures
7 and 9, force vibration responses of the rod were calculated
assuming an excitation force𝐹(𝑓) variable within a frequency
band from 0Hz to 350 kHz and acting at point P

1
(𝑥 = 0),

where also the amplitude 𝑞 of rod vibration was assessed.
The amplitude of the excitation 𝐹 was 1N. A small value of
material damping was assumed, expressed by the loss factor
𝜂 = 10

−4, to bound vibration responses of the rod nearby its
resonant frequencies.

Within the assumed frequency band frequency band gap
FG
3
, around 230 kHz should most prominently affect rod

dynamic behaviour. For this reason, the results of numerical
calculations by the FEMpresented in Figure 11 were narrowed
to a frequency band from 200 kHz to 250 kHz.

It is evident that the presence of frequency band gap
FG
3
results in inability of the rod to produce any dynamic

responses within a 13 kHz frequency band gap affected by the
gap and starting from 223.5 kHz up to 236.5 kHz. Obviously
such a feature of the rod FE model must strongly influence
calculated time responses that are in fact built as sums of
harmonic responses of various amplitudes. At this point, it
is interesting to note that in the case of the rod numerical
model based on equidistant node distribution and B-spline
cubic approximation polynomials dynamic responses of the
rod reveal no frequency band gaps due to the continuity of the
stress/strain field between FEs, as presented in Figure 12.

During the analysis of time responses of the rod, various
carrier frequencies 𝑓

𝑐
of the excitation force 𝐹(𝑓) acting at

point P
1
(𝑥 = 0) were examined with their spectra gradually

closing to frequency gap FG
3
[26]. As the excitation, a

12-cycle sine signal modulated by the Hann window was
selected, while the excitation amplitude was 1N. As before
time responses of the rod were assessed at the excitation
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Table 2: Spans of propagating signal time windows for various
excitation carrier frequencies 𝑓

𝑐
calculated analytically according to

the elementary theory of rods [36] (𝑐 = 5 km/s, 𝐿 = 5m).

Carrier frequency 𝑓
𝑐
[kHz] 𝑡

1
[ms] 𝑡

2
[ms]

75 2.0 2.160
100 2.0 2.120
125 2.0 2.096
150 2.0 2.080
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f (kHz)
200 210 220 230 240 250

q̂
(𝜇

m
)

1

10−1

10−2

10−3

10−4

10−5

10−6

Figure 12: Forced vibration response of an isotropic rod of free
ends within a frequency band from 200 kHz to 250 kHz for B-
spline cubic approximation polynomials—a numerical model of 736
DOFs according to the elementary theory of rods [36], based on
equidistant node distribution used for calculations by the FEM (𝑐 =

5 km/s, 𝐿 = 5m).

point. The total calculation time was 2.5ms and was divided
into as many as 25,000 equal time steps to minimise the
time discretisation error. Numerical solution of the equation
of motion was obtained by the application of the central
difference method.

For approximation polynomials of the fifth degree based
on Chebyshev node distribution, calculated time responses
of the rod are presented in Figure 13. In this figure, times 𝑡

1

and 𝑡
2
represent analytically calculated time windows, within

which the time responses should be visible under assumption
of no numerical dispersion of the FE model employed. The
times 𝑡

1
and 𝑡

2
are dependent on the excitation carrier

frequency 𝑓
𝑐
and their values are shown in Table 2.

The results obtained clearly indicate that for excitation
carrier frequencies distance from frequency band gap FG

3
, up

to 100 kHz, the observed wave propagation patterns remain
undistorted. For higher excitation carrier frequencies, gradu-
ally approaching the frequency band affected by the presence
of frequency gap FG

3
, these patterns become gradually

deformed. In the case of the exaction carrier frequency 𝑓
𝑐

equal to 150 kHz, the misrepresentation of the wave propa-
gation patter obtained is very clearly visible.

The reason for such behaviour comes from the fact that
time response frequency components close to frequency band
gap FG

3
are strongly affected by an increasing numerical

modelling error, as shown in Figure 8. For example, the
frequency content of 150 kHz excitation is presented in
Figure 14.

As long as the excitation frequency components fall into
the frequency band influenced by frequency gaps, calculated
time responses of the rodmust carry corresponding informa-
tion that manifests itself as numerical dispersion. Certainly
the intensity of this numerical dispersion is very small in
the case of excitation frequencies from the lower part of
frequency spectra and therefore can be neglected. In the case
of excitation frequencies from the upper part of frequency
spectra, numerical dispersion can be significant and in
extreme cases, in the close vicinity of frequency band gaps,
may prevent obtaining any numerical solution.

Contrary to this in the case of the rod numerical model
based on equidistant node distribution and B-spline cubic
approximation, the numerical dispersion problem described
above is not present due to no frequency gaps observed in
the rod natural frequency spectrum. This is illustrated by
Figure 15. As a consequence of that, no numerical dispersion
resulting from rodmodelling is observed and calculatedwave
propagation patterns remain undistorted.

Certainly, it can be expected that the manifestation of the
periodicity in the case of complex FE discrete models com-
bining together various types of FEs (1D, 2D, or 3D), material
properties (isotropic, orthotropic, or anisotropic), as well
as discretisation techniques (regular, spectral, or adaptive),
must result in a more complex behaviour. However, it can be
also expected that certain periodic features of this behaviour
should remain the same. This can be well illustrated based
on the result presented in Figures 16 and 17 that present
frequency spectra of the same rod obtained for the two-
mode Mindlin-Herrmann theory of rods. The symbols S

0

and S
1
denote the first and second symmetrical (longitudinal)

wave propagation modes, while 𝑐
𝑙
and 𝑐
𝑠
are in fact material

constants expressing the velocities of longitudinal and shear
waves in 3D elastic media, respectively [36].

Two different discretisation methods of the rod were
taken into account. In the first case, the fifth degree of approx-
imation polynomials for Chebyshev node distribution was
employed, while in the second case they were B-spline cubic
approximation polynomials for equidistant node distribu-
tion. Both models included 1502 DOFs.

Figures 16 and 17 show that the two-mode Mindlin-
Herrmann theory requires that the frequency spectrum of
the rod must be split between these two modes. Thus, above
a certain frequency, known as the first cut-off frequency
𝑓
1
, equal to 419.3 kHz in the current case, both the modes

are simultaneous—please refer to Figure 18 for more details.
Thus, those rod natural frequencies, the same as natural
vibration modes, are dual above the cut-off frequency 𝑓

1
.

It can be seen that in the case of the rod FE discrete model
according to the two-modeMindlin-Herrmann theory, based
on the fifth degree of approximation polynomials and Cheby-
shev node distribution, due to the discontinuity of the
stress/strain field between FEs previously discusses, the num-
ber of frequency band gaps is also doubled in comparison
with the elementary rod theory.
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Figure 13: Time responses of an isotropic rod of free ends for various excitation carrier frequencies 𝑓
𝑐
for approximation polynomials of the

fifth degree—a numerical model of 736 DOFs according to the elementary theory of rods [36], based on Chebyshev node distribution used
for calculations by the TD-FEM (𝑐 = 5 km/s, 𝐿 = 5m).
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Figure 14: Frequency spectrum of 150 kHz excitation in the form of
12-cycle sine signal modulated by the Hann window.

This has profound consequences on the accuracy of
numerical simulations, since the spans of particular fre-
quency band gaps increase according the wave propagation
mode and not according to their absolute number—the span
of frequency band gap FG

4
just below the first cut-off

frequency 𝑓
1
is much bigger than frequency band gap

FG
5
. As before no frequency band gaps are observed for

B-spline cubic approximation polynomials and equidistant
node distribution. In this case the separation of the frequency
spectrum between the two modes below and above the first
cut-off frequency 𝑓

1
is very clear.

Finally, two important issues related to FE discrete
numerical models should be addressed.The results of numer-
ical calculations presented in Figure 19 clearly indicate that
the observed behaviour related to the presence of frequency
band gaps in the frequency spectrum of the 1D rod under
investigation should be attributed to the periodic properties
of its FE discrete model. Moreover, this model feature should
not be understood as a numerical error but a numerical
feature. It can be seen from Figure 19 that regardless the size
of rod numerical model, in terms of its elements/DOFs, the
same general pattern is observed. The presence of frequency
band gaps in the frequency spectrum is directly linked to the
degree of approximation polynomials 𝑝 employed.Moreover,
the frequency spectrum is effectively divided into 𝑝 − 1

segments with 𝑝 − 1 frequency band gaps between them.
In the low frequency regime, no periodic features in the

rod frequency spectrum are seen. For this reason, this part
of the spectrum may be considered as representative for
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Figure 15: Time responses of an isotropic rod of free ends for various excitation carrier frequencies 𝑓
𝑐
for B-spline cubic approximation

polynomials—a numerical model of 736 DOFs according to the elementary theory of rods [36] based on equidistant node distribution used
for calculations by the FEM (𝑐 = 5 km/s, 𝐿 = 5m).
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Figure 16: A frequency spectrum of an isotropic rod of free ends
for approximation polynomials of the fifth degree—a numerical
model of 1502DOFs according to the two-modeMindlin-Herrmann
theory of rods [36], based on Chebyshev node distribution used for
calculations by the TD-FEM (𝑐 = 5 km/s, 𝐿 = 5m).

the dynamic behaviour of continuousmedia/structures. Con-
trary to that the upper part of the spectrum must be consid-
ered as affected by the periodic properties of the numerical
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Figure 17: A frequency spectrum of an isotropic rod of free
ends for B-spline cubic approximation polynomials—a numerical
model of 1502DOFs according to the two-modeMindlin-Herrmann
theory of rods [36], based on equidistant node distribution used for
calculations by the FEM (𝑐 = 5 km/s, 𝐿 = 5m).

discrete model itself. This becomes a very important matter
when periodic structures are studied, modelled by the use of
the FEM or the TD-SFEM.
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Figure 18: Dispersion curves for the group velocity 𝑐
𝑔
for the two-

mode Mindlin-Herrmann theory of rod (𝑐
𝑙

= 6086.1 km/s, 𝑐
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=

3065.7 km/s).
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Figure 19: Relative errors of frequency spectra of an isotropic rod of
free ends for various numbers of FEs used for rod discretisation—a
numerical model according to the elementary theory of rods [36],
based on Chebyshev node distribution used for calculations by the
TD-FEM (𝑐 = 5 km/s, 𝐿 = 5m).

The second issue comes from the obvious fact that a
majority of commercial FE packages offers automatic mesh
generation capabilities in the case of 1D, 2D, and 3Dproblems.
Such automatic mesh generators produce irregular meshes
that are characterised by some distribution of element dimen-
sions, which are FE lengths in the case of 1D problems under
investigation.

However, it should be understood that the periodic
properties of FE discrete models have their origins in the
stress/strain discontinuities between adjacent FEs. As long as
the dimensions of FEs concentrate around a common size,
which can be understood as the average element size, one can
expect that certain characteristics that can be attributed to

the periodicity of FE discrete models should appear. This is
well illustrated by Figure 20.

It was assumed that the lengths of FEs used for modelling
the rod under consideration could vary within a certain limit,
denoted as 𝛿𝑙, but still these lengths are concentrated around
a common average value 𝑙

0
= 𝐿/𝑁. It can be noted from

Figure 20 that an increase in the dispersion of rod element
lengths 𝛿𝑙 slightly affects the observed error 𝜖

𝑛
of rod natural

frequencies.The strongest influence is observed in the case of
the dispersion of rod element lengths 𝛿𝑙 equal to±15%. In this
case, the frequency band gaps FG

1
, FG
2
, and FG

3
associated

with the lower part of the rod natural frequency spectra
are smoothed, but the high frequency behaviour remains
the same; that is, the frequency band gap FG

4
stays visible;

however, its frequency span is slightly smaller.

5. Conclusions

In this paper certain computational aspects of the periodic
nature of FE discrete models have been investigated and dis-
cussed by the authors. The results of this analysis allow them
to formulate certain general conclusions:

(i) The majority of FE discrete models of engineering
structures used in the analysis of high frequency
dynamics or wave propagation problems represent
structures of certain periodic characteristics.

(ii) This analysis requires uniform or nearly uniform
meshes of FEs in order to avoid problems with
artificial anisotropy of FE discrete models, typically
assuming at least 5 element nodes per wavelength
associated with the slowest propagating wave associ-
ated.

(iii) The source of the periodicity comes from the fact that
the classical formulation of the FEM or the TD-SFEM
requires only the continuity of the displacement field
between FEs, while the stress/strain field between the
elements may remain discontinuous but finite.

(iv) The discontinuity of the stress/strain filed between
FEs results in the discontinuity of frequency spectra
and the presence of the so-called frequency band
gaps, which represent frequency domains, where no
real solutions exist.

(v) The number of frequency band gaps observed in the
frequency spectra of discrete FE models is directly
related to the number of FEs used as well as the degree
of approximation polynomials employed.

(vi) At low frequency regimes, when low frequency
dynamic or static structural behaviour is investigated,
the presence of frequency band gaps may remain
unnoticed.

(vii) At high frequency regimes, the presence of frequency
band gaps may dominate calculated high frequency
structural dynamic responses distorting or even fal-
sifying them completely, especially in the case when
multimode theories are employed.
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Figure 20: Relative errors of frequency spectra of an isotropic rod of free ends for various dispersions of element length 𝛿𝑙—a numerical
model of 736 DOFs according to the elementary theory of rods [36], based on the fifth degree of approximation polynomials and Chebyshev
node distribution used for calculations by the TD-FEM (𝑐 = 5 km/s, 𝐿 = 5m).

(viii) In the case of the classic formulation of the FEMor the
TD-SFEM, lower degrees of approximation polyno-
mials, regardless of available node distributions such
as equidistant or nonequidistant Legendre or Cheby-
shev, result in a smaller number of frequency band
gaps, while FE discrete models based on such approx-
imation polynomials are characterised bymuch lower
accuracy.

(ix) Contrary to that, higher degrees of approximation
polynomials result in a greater number of frequency
band gaps, while corresponding FE discrete models
based on such approximation polynomials are char-
acterised by much higher accuracy.

(x) In the case of higher degrees of approximation poly-
nomials, the presence of frequency band gaps reduces
the usable part of frequency spectra to their lower
parts.

(xi) For FE discrete models based on multimode theories,
their periodic nature has the same origin and char-
acter; however, the observed behaviour is more com-
plex.

(xii) The influence of the periodicity on FE discretemodels
may be minimised or fully eliminated in the case of

the stress (compliance) formulation of the FEM or in
the case of the superelement approach of the FEM or
the TD-SFEM.

(xiii) The stress (compliance) formulation of FE discrete
models, enforcing the continuity of the stress field
between FEs, leads to the formulation of the char-
acteristic elemental matrices equivalent to the case,
when linear approximation polynomials are used,
thus characterised by relatively low accuracy for
higher frequency regimes.

(xiv) The superelement approach, enforcing the continuity
of stress/strain field within the whole superelement,
becomes numerically inefficient for large discrete
models as leading to the full stiffness matrix of the
superelement.

(xv) The formulation of the FEM based on B-spline cubic
approximation polynomials, regardless of node dis-
tribution, fully eliminates the influence of the peri-
odicity of FE discrete models due to the continuity
of the stress/strain field between the elements and is
free of the drawbacks associated with the stress or
superelement formulations of the FEM or TD-SFEM.
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(xvi) Appropriate modelling of periodic structures by dis-
crete FE models requires special attention in order
to control and to separate the influence of periodic
properties of the models from the periodicity of the
structures themselves.
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