Volume 18 HYDROACOUSTICS

USAGE OF THE GSTREAMER FRAMEWORK FOR THE GENERATION,
ANALYSIS, PROCESSING AND VISUALIZATION OF SONAR SIGNALS

KRZYSZTOF CZARNECKI, DORIAN DABROWSKI

Gdansk University of Technology
Faculty of Electronics, Telecommunications and Informatics
Department of Marine Electronic Systems
Narutowicza 11/12, 80-233 Gdansk, Poland
krzycz@eti.pg.gda.pl

In this paper, the usage of the GStreamer framework in applications of classical digital
signal processing is discussed. Especially, its adaptation regarding sonar technique is presented
here. Signal generation, analysis, processing, and visualization are implemented as GStreamer
plugins. The new plugins and the structure of data transmitted through the GStreamer pipeline
are both briefly discussed. The introduced plugins are published as free software under the
GROJ project.

INTRODUCTION

The need for an open software platform given over to application development is evident.
Moreover, technical support, the availability of documentation, and a lack of dependence on
the hardware and operating system is desirable here. Essentially, the benefit of using such a
platform is source code portability, software standardization, and finally, cost reduction in the
development process. These requirements are fulfilled by The GStreamer framework (GSF) [1]
and The GNU Radio Toolkit [2,3], amongst others. The considerations in this paper are focused
on the GSF and its use in the analysis and processing of sonar chirp signals.

GStreamer is an open source multiplatform framework originally dedicated to the stream-
ing and processing of multimedia data. It is known to work on Linux, Solaris, Microsoft Win-
dows, FreeBSD, Mac OS X, and many other popular operating systems. It is also widely em-
ployed as an engine for many multimedia applications, such as media players and capture en-
coders, for example: Banshee, Kaffeine, Rhythmbox, Sound Juicer, Totem and so on. The frame-
work is published on the GNU Lesser General Public License and supported by freedesktop.org.
It has application programming interfaces (API) or bindings for some programming languages:
C/C++, Python, Perl, Ruby, Vala, etc. Each GStreamer application consists of plugins, that
can load, process and save streams of information. Plugins are joined and packed into virtual

33



A\ MOST

Volume 18 HYDROACOUSTICS

= 4

~gstreamer

Fig. 1. The GStreamer logo.

pipelines. In general, the pipeline provides an interface between the plugin system and graphical
user interface (GUI) [4]. Today, thousands GStreamer plugins are available. They all contain
substantial functionality in the multimedia application field [5-8].

The processing of multimedia streams is related to the classical digital signal processing
(DSP). Both can be organized as pipelines consists in many modules. Each of the modules
implements a dedicated restricted task such as:

e in media processing: converting, coding, mixing, etc.
e in DSP: resampling, filtering, modulation, etc.

It seems that the GStreamer framework can be also successfully used in DSP. There are many
advantages of GSF, amongst others:

e A unified application structure.

e A hardware-independent interface for specific devices which can be provided by the se-
lected specific GStreamer plugins.

e An once developed module can be multiple use by different users and applications.

e A division of the whole processing schema into smaller modules, which simplifies the
maintenance and management of a project.

In the paper, an exemplary usage of GSF in classical applications of DSP — especially
within a sonar technique — is presented. A similar field of research was considered in [8], where
the authors used GSF for the development of a digital radio system. The GSF architecture al-
lows us to develop new plugins which are capable of using specialized hardware and can maintain
high algorithm performance such as signal processors or embedded digital filters. At this point,
the GStreamer plugin plays an interface role between the hardware and the high-level applica-
tion layer. Futhermore, provide of work of a DSP system in real-time is also possible. This is
particularly important in professional applications of sonar signal processing. GSF has inbuilt
mechanisms which support real-time transmission. Then again, GSF was originally given over
to multimedia processing. There are implemented plugins that can be used in the development
of operator stations situated at the end of a processing chain, for instance, in on-line visualiza-
tions [5] and when listening to received signals from a water column.

This paper is organized as follows. A short description of the conception, architecture,
and, most importantly, the GStreamer parts and mechanisms is presented in Section 1. Then in
Section 2, the GROIJ project is introduced. Consideration of sonar signal generation by GSF is
introduced in Section 3. Then, respectively, the example of a signal analysis in the joint time-
frequency domain and then an online visualization of a signal or its various representations are
all discussed in Sections 4 and 5. Finally in Section 6, the following are presented: a signal
processing approach and a simple example which includes in the ability to listen to a received
high-frequency signal.

34


http://mostwiedzy.pl

A\ MOST

Volume 18 HYDROACOUSTICS

1. GSTREAMER

The conception of the development of GStreamer applications derived from the GObject
model [9,10]. The mechanism of signal and object properties is used. All objects can be queried
at runtime regarding their various properties and capabilities. Plugins are dynamically loaded
and can be extended and upgraded independently [4].

Sonar systems are often given over to the processing of huge amounts of information [11].
Therefore, high performance in such systems is a priority. In GSF high performance is achieved,
by among others: the use of a dedicated allocator, extremely light-weight links between plugins
— data can travel along the pipeline with a minimal overhead, resulting in mechanisms directly
working on target memory; a plugin can, for example, write directly to extended cards’ memory
space or X server, allowing hardware acceleration by using specialized plugins [4].

application

bus :
A :
pipeline
events queries
Y Y
roj-transducer ] roj-parcel ] roj-stft-convert ] rroi-screen

A

A
Yy

Y
YYy

Fig. 2. Scheme of the GStreamer pipeline consisting of GROJ plugins with information flows.

Essentially, GStreamer plugins are the main element of applications. GSF provides differ-
ent methods that allow for controlled communication between the plugins, that is to say: mes-
sages, events and queries. These mechanisms function based on an abstracted control layer —
bus, Fig. 2. Each plugin has data streaming interfaces — pads. The pad is known as src if its
sends data or as sink if it receives it. Moreover, plugins can be configured by a programmer
using so-called properties. Pads are also used for negotiating links and for data flow between
plugins. Links are only allowed between two pads that can deal with the compatible data type.
The negotiation process is automatic. However, a programmer can force a specific data format
from the availability of both pads. Data format is shortly known as caps. All plugins are packed
into containers — bins. The containers can control plugins as well as provide an interface for
management and the synchronization of all internal elements. Bins also forward bus messages
from their contained plugins or different bins (such as error messages, tag messages or end-
of-stream messages) and mediate in communication with a user application. A pipeline is a
top-level bin [4, 12].

2. GROJ PROJECT

We developed several GStreamer plugins which are useful in digital signal processing and
analyzing. This project is referred to as GROJ. The source code of the project is published
under free license on the following webpage: https://github.com/dsp-box/gROJ. Currently, the
project consists of the following plugins:

35


http://mostwiedzy.pl

A\ MOST

Volume 18 HYDROACOUSTICS

roj-gener
This plugin is dedicated to generating well-known periodic signals using in the sonar tech-
nique, such as: pulses, chirps, and sine waves.

roj-load
The role of this plugin is to load signals from files. Currently, only parsing the wave form
audio format (wav) and reading simple text files are possible.

roj-noise

This plugin is used in order to add noise into a loaded or generated signals. This function
can be helpful during testing and/or simulations. Currently, only additive white Gaussian
noise (AWGN) can be generated.

roj-line
This plugin contains a few methods dedicated to the modification of signal basic parame-
ters, such as: damping, amplification, (de)modulation, delay, etc.

roj-filter
This plugin implements a FIR filtration algorithm. The complex impulse response of a
filter can be entered as a property of the plugin.

roj-parcel

The main role of this plugin is the frame forming — signal segmenting into frames. The
frames can be overlaid. This plugin can also cut off the initial and/or final parts of an
analyzed signal. The frame width corresponds to the window width in plugins which are
dedicated to the calculation of STFT.

roj-stft

This plugin is designed in order to calculate the short-time Fourier transform (STFT). The
format of an input stream should be complex signal frames. Each incoming frame can be
tempered using the Blackman-Harris window. The data in the output is a set of complex
numbers containing a single discrete Fourier transform.

roj-convert

The convertion of the STFT into the time-frequency distribution of various signal param-
eters is the main purpose of this plugin. Currently, the energy or phase of the STFT can
be obtained. The output stream may contain many channels with time-frequency distribu-
tions of different parameters.

roj-kadr
The roj-kadr plugin is used in order to crop a selected region of a time-frequency distri-
bution. It can help to display a part of a large image in a computer monitor.

roj-screen
This plugin is dedicated to visualize time-frequency representations of an analyzed signal
obtained during either signal processing or analysis. This plugin can display an anima-
tion by using the GTK programming library. Moreover, it is also possible to generate and
save imaging in Portable Document Format (PDF) as well as in Scalable Vector Graph-
ics (SVG).

36


http://mostwiedzy.pl

A\ MOST

Volume 18 HYDROACOUSTICS

e roj-olsa
The main role of this plugin is to listen to the signal. The stream is sent into a speaker by
using the Advanced Linux Sound Architecture (ALSA).

e roj-debug
This plugin is used in order to debug and test developed plugins. It can print data and
control information transferred through the pipeline.

Each of these plugins processes a stream immediately after collecting a sufficient amount of data
and then forwards results in the real-time. Some of them emit internal control tags necessary for
signal processing in other plugins. All control information is also forwarded as soon as possible.
More detailed information about the selected plugins is presented in the following sections and in
the documentation about the GROJ project [4]. The GROJ project started out from a graduation
assignment [13].

3. SOUNDING SIGNAL GENERATION

Frequency modulated short bursts and chirp signals are commonly used as sounding sig-
nals in sonar techniques. A discrete version of these signals can be simply generated using header
files such as complex.h or fftw.h and mathematical formulae in the time domain, for instance, the
linear frequency modulated (LFM) chirp can be expressed as follows:

u(t) = exp(jmrt® + j2m ft) (1)

where t, 7, and f are respectively time, chirp rate, and initial frequency, j2 = —1. Currently,
there are two plugins dedicated to enter signal samples into a pipeline: roj-load and roj-gener.

Inside any plugin, generated complex samples are stored in a structure referred to as Gst-
Memory. However, plugins send, receive, and forward structures referred to as GstBuffers. Each
GstBuffer can contain pointers to GstMemory structures as members of a structure. A new
GstBuffer has sixteen slots. Each GstMemory should be allocated explicitly. In the proposed
solution, the first GstMemory stores a GrojConfig structure which contains control information,
for example, a time-stamp, analyzing window parameters, a number of transmitted samples etc.
Others slots are interpreted as channels intended for the transmission of different types of signal
parameters, distributions, or representations in the time or joint time-frequency domain. Each
GstMemory contains only a segment of all the information. Its size depends on the current
configuration of the pipeline, the format and the types of transmitted data.

4. TIME-FREQUENCY ANALYSIS

The most common operation dedicated to the time-frequency analysis is the short-time
Fourier transformation. The resultant complex transform — STFT, can be simply converted to a
distribution of the energy on the time-frequency plane. The whole operation can be conducted
mainly by the following plugins: roj-parcel, roj-stft, and roj-convert. First of all, the signal
is segmented into frames. The frames can be overlaid. Then each frame is multiplied by an
analyzing window and finally transformed into an instantaneous spectrum. The energy density
can be obtained by the squaring. The whole process can be conducted on-line in real-time.

37


http://mostwiedzy.pl

A\ MOST

Volume 18 HYDROACOUSTICS

The Fourier transformation is implemented based upon the Fast Fourier Transform in the
West (FFTW) library. This ensures high performance in the operation and flexibility in the
analysis parameters selection. Currently, the usage of one of two analyzing windows is possible,
namely: the rectangular and the 4-term Blackman-Harris one [14].

5. ONLINE VISUALIZATION

There are several common types of sonar signal imaging. One of them is the classi-
cal spectrogram where the horizontal axis represents time and, respectively, the vertical — fre-
quency. Therefore the spectrogram can be interpreted as the energy distribution on the joint
time-frequency plane. The roj-screen plugin is set aside to the graphical presentation of this
spectral energy density. An example of the imaging of LFM chirp is presented in Fig. 3.

1.95312 < FREQUENCY (Hz) = 1296.88
-30 = ENERGY DENSITY (dBc) = 0

OUT OF
12.294 = TIME (s) = 12.2877 . SCALE

Fig. 3. An example of the imaging of LEM chirp by the roj-screen plugin in the logarithmic scale. The
signal is analyzed by using the short-time Fourier transformation and the Blackman-Harris window.

The front screen of the roj-screen plugin is updated as quickly as possible and can be used
for visualizing in real-time. Currently, two display modes are available: in linear and logarithmic
scales. Moreover, a multi-colored palette can be used. In Fig. 4, the architecture of the plugin
is graphically presented. Two main layers can be highlighted: the GStreamer processing en-
gine and the graphical user interface implemented in the GIMP Toolkit (GTK). Both are based
upon the GObject model and the Glib library. Both also support the event-based mechanism
for control information handling. The information flow between these two layers is conducted
through a circular buffer. The configuration of the plugin, for example, screen resolution or
energy threshold, can be interactively changed without interrupting the signal processing. This
feature is provided by the GSF architecture and plugin solution. Moreover, there is the option to
save a screen-shot into a file — Fig. 3 is obtained in this manner.

It is possible to launch one processing pipeline in two or more machines. For example, a
signal can be analyzed in one computer and the results can be presented in another machine, or
many machines, using, for instance, the User Datagram Protocol (UDP) for communication. For
this purpose, udpsink and udpsrc plugins can be used. These plugins are provided and supported
by the GStreamer community. It is also possible to use other existing GStreamer plugins such
as: queue, filesink, tcpsrc, tepsink, etc.

38


http://mostwiedzy.pl

A\ MOST

Volume 18 HYDROACOUSTICS

Display ‘ ’ Keyboard
!
) ’ GTK Widget: Image ‘«—%
Graphical GTK event
user interface analyzer
GTK ) . [
‘ GTK Widget: Pixbuf ‘
color mapping
rojscreen .
GST plugin Circular buffer
]
channel selection
Gstreamer GST .
R . even
processing engine GST Function: chain - analyzer
GST
7y
Gstreamer’s stream J

Fig. 4. Information flow diagram in the GStreamer rojscreen plugin.

6. SIGNAL PROCESSING

6.1. Signal filtration and modulation

The filtration operation can be realized by the roj-filter plugin. Currently, the finite impulse
response (FIR) filtration algorithm is implemented. Filter coefficients can be entered by using
properties of the plugin. For example, a frequency bandpass of the signal, whose spectrogram
is presented in Fig. 3, is limited by the roj-filter plugin.

Methods which process isolated samples (one by one) are available by using the roj-line
plugin. At the moment, this plugin can work as the following: modulator, demodulator, amplifier
and suppressor.

6.2. Converting into audio signal

Historically, first sonar systems only allowed us to listen to signals which had come from
an underwater environment. Still today, an experienced sonar operator can obtain a lot of infor-
mation from this type of natural analysis. In the GROJ, project the task of sending a signal into
an audio output is carried out by the roj-olsa plugin. The Advanced Linux Sound Architecture
(ALSA) framework is used for communication with a soundcard. ALSA is reliable software,
designed to ensure as small a latency as possible in signal processing. The format and other
parameters of an output audio stream and its internal settings can be specified by using ALSA
interface. The roj-olsa plugin can control this process by GStreamer properties.

Moreover, a processed signal can be adjusted, especially demodulated, by the roj-line plu-
gin. It is often necessary in order to shift the signal to the audible frequency band. The roj-line
plugin can also adjust the signal energy by digital amplification or attenuation.

7. CONCLUSIONS

The need for the use of high-level software layers in modern information technology is
clear. There are many conceptions based upon, for example, things as: operating systems, soft-
ware libraries or various frameworks, such as the GStreamer. Every year, new efficient and

39


http://mostwiedzy.pl

A\ MOST

Volume 18 HYDROACOUSTICS

high performance computing hardware platforms are introduced. Often new implementations
of known algorithms are required in order to make use of these new hardware platforms. This
raises the cost of projects, extends implementation, and, consequently, justifies the use of high-
level software layers such as the GStreamer framework and the GROJ project. Then again, the
GROJ project enriches GStreamer functionality. The new plugins provide the chance of the easy
implementation of classical DSP algorithms.

The GROJ project is only a simple example. There are still many problems which should be
solved as well as new plugins, documentation and tutorials are necessary. However, the project
will be progressively developed primarily as a didactic student project in the Gdansk University
of Technology.

ACKNOWLEDGMENT

The GROJ is a name of this project. The name is in honor of dr. Mirostaw Rojewski, who
is our longtime supervisor and mentor.

REFERENCES

[1] GStreamer: open source multimedia framework, webpage: http://gstreamer.freedesktop.org

[2] GNU Radio, webpage: http://gnuradio.org

[3] E. Blossom, GNU radio: tools for exploring the radio frequency spectrum, Linux Journal,
vol. 2004, no. 122, pp. 4, 2004.

[4] W. Taymans, S. Baker, A. Wingo, R.S. Bultje, S. Kost, GStreamer Application Development
Manual, 2008.

[5] S.D.Burks, J.M. Doe, GStreamer as a framework for image processing applications in image
fusion, Proc. SPIE, vol. 8064, Orlando, Florida, USA, 2011.

[6] D. Darling, C. Maupin, B. Singh, GStreamer on Texas Instruments OMAP35x Processors,
Proc. the Linux Symposium, Montreal, Quebec, Canada, 2009.

[7] M. Lanoe, E. Senn, Consumption analysis and estimation in the design of GStreamer based
multimedia applications, Proc. Conference on Design and Architectures for Signal and Im-
age Processing, pp. 1-7, 2012 .

[8] S. Nimmi, V. Saranya, G.M. Theertha Das, R. Gandhiraj, Real-time video streaming using
GStreamer in GNU Radio platform, Proc. International Conference on Green Computing
Communication and Electrical Engineering, Coimbatore, India, 2014.

[9] GObject Reference Manual, The GNOME Project, 2014.

[10] M. Warkus, Official GNOME 2 Developer’s Guide, No Starch Press, 2004.

[11] J. Marszal, Digital signal processing applied to the modernization of Polish Navy sonars,
Polish Maritime Research, vol. 21, no. 2(82), pp. 65-75, 2014.

[12] R.J. Boulton, E. Walthinsen, S. Baker, L. Johnson, R.S. Bultje, S. Kost, T.-P. Muller, W. Tay-
mans, GStreamer Plugin Writer’s Guide.

[13] D. Dabrowski, Strumieniowe przetwarzanie danych spektralnych, praca dyplomowa, Po-
litechnika Gdanska, 2015, (in Polish).

[14] EJ. Harris, On the Use of Windows for Harmonic Analysis with the Discrete Fourier Trans-
form, Proceedings of the IEEE., vol. 66, pp. 51-83, 1978.

[15] K. Czarnecki, M. Moszyniski, Using concentrated spectrogram for analysis of audio acoustic
signals, Hydroacoustics, vol. 15., pp. 27-32, 2012.

40


http://mostwiedzy.pl



