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Abstract 

Within the framework of the nonlinear 6-parameter shell theory with the drilling rotation 

and asymmetric stress measures, the modifications of Tsai-Wu and Hashin laminate failure 

initiation criteria are proposed. These improvements enable to perform first ply failure estimations 

taking into account the non-symmetric stress measures. In order to check the validity of the 

proposed criteria, finite element analyses are performed with the use of the Authors’ program and 

the Abaqus package. It is shown that the classical forms of the well known failure hypotheses can 

predict different stress capacity of structure, if the stress measures do not preserve the symmetry 

condition. 
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1. Introduction 

This work is focused on the modelling of laminates, in particular on the appropriate 

estimation of failure initiation in structural laminated shells composed of intersecting panels. 

The problem is of great importance due to the increasing application of laminated shells in 

engineering solutions (see [1], [2]). Hence, a special attention is paid on estimation of their 

load capacity. Since laminated composites are anisotropic or orthotropic continua, the 

problem is quite complex and therefore refined failure criteria are required. It seems that up 

till now no universal hypothesis has been proposed. The existing failure theories base usually 

on the stress or strain state in each layer.  

Composite laminates as thin structures in general, are usually modelled as shell-like 

bodies. From the point of view of the failure analysis, the adopted assumptions of shell 

kinematics should be efficient enough to describe structural behaviour together with the stress 

state in all layers. Most of the common shell theories relies on the symmetry of stress and 

strain measures. In this work, however, the proposed laminate model is based on the nonlinear 

6-parmeter shell theory (6p theory). The sixth parameter is the rotation perpendicular to the 

shell reference surface. As such, the kinematical model of the 6p theory of shells is equivalent 

to that of Cosserat surface with three rigid directors and asymmetric stress and strain 

measures. Such an approach meets the requirements of the correct modelling of intersecting 

shells.  

The foundation of the 6p shell theory may be traced back to the works of Reissner [3] 

and Libai and Simmonds [4]. Some of the recent advances may be found in e.g. [5], [6], [7], 

[8], [9], [10], [11], [12], [13]. The key characteristics of the 6p shell theory used in this paper 

are: 
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 2D equilibrium equations of the shell-like body are obtained in the course of direct and 

exact through-the-thickness integration of 3D balance laws of linear and angular 

momentum of the Cauchy continuum,  

 definitions of the shell strain measures follow directly from an integral identity resulting 

from the exact equilibrium equations, which make the theory kinematically unique, 

 the strain and stress measures are not symmetric.  

The 6p theory is formulated in such a way that all the simplifications appear on the level 

of the material law only. 

The natural presence of the drilling rotation allows one for straightforward analysis of 

smooth as well as irregular shells both theoretically and with the aid of FEM. The irregular 

shells are composed of smooth shells connected along common edges that ultimately create a 

spatial shell structure. Their examples of application in engineering community are thin-

walled members for instance. A thorough exposition to this field has recently been presented 

by Pietraszkiewicz and Konopińska [14]. 

Much work has been done on analyzes of elastic homogenous isotropic thin shells e.g. 

[15], [16], [17], [18], [19] [20] using the constitutive equations motivated in the early work of 

Makowski & Stumpf [21]. The equations are expressed in terms of Young’s modulus and 

Poisson’s ratio. 

Altenbach and Eremeyev proposed in [22] the Cosserat plate theory with appropriate 

constitutive relations for elastic behaviour. The mutual relations between their approach and 

that of e.g. [15], [16], [17], [18], [19] were the topic of the paper [23] and its continuation 

[24].  

The next approach to formulate the constitutive relation for the 6p shell theory is linked 

directly to the Cosserat continuum. Starting from plane stress of the Cosserat medium [25], 

and employing trough-the-thickness integration under the Reissner-Mindlin hypothesis (the 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4 

 

first-order shear deformation theory FSDT) in [26], [27], [28] the relations between stress and 

couple resultants and the shell strain measures were established for elastic and plastic 

behaviour. They depend not only Young’s modulus and Poisson’s ratio but rely also on the 

micropolar characteristic length l  (material parameter) and the Cosserat coupling number 

[29], [30], [31]. Motivated by [26], [27], [28] Daszkiewicz et al. [32] have successfully 

derived the constitutive relations for shells made of functionally graded materials appropriate 

for the present 6p theory.  

In this paper we follow the route proposed for composite shells in [33]. The suitable 

material law accounting for layered material structure in 6p shell theory has been derived 

from the asymmetric Cauchy-type plane stress relation. The through-the-thickness integration 

together with kinematical assumption of the first-order shear deformation theory provided the 

equivalent single-layer constitutive relation for composite shells in terms of five material 

engineering constants. Taking next step forward from there, we present here modifications of 

some failure criteria for laminates.  

Commonly used stress-based failure initiation criteria for laminates, which are available 

in leading commercial FEM codes are: maximum stress, Tsai-Hill [35], Tsai-Wu [36], Hashin 

[37], Puck [38]. All these theories take into account the symmetry of stress measures. They 

are widely discussed and confronted with experimental results in [42]. Since the existing 

methods of initial failure determination do not account for the strain and stress measures 

asymmetry, their direct implementation into the unique shell theory used here is impossible. 

Therefore, we propose some modifications of the Tsai-Wu and Hashin criteria, that meet the 

requirements dictated by the nonlinear 6p shell theory. The particular constitutive relation is 

described in detail in chapter 4. In order to judge whether the criteria modifications are 

reasonable, some First Ply Failure (FPF) numerical analyses are carried out. Calculations are 

performed in the own Fortran code CAM [15], [16], and Abaqus. In the CAM code the non-
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linear 6p shell theory is implemented together with modified failure initiation criteria, while 

the standard assumption of stress tensor symmetry and standard criteria versions are used in 

Abaqus. The numerical examples are presented to show the performance of the proposed 

approach with the attention focused on irregular shells. 

 

2. Weak formulation of the boundary value problem 

The purpose of this section is to provide the necessary background lying behind the used 

finite element code CAM. We provide only summary of the most important aspects of the 

formulation. The equations of motion, strong and weak formulation for the present 6p shell 

theory have been discussed in detail in previous works e.g. [15], [16], [17], [18] and in the 

references given there.  

Within the general theory of irregular shell structures, the initial (undeformed) 

configuration of the 3D shell-like body is represented by a 2D surface-like continuum M  

called briefly an (undeformed) reference network, [39], [40], see Figure 1.  

 

Figure 1. General irregular shell structures 

The network ( )

1,2,..,

k

k K
M M


  consists of a finite number of regular surface elements 

( )kM , 

1,2,...,k K , joined together along parts of their boundaries 
( )kM . Each 

( )kM  is a bounded, 

oriented, connected and smooth surface whose boundaries 
( )kM  consist of a finite number of 

closed, piecewise smooth curves. Common parts of boundaries of all surfaces 
( )kM  form a 
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spatial curve ( ) ( )
, 1,2,..,

k m
k m K

k m

Γ M M


    (Fig. 1) called a singular curve M  . 

Therefore, the boundary base surface of general irregular shell structures is 

 ( )

1,2,..,
\k

k K
M M Γ


   . 

We further assume that the boundary M  is a union d fM M M   , d fM M    

where displacement ( d ) and traction ( f ) boundary conditions are imposed, respectively. It is 

assumed that \M Γ  is smooth enough for the existence of the metric and the curvature 

tensors. Each typical regular point \M Γx  is described by the pair 0( , )x T , where 
3Ex  (

3E  being the Euclidean space) is the position vector and 0 (3)SOT  is the structure tensor 

composed of directors 

 
0 ,β βt x ,   

0 0
0 0 1 2

3 0 0

1 2|| ||


 



t t
t t

t t
,   1,2β  ,   

(.)
(.),β βs





 (1)  

with (3)SO  as the special orthogonal group. In FEM approach we assume that the vector x  

and the triad 0{ }it  are the given data of the analyzed shell. Here we take the directors 0{ }it  as 

the rigid orthogonal frame i.e. 
0 0

i j ijδ t t , 0

0

i

i t t , 0 3

0t t , 0|| || 1i t . 

The deformation of such reference network M  is uniquely described by two fields: the 

position vector field ( ) ( ) y x u x x  that represents the translatory deformation of the shell 

reference network, and the proper orthogonal tensor field 0( ) ( ) ( )T x T x Q x , where ( )Q x  

represents the mean rotary deformation of the shell cross sections. Here we restrict ourselves 

only to geometric irregularities and allow the shell to have only folds, branches and/or self-

intersections. We assume from the beginning that the kinematic fields ( )y x  and ( )Q x  are 

continuous during the motion, and ( ) ( )|Γ Γ Γy x y x , ( ) ( )|Γ Γ Γu x u x , ( ) ( )|Γ Γ ΓQ x Q x , with 
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Γ Γx . Hence, we do not associate any mechanical properties with the singular curve Γ  

itself. 

Configuration space of the shell is defined as 

  3( , ) ( , ) : (3)C M G M G E SO     u QU u . (2) 

( ) (3)SOQ x  is an independent proper orthogonal tensor. The space tangent to (2) at u  is 

  3( , ) ( , ) : (3)T C M M E so      W U G Gu w v w , (3) 

where we define the continuous virtual vector fields of translations 3( ) Ev x  and rotations 

( ) (3)sow x  with (3)so  being the space of skew-symmetric tensors. Due to the isomorphism 

3(3)so E  it is also true that  

  3 3( , ) ( , ) :T C M Ε M Ε E E     Uu w v w . (4) 

After deformation ( , ) u Qu  the current position ( )y x  and the current microstructure tensor 

( ) (3)SOT x  are given by the vector fields: ( ) ( ) y x u x x  and 

0

0( ) ( ) ( ) ( ) ( ) ( )i i i i  e et x Q x t x Q x T x T x . 

To formulate the weak form of the problem we define the following spaces: the space of 

kinematically admissible displacement fields satisfying the prescribed boundary conditions 

* ( *, *) u Qu  on dM , 

  ( , ) : ( ) *( ); dC M G M   x x xU u u u , (5) 

and the space of kinematically admissible displacement fields satisfying the homogenous 

boundary conditions ( )w 0x  on dM , 

  3 3 1( , ) : ; ( ) ;i dC M E E w H M     x xV w w 0 , (6) 
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where  1

2 2: ; ,xH w w L w L    is the Hilbert space of square-integrable functions such that 

 2

2( ) :
B

L B w w dx  .  

The definition of shell strain measures in the defined basis is given by ([15], [16], [17], [18], 

[21]): 

 

0

1 11

0

2 2 2

T
1 1

T
2 2

, ( )

, ( )
( )

axl( , )

axl( , )

β

β

   
          

       
      

   
   

1

1

u Q tε

ε ε u Q t

κ κ Q Q

κ Q Q

ε u ,   

1 1 11

2 2 22

1 1

2 2

, ( )

, ( )

,

,

δ

δ
δ

δ

δ

    
        

    
   
      

v t ε wε

v t ε wε

κ w

κ w

ε , (7) 

where the axial vector of the skew tensor is defined with operator  axl ... . For convenience 

the above equations are put into compact notation 

 ( ) ( )ε u B u u ,   ( ) ( )δ ε u B u w ,   

1 1 1

2 2 2

1

2

(.), ( ) (.)

(.), ( ) (.)
( )

(.),

(.),

  
 

 
 
 
 
 

1

1

0 1

0 1

t ε

t ε
B u . (8) 

The external resultant load vector ( )xp  and the vector of the prescribed boundary loads 

*s , Γs  read 

 
( )

( )
( )

 
  
 

f x
x

c x
p   on  \M Γ ,       

*
*

*

 
  
 

n

m
s   on  fM ,      

Γ

Γ

Γ

 
 
 

n

m
s   on  Γ , (9) 

where ( )f x  is the external resultant force vector field and ( )c x  is the external resultant 

couple vector field on \M Γ . The components *( )n x  and *( )m x  are the prescribed boundary 

tractions and couples along fM , while components ( )Γn x  and ( )Γm x  are their counterparts 

defined along the singular curve M  . 

The constitutive relation is assumed in the general form 

  ( ) ( ) S S ε u S u   on  \M Γ . (10) 
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In the introduced notation the external virtual work is defined as 

 

\

\

, *, ,

( ) ( * * ) ( ) .

f

f

M Γ M Γ Γ

Γ Γ

M Γ M Γ

da ds ds





       

             f v c w n v m w n v m w

p w s w s w

 (11) 

The internal virtual work reads 

 
\

\

( ), ( ) [ ( , , ) , ]β β

M Γ β β β

M Γ

da        n v y w m wS u B u w . (12) 

The internal stress and couple resultant vectors ( )β
n x  and ( )β

m x , respectively, are primary 

variables of the theory. Here, to define them we use the constitutive relation (10).  

In the spaces defined above the principle of virtual work is stated as follows: given the 

external resultant force and couple vector fields ( )f x  and ( )c x  on \M Γx , *( )n x  and 

*( )m x  along fM , ( )Γn x  and ( )Γm x  along the singular curve Γ M , find a curve 

( ) ( ( ), ( ))x u x Q xu  on the configuration space (2) such that for any continuous, 

kinematically admissible virtual vector fields the following identity is satisfied 

 ( ), ( ) , *, ,
fM M M Γ Γ          S u B u w p w s w s w  (13) 

with the kinematic boundary conditions ( ) *( )u x u x  and ( ) *( )Q x Q x  satisfied on the 

complementary part \d fM M M   . We take the virtual vector fields as kinematically 

admissible if ( )0v x  and ( )0w x  on dM . 

 

3. Finite element approximation 

Relation (13) undergoes linearization [15], providing the base for spatial approximation, 

see Figure 2 

 ( )

1

eN

h e

e

M M Π


  . (14) 
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Figure 2. Global frame, typical element and natural element 

Here ( )eΠ  is a typical finite element defined as a smooth image of the standard element 

( ) [ 1, 1] [ 1, 1]eπ        from the parent (natural) domain 1 2( , )ξ ξξ . On the element level the 

vector field variables undergo standard interpolation using generic formula 

1
[...]( ) ( )[...]

wN

i ii
L


ξ ξ  with ( )iL ξ  as the Lagrange polynomials being the members of the 

space of interpolating functions  

  ( ) ( )1
( ) : ( ) , ( ) 1,

wN

e i i j ij i ei
L L δ L π


    Λ ξ ξ ξ ξ  . (15) 

The resulting elements are 
0C  class. In passing, reference [34] contains interesting approach to 

geometrically exact shell theory based on Kirchhoff-Love kinematics. In the present approach all 

the variables from (3)SO  group undergo 
0C  interpolation that relies on the approach 

described in [17], [18], [33]. Briefly, the approach is based on some kind of transport of the 

interpolation domain to the neighbourhood of the neutral element of the (3)SO  group. 

Thereby, it becomes singularity-free. The proposed approach is independent of selected 

parameterization cf. for instance [43], [44], [45]. Here we employ the canonical 

parameterization. Throughout the text, the finite elements described here, are denoted as CAMen 

[15], where the natural number n  denotes the total number of nodes i.e. 4 (2×2), 9 (3×3) or 16 

(4×4). The elements are integrated by Gauss-Legendre rule with either full integration (FI) or 

uniform reduced integration (URI). 
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4. Constitutive relation, failure criteria 

As a special form of the constitutive relation (10) we assume 

 s Cε ,  on  \M Γ , (16) 

where the shell strain measures (7) and corresponding stress and couple resultants are given in 

the spatial representation ({ ( ), 1,2,3}i it x ) 

 11 22 12 21 1 2 11 22 12 21 1 2{ | || | } { | || | }T T

m s b dε ε ε ε ε ε κ κ κ κ κ κ ε ε ε ε ε , (17) 

 11 22 12 21 1 2 11 22 12 21 1 2{ | || | } { | || | }T T

m s b dN N N N Q Q M M M M M M s s s s s . (18) 

Since FPF analysis is taken into account in this paper, we assume that C  remains, by 

assumption, constant during the analysis, though it may vary between the elements. As 

discussed in [33] for the present 6p theory C  may be obtained by assuming plane stress in 

each lamina k  in the material axes 

 

0 0 0 0
1 1

0 0 0 0
1 1

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

a ab b

aa
ab ba ab baaa

bb
bb ba a b

ab
ab ba ab baab

ba
abba

a
aba

b
acb k k

bc k

E v E

v v v v

v E E

v v

G

G

G

G

 

 

  

 

 

 

 
     
    
    
             

    
    
           

  

, (19) 

 
4 2

4 2

mat mat mat

m m mm

mat mat matk

s s ss
k k kk





           
       
            

0

0

σ ε εC
C

σ ε εC
. (20) 

In (19) the following definitions hold: ( )a kE , ( )b kE  are the Young moduli in material axes, 

( )ab kG  is the in-plane shear modulus in material axes, ( )ab kv , ( )ba kv  are the Poisson ratios 

that satisfy the condition a ba b abE v E v  (no summation), and ( ) , ( )ac k bc kG G  are the transverse 

shear moduli.  
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Relation (19), which undergoes transformation to the 0{ }it  base and through-the-

thickness integration of appropriate terms from (19) under FSDT assumption, yields the 

equivalent single-layer constitutive relations [33] 

  
1 4 4 4 4

{ }
kL

k

ζN

m m k m b m bk ζ
ζ μdζ



  

 
    

 
  Cs ε ε A ε B ε , (21) 

 
1 2 2

( ) { }
kL

k

ζN

s s k s k s sk ζ
α μdζ



 

 
  

 
  Cs ε S ε , (22) 

  2

1 4 4 4 4
{ } ( )

kL

k

ζN

b m k m b m bk ζ
ζ ζ μdζ



  

 
    

 
  Cs ε ε B ε D ε , (23) 

 
1 2 2

( ) { }
kL

k

ζN

d t t k d k d dk ζ
α α μdζ



 

 
  

 
  Cs ε Gε  . (24) 

Here kζ
  and kζ

  denote, respectively, the distance from the reference surface to the top and 

bottom of the thk  layer, μ  is the determinant of the shifter tensor, ( )s kα  and ( )t kα  are the 

shear correction factors [19]. The remaining terms in (21)-(24) are specified in Appendix. 

Ultimately, correspondingly to (16) we have the following equation in matrix notation 

 

4 4 4 4

2 2

4 4 4 4

2 212 1 12 1

12 12

m m

s s

b b

d d

 



 

 



 
    
    
   

    
    
        
 

0 0

0 0 0

0 0

0 0 0

A B
s ε

Ss ε

B Ds ε

s εG

. (25) 

The stress tensor under the constitutive relation (19) is not symmetric, therefore it is not 

possible to associate its components directly with existing failure initiation criteria. The Tsai-

Wu criterion is a general polynomial criterion, applicable to arbitrary lamina types (e.g. 

unidirectional, biaxial). It was developed, assuming that a failure surface 

( ) =1  , , 1,2,...,6k i i ij i jf F F i j k       (written in contracted notation, see [36]) exists. 
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Thus, all stress tensor components that are available for the considered continuum (e.g. 3D or 

2D plane stress) describe the failure surface in one expression [36]. 

The plane of failure is not identified according to the classical form of the criterion, 

hence a particular in-plane shear component cannot be clearly associated with the failure 

surface. Therefore, within the non-linear 6p shell theory used here the maximum value of the 

in-plane shear components ( ab ba  ) is introduced into the failure surface equation (see also 

[46], [47]). Thus, the most unfavourable situation in an engineering sense is considered 

regarding the stress state for FPF estimations. The proposed modification does not violate the 

generality of the classical criterion. The modified Tsai-Wu criterion takes the following form 

for the plane state of stress: 

 
 

2

2

2

2

1 1 1 1 1

max ;1 1

TW aa bb aa

t c t c t c

ab ba

bb aa bb

t c lt c t c

F
X X Y Y X X

YY SX X YY

  

 
  

   
       
   

 
   

 , (26) 

where tX , tY  denote the absolute values of tensile strength in the 1st and 2nd material axes, 

cX , cY  correspond to the absolute values of compressive strength in the 1st and 2nd material 

direction, whereas lS  is the shear strength in the layer plane. The failure occurs when the 

stress state yields 1TWF  . In order to clearly present the differences between the standard and 

modified version of Tsai-Wu criterion we compare them in Table 1. Additionally, we 

introduce a specific notation, that clearly distinguishes symmetric abτ  and asymmetric ab , 

ba  in-plane shear stress components. 
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Table 1. Comparison of terms defining the failure surface in classical and modified Tsai-Wu 

criterion 

The considered term Standard criterion Modified criterion 

Linear normal term in a 

direction 

1 1
aa

t cX X


 
 

 
 

Linear normal term in b 

direction 

1 1
bb

t cY Y


 
 

 
 

quadratic normal term in a 

direction 

21
aa

t cX X
  

quadratic normal term in b 

direction 

21
bb

t cYY
  

Interactive term 
1

aa bb

t c t cX X YY
   

In-plane shear effects 

2

2

ab

l

τ

S
 

 
2

2

max ;ab ba

lS

  
 

 

 

The Hashin criterion, as opposed to the Tsai-Wu theory, is able to predict the mode of 

damage. It is developed on the basis of four expressions, which correspond to: fibre tension  

(
t

fF ), fibre compression (
c

fF ), matrix tension ( t

mF ) and matrix compression ( c

mF ). It is not as 

general as the Tsai-Wu criterion, since it is applicable only to unidirectional laminas [37]. 

According to the original work of Hashin [37], the criterion is developed assuming that the 

failure is caused by normal and shear stress components, which act on a specific failure plane. 

Moreover, the failure surface is approximated with quadratic shape in the stress space relative 

to material coordinate system. For unidirectional material it can be stated that fibre failure 

occurs in the plane with its normal parallel to the 1st material axis.  

The definition of failure plane for matrix failure is more complicated, since it is parallel 

to the fibres but may be inclined. Hashin [37] did not manage to describe the angle of matrix 

failure plane inclination. Therefore, he tried to express the failure process by means of all 

available stress tensor components, combined in quadratic expressions, excluding the normal 
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component in fibre direction. Hence, in order to modify Hashin criterion to 6p theory a correct 

interpretation of the action of in-plane shear ( ab ba  ) should be proposed, see also [46]. 

Consequently, ab  in-plane shear stress component is used in the fibre failure expression, as 

this component acts on the fibre failure plane. Modifying the matrix failure expressions, 

which in this case are limited only to in-plane influences, we may use: bb , ab , ba , 

components ( aa  is excluded). However, we also exclude ab  component, because its action 

does not induce cracks leading to matrix failure (parallel to fibres). In effect, we associate 

ba  with all terms connected with in-plane shear action. Thus, the modified Hashin criterion, 

proposed here for 6p theory, reads: 

 

2 2

t aa ab
f

t l

F
X S

    
    
   

   for   > 0a , (27) 

 

2

c aa
f

c

F
X

 
  
 

   for   < 0a , (28) 

 

2 2

+t bb ba
m

t l

F
Y S

    
    
   

   for   0b  , (29) 

 

2 2 2

+ –1 +
2 2

c bb c bb ba
m

t t c l

Y
F

S S Y S

        
       
       

   for   0b  , (30) 

where tS  denotes the transverse shear strength. It is understood that if one of the failure 

indices becomes equal to 1 the failure occurs. In order to portray the differences between the 

standard and modified version of Hashin criterion we collect them in Table 2. 
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Table 2. Comparison of terms defining the failure surface in standard and modified Hashin 

criterion 

Mode of failure Standard criterion Modified criterion 

(
t

fF ) 

2 2

aa ab

t l

τ

X S

   
   

   
 

2 2

aa ab

t lX S

    
   

   
  

(
c

fF ) 

2

aa

cX

 
 
 

 

( t

mF ) 

2 2

+bb ab

t l

τ

Y S

   
   
   

 

2 2

+bb ba

t lY S

    
   
   

 

( c

mF ) 

2 2 2

+ –1 +
2 2

bb c bb ab

t t c l

Y τ

S S Y S

       
      
       

 

2 2 2

+ –1 +
2 2

bb c bb ba

t t c l

Y

S S Y S

        
      
       

 

 

5. Examples 

5.1. Pure shear 

Firstly, a 2D one-layer, square membrane, under plane-stress condition in pure shear is 

analysed. The aim of this task is to see how the standard and modified failure criteria (see 

Tab. 1 and Tab. 2) and the underlying theories respond to the state of pure shear. The 

dimensions, surface coordinate system ( 1 2t t ), loads and boundary conditions (BCs) of the 

membrane are shown in Figure 3.  

 

Figure 3. Geometry, surface coordinate system, loads and BCs of the membrane 

A linear static analysis is carried out. The properties of the material are: 45.0 GPaaE  , 

12.5 GPabE  , 5.5 GPaab acG G  , 3.6 GPabcG  , 0.28abv  . The membrane is 0.01mm 
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thick and has [0] orientation, relative to the surface coordinate system (see Figure 3). The 

mesh is built with different types of finite elements. The basic division is adjusted to 

CAMe4FI finite elements with 12 elements created on each edge. This particular division 

allows application of higher order finite elements, viz. CAMe9FI and CAMe16FI without the 

change of the total number and location of nodes in the mesh. Following regular meshes are 

analysed: 12×12 mesh of CAMe4FI and S4 (Abaqus), 6×6 mesh of CAMe9FI and finally 4×4 

mesh of CAMe16FI elements. FI symbol indicates that the full integration procedure is 

associated with the finite element.  

During the FEM calculations pure shear was recovered in all cases and the locking 

effect was not observed. The displacements Au  and bv  are the same for all computational 

variants, including Abaqus and CAM, as follows: 36.428 10 mmAu   , 36.428 10 mmBv    . 

The contours of displacement magnitudes obtained in calculations carried out by means of S4 

(Abaqus) and CAMe4FI elements are presented in Figure 4. 

 

Figure 4. Contours of displacement magnitudes (scaled ×20): S4 (Abaqus, left) and CAMe4FI 

(right) 

The normal stress tensor components are zeros in both codes in all elements. The 

drilling couples, included in 6p theory in CAM are zeros too. The in-plane shear stress 

components, obtained in both programmes (Abaqus and CAM) are: 

100 MPaab ab baτ      . These match exactly the analytical value. Therefore, it can be 

concluded, that the modified criteria in this test yield the same damage onset estimation as the 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


18 

 

standard ones. Moreover, the differences between the analyzed approaches in the states which 

are close to the pure in-plane shear will be negligible. 

 

5.2. Compressed plate 

Secondly, a compressed plate similarly as in [48] is studied. Geometry of the plate 

together with loads, surface coordinate system ( 1 2t t ) and boundary conditions (BCs) are 

depicted in Figure 5. 

 

Figure 5. Geometry, surface coordinate system, loads and BCs of the compressed plate 

Geometrically non-linear analysis is carried out. Since the plate may lose its stability, a 

force imperfection is imposed. The imperfection recover a deformation pattern consistent with 

the 1st buckling mode (the plate buckles into one half-wave along its shorter edge). The FPF 

load (magnitude of the edge load) is estimated here by means of Hashin criterion. The failure 

indices are monitored at points that match the in-plane integration rules, specific for each used 

element, and 3 points regularly distributed in the thickness direction of each layer. S4 shell 

finite element is used in Abaqus calculations, while CAMe16FI shell element is utilized in 

CAM. Therefore, the locking effect can be treated as negligible. Mesh of 925 nodes is created 

in both codes. The material elastic and strength properties of a single lamina are: 

37.24 GPaaE  , 10.04 GPabE  , 4.92 GPaab acG G  , 2.83 GPabcG  , 0.24abv  , 

788.1 MPatX  , 243.5 MPacX  , 43.45 MPatY  , 109.9 MPacY  , 31.32 MPalS  , 
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9.7 MPatS  . The single ply thickness is equal to 0.127 mm, whereas the lamination 

sequence is [±45]s, regarding 1t  direction. 

It is observed in both FEA codes that the damage initiation occurs just after buckling 

of the plate due to the matrix tension mode. The calculated edge load magnitude, 

corresponding to the FPF load, is equal to 181.4 N in Abaqus (standard Hashin criterion) and 

181.8 N in CAM (modified Hashin criterion). FPF location is approximately the same 

(relative to shell surface integration points position) in two programs and is observed in +45° 

external ply, in the vicinity of the free edge (see Figure 6). However, different stress states 

give the rise to the following stress failure, namely: 17.14 MPabb  , 28.71 MPaabτ   ,

44.49 MPaaa   are observed in Abaqus, while 15.45 MPabb  , 29.26 MPaba   , 

41.57 MPaaa  , 28.47 MPaab    are found in CAM. Patterns of matrix tension failure 

indices, at the moment when FPF load capacity is achieved, in the external +45° ply are 

shown for Abaqus and CAM in Figure 6. 

  

Figure 6. Matrix tension failure indices in +45 external ply, obtained in Abaqus (left) and 

CAM (right), at the moment of damage initiation 

The estimated experimental FPF load is close to the experimental buckling load which is 

195±12.3 N [48] and the failure develops from the plate sides [48]. Thus, the present FPF 

loads correspond well with the reference experimental data. However, they are different than 

the numerical one in [48], where FPF edge load magnitude is equal to 307.34 N. In view of 

the present results the solution from [48] seems to be overestimated.  
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5.3 Cylindrical panel subjected to pressure load 

The third example concerns a cylindrical panel subjected to pressure load. A similar one 

is studied in [49]. Three different panel constant curvatures, defined by R/b ratio, are analyzed 

here: / plateR b    , / 100R b   and / 10R b  . The following material elastic and strength 

properties of a single ply are used: 132.4 GPaaE  , 10.7 GPabE  , 5.6 GPaab acG G  , 

3.4 GPabcG  , 0.24abv  , 1514 MPatX  , 1696.7 MPacX  , 43.8 MPatY  , 

43.8 MPacY  , 87 MPalS  . Each ply has thickness 0.127 mm and [0/90]s stacking 

sequence is assigned to the panel. The panel geometry, surface coordinate system ( 1 2t t ), 

loads and BCs are shown in Figure 7. 

 

Figure 7. Geometry, surface coordinate system, loads and BCs of the cylindrical panel 

 

The Tsai-Wu criterion is used to predict FPF pressures. Two types of analyses are 

carried out: linear and non-linear one. Full panel is studied in the linear analysis, in which 8×8 

mesh is used similarly as in [49]. The S8R element is used in Abaqus calculations and the 

CAMe9FI shell element, in which the locking effect is judged on the basis of some additional 

tests to be negligible is utilised in CAM. The failure indices are checked at element 

integration points in the middle of each layer.  

Moreover, geometrically non-linear solution is presented here as additional 

calculation. Only quarter of the panel is studied in this case, since the geometry, lamination 

sequence, BCs and loads are doubly symmetric. New structural meshes are created for 
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nonlinear calculations, comprising 9017 nodes in Abaqus (S4 elements) and 9271 nodes in 

CAM (CAMe16FI element described earlier). The failure indices in nonlinear solution are 

checked in external and middle faces of each layer, which we believe is more appropriate 

approach in comparison with the one given in [49], where the indices are checked only in the 

middle of each layer. The FPF pressures following from linear and non-linear calculations are 

shown in Table 3. The plot of actual pressure versus Av  displacement (see Fig. 5) measured 

during the non-linear analysis is presented in Figure 8. 

Table 3. FPF pressures for the cylindrical panel [kPa] 

R/b 

linear solution non-linear solution 

Prusty, 

Satsanagi, and 

Ray [49] 

Abaqus 

S8R 

CAM 

e9FI 

Abaqus 

S4 

CAM 

e16FI 

10 16.93 16.93 16.55 10.1 9.87 

100 4.31 4.47 4.49 11.7 11.41 

plate 4.08 4.23 4.21 12.0 11.72 

 

 

Figure 8. Actual pressure versus Av  displacement. 

The linear results presented in Table 1 are in good correspondence with the reference 

solution [49]. Negligibly small shear components asymmetry is observed during the linear 

calculations in the vicinity of failed ply located in the centre of the panel for / plateR b   and 

/ 100R b  . Hence, classical Tsai-Wu criterion (Abaqus) and modified one (CAM) results are 
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very close to each other. For / 10R b   there is a small difference between Abaqus and CAM 

solutions of linear computations. Small asymmetry of the shear stress components is observed 

in analysis. The failure starts to develop close to the panel corner. The surface integration 

points of fully integrated element lie closer to the panel corner than the one matching the 

reduced integration scheme, which possibly cause this difference in FPF predictions. This 

effect has been discussed e.g. in [50]. 

According to Figure 8 we may state that the response of the panel is definitely nonlinear 

and, therefore the FPF non-linear pressure estimations are significantly distinct than the linear 

ones, as it is compared in Tab. 3. The discrepancy between the non-linear Abaqus and CAM 

results is small. It may be attributed to the response of the structure, which is a little bit stiffer 

in Abaqus. A very low shear stress asymmetry is observed in this task that do not affect FPF 

estimations.  

At this stage it can be concluded that for regular, smooth shells we do not observe 

significant differences between results obtained on the basis of classical and modified criteria. 

This corresponds with the authors earlier experiences concerning analyses of shell structures 

made of isotropic, homogenous elastic and plastic materials ([18], [26], [27], [47]). It should 

be emphasised that in 5-parameter shell theories, implemented in many commercial codes, the 

sixth degree of freedom, which is necessary in the analysis of irregular shells, is introduced as 

an artificial rotational stiffness perpendicular to the shell reference surface, see e.g. [51] . The 

stiffness value is selected on the basis of some numerical experiments. Therefore, it is 

expected that some differences in the results will emerge during analysis of irregular shells, to 

which the nonlinear 6p shell theories as the present one or [52] are dedicated. 
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5.3. Rib-stiffened, partially clamped panel 

Consequently, in the following study irregular shells are considered. Firstly, we analyse 

a rib-stiffened, partially clamped panel, subjected to a concentrated force. This example is 

motivated by the work [53]. The geometry of the panel, surface coordinate systems ( 1 2t t ), 

BCs and loads are shown in Figure 9. 

 

Figure 9. Geometry, loads, surface coordinate systems and BCs of the rib-stiffened panel  

 

The whole panel is made of unidirectional layers combined as [0/90/±45]s sequence relative to 

the 1t  direction (see Figure 9). The single layer is endowed with the following material and 

strength properties (as in [53]): 130 GPaaE  , 10 GPabE  , 4.85 GPaab acG G  , 

3.62 GPabcG  , 0.31abv  , 1933 MPatX  , 1051 MPacX  , 51 MPatY  , 141 MPacY  , 

61 MPalS  , 30.5 MPatS  . Tsai-Wu and Hashin criteria are used to predict the damage in 

geometrically non-linear analysis. 

We expect differences between FPF loads estimated by the standard (Abaqus) and 

modified criteria (CAM), which are related only to the used theories. In order to prove it, we 

carry out some analyzes with aid of CAMe4URI, S4R, CAMe16FI and S4 elements. 

Firstly we run preliminary analysis with concentrated force equal to P=30N and various 

reduced integration finite elements, namely CAMe4URI and S4R, using the same mesh 

density. CAMe4URI is a 4-node element with uniformly reduced integration (URI, 1×1) 
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technique and no additional hourglass control. The S4R element has hourglass control 

included in its formulation. To make S4R similar to CAMe4URI it is necessary to deactivate 

hourglass control. Hence, we set membrane and bending hourglass stiffness's of S4R elements 

as small as it is possible, which in this case is 
910γ  . For the 4-node finite elements a 

structural mesh of 2
 
668 nodes is used, created by the following edge divisions: 15 elements 

across the narrower part of the plate (to the left of the stiffener), 12 elements across the 

stiffener, 30 elements across the wider part of the plate (to the right of the stiffener), 45 

elements along the panel [(15+12+30)×45 elements].  

Since reduced integration elements may exhibit hourglass modes, their results are 

compared with the ones obtained using CAMe16FI and S4 elements described earlier. The 

mesh division for 4-node elements can be easily adjusted to CAMe16FI elements without the 

change of total number of nodes i.e. (5+4+10)×15 16-node elements. The obtained 

equilibrium paths are compared in Figure 10. As it can be noted the obtained results present 

very good agreement. However, the same is not true when stress distribution between 

standard and 6p theories is taken into account. 

Figure 11 depicts the changes of in-plane shear stresses (at integration points) in the 

plate in its top layer for the CAMe4URI, S4R (with hourglass control 
910γ  ), CAMe16FI 

and S4 elements in the portrayed cross section. This particular location, denoted by dashed 

line in Figure 11, contains the position where FPF appears in further calculations. 
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Figure 10. Actual value of force P vs. u displacement in the analysis of rib-stiffened panel 

 

 

Figure 11. The in-plane shear stresses in the plate, along the shown line, results for 

CAMe4URI, S4R (with hourglass control 
910γ  ), CAMe16FI and S4 in top layer 

 

In order to make the interpretation of Figure 11 easier, its part for x
 


 
[–30,

 
0] is shown in 

Figure 12 and for x
 


 
[15,

 
60] in Figure 13. 
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Figure 12. The in-plane shear stresses in the plate, results for CAMe4URI, S4R (with 

hourglass control, 
910γ  ), CAMe16FI and S4 in top layer, x

 


 
[–30,

 
0] 

 

 

Figure 13. The change of in-plane shear stresses in the plate, results for CAMe4URI, S4R 

(with hourglass control, 
910γ  ), CAMe16FI and S4 in top layer, x

 


 
[15,

 
60] 
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All distinctions in the predicted stress state, regarding Abaqus and CAM, maintain the 

same character of in-plane shear stress change (see graphs in Figure 11). Therefore, this trend 

comes from the application of accordingly 5 or 6 parameter theory and is independent from 

the used finite elements. 

It can be stated on the basis of Figure 11, Figure 12, Figure 13 that evident asymmetry 

of in-plane shear stress appears in CAM results, which is not visible in Abaqus solution. The 

difference between CAMe4URI and CAMe16FI results follows from different number of 

integration points and is typical for the applied techniques of URI and FI. Spurious zero-

energy effect is noticeable in CAMe4URI result. Thus we use only higher order FI elements 

in 6p theory. 

To compute the value of FPF load we use CAMe16FI elements and S4 as well. The 

values of failure initiation are monitored at integration points, in 3 locations across each layer 

(top, middle bottom). The following FPF loads are found during calculations with 

CAMe16FI: 27.9N for the modified Tsai-Wu criterion and 28.65N for the modified Hashin 

criterion. The corresponding values obtained with aid of S4 element in Abaqus, by means of 

standard criteria are: 29N and 29.95N. The initial failure is observed in all cases in the top 

layer in the plate over the stiffener. The damage initiates because of matrix tension in both 

codes, when Hashin criterion is utilised. Figure 14 portrays contours of the Hashin matrix 

tension failure index in the top layer of the panel in the considered codes. 

 

 

 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


28 

 

 

Figure 14. Hashin matrix tension failure index in the top layer of the panel, S4 in Abaqus (left) and 

CAMe16FI (right). 

 

5.4. Rib-stiffened, partially clamped compressed panel 

 

We analyse rib-stiffened compressed panel. A similar one is studied in [53]. Properties 

of the panel such as geometry, surface coordinate system ( 1 2t t ) loads and boundary 

conditions are portrayed in Figure 15. [0/90/±45]s ("A" sequence) is the standard lamination 

scheme applied to the structure. The stacking sequence in the area of stiffener is 

[0/90/+45/0/−45]s ("B" sequence), as shown in Figure 15. A single ply is 0.125mm thick. 

Each lamina has following elastic and strength properties: 130 GPaaE  , 10 GPabE  , 

4.85 GPaab acG G  , 3.62 GPabcG  , 0.31abv  , 1933 MPatX  , 1051 MPacX  , 

51 MPatY  , 141 MPacY  , 61 MPalS  , 30.5 MPatS  . 
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Figure 15. Geometry, surface coordinate systems, loads and BCs of the blade-stiffened 

compressed panel 

 

According to the experimental data given in [53], the panel loses stability. Hence, load 

imperfection is introduced. Tsai-Wu and Hashin criteria are used for the purpose of damage 

onset prediction. The values of failure initiation indices are monitored at integration points in 

external and middle fibres of each layer. Two variants of finite element mesh are proposed in 

CAM, both based on the same concept, namely: 3 elements (shorter part) + 4 elements (longer 

part) are applied across the panel plate together with 2 elements in direction of the rib 

stiffener cross section, consequently 20 elements are used along the panel. CAMe9FI is 

utilised in the first mesh variant (total number of nodes equal to 779), while CAMe16FI in the 

second one (total number of nodes equal to 1708). Such an approach allows for "p" type mesh 

convergence check. It is found out in the course of analysis that aforementioned meshes lead 

to almost the same global structural behaviour (see Figure 16). Mesh comprising CAMe16FI 

elements is considered in further FPF analyses, as it provides more detailed information about 

the panel response. The computational cost is still low in this case. Only one mesh variant is 

created in Abaqus. It corresponds to the finally chosen CAM one. It has the same total 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


30 

 

number of nodes, however S4 elements are created. Load - displacement ( magP - Δu ) relation 

for this task for different considered meshes are shown in Figure 16. 

 

 

Figure 16. Equilibrium load-displacement ( magP - Δu ) paths 

 

The calculated FEM panel response is similar to the experimental one. The FPF is 

observed for the state of deformation with two buckling half-waves along its length. This 

corresponds with [53]. As it was previously mentioned, FPF loads are checked only for 

Abaqus and CAM fine meshes. The following magP  loads are obtained for Tsai-Wu criterion: 

Abaqus - 21.3kN (classical criterion), CAM - 20.6kN (modified criterion). Regarding Hashin 

criterion, the magP  load corresponding to the FPF load capacity observed in Abaqus equals 

approximately 24.3kN (classical criterion), whereas in CAM it is close to 23.6kN (modified 

criterion). A quantitative difference between Abaqus and CAM results is observed in this 

example. The failure in both cases occurs due to the matrix tension mode at the plate-blade 

stiffener connection (see Figure 17). Contours of Hashin criterion matrix tension failure 

indices at the moment of failure initiation in Abaqus and CAM are shown in Figure 17. 
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Figure 17. Matrix tension failure indices, maximum value envelope from all layers obtained in 

Abaqus (left) and CAM (right) at the moment of damage initiation 

 

According to the experimental data given in [53], FPF occurs because of matrix cracking at 

the load level of 23.82kN. Thus, it can be concluded that the loads obtained with Tsai-Wu 

criteria versions do not precisely match this value. It seems that the Tsai-Wu criterion is not 

the most appropriate choice for this geometry and boundary conditions of the problem. The 

FPF Hashin results are in good correspondence with the experimental data [53]. The FPF 

loads observed in CAM are slightly lower than the Abaqus ones for both considered failure 

initiation criteria. Moreover, the FPF estimation according to the Hashin modified criterion 

obtained in CAM is closer to the experimental [53] value, as compared with the Abaqus one. 

What is more, some additional in-plane shear stress asymmetry arises in CAM, which also 

affects the FPF load predictions. 

 

5.5. C-shaped compressed column 

 

Finally, the C-shaped compressed column is analyzed following [54]. It represents an 

irregular shell structure. It is worthy of noticing that the C-shape column (or beam) is popular 

benchmark problem for shell elements with drilling rotation see for instance [17][52][55][56]. 
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The geometry of the column analyzed here, together with surface coordinate systems (

1 2t t ), loads and BCs, is depicted in Figure 18. 

 

Figure 18. Geometry, surface coordinate systems, loads and BCs of the compressed column 

 

Since it is predicted that the column will lose its stability, a force imperfection is 

applied. A stacking sequence of [0/±45/90]s is assigned to the column, relative to the 1t  

directions, shown in Figure 18. Each ply is 0.131 mm thick and has the following elastic and 

strength properties: 130.71 GPaaE  , 6.36 GPabE  , 4.18 GPaab acG G  , 1.0 GPabcG  , 

0.24abv  , 1867.2 MPatX  , 1531 MPacX  , 25.97 MPatY  , 214 MPacY  , 

100.15 MPalS  . Structural mesh of S4 finite elements, created in Abaqus, contains 4557 

nodes. The similar one is built in CAM. It comprises of CAMe16FI elements with  total 

number of 4459 nodes. Geometrically nonlinear calculations are performed, in which Tsai-

Wu criterion is used in order to predict the onset of damage. The values of failure initiation 

criterion indices are monitored at integration points in external and middle fibres of each layer 

Equilibrium load-displacement paths ( magP - Au ) obtained during the analysis are shown in 

Figure 19. 
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Figure 19. Equilibrium load-displacement paths ( magP - Au )  

 

The response of the structure obtained in present calculations is similar to the one 

presented in [54] in the post-buckling range. Global behaviour of the structure obtained in 

present Abaqus and CAM calculations is nearly the same. The magP  load reported in [54], 

which causes FPF according to the classical Tsai-Wu criterion, yields 10122.5 N. The 

corresponding failure loads obtained in the Authors calculations are approximately 9965 N - 

Abaqus (classical Tsai-Wu failure criterion) and 9830 N - CAM (modified Tsai-Wu failure 

criterion), and are comparable with the one given in [54]. The FPF occurs in the present 

calculations in the bottom layer of the lowest ply (0 direction). Contours of the Tsai-Wu 

failure index for the aforementioned lamina are shown in Figure 20 for both codes. 
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Figure 20. Tsai-Wu failure index contours in the bottom layer of the lowest ply (0 direction); 

the left side - classical criterion (Abaqus), the right side - modified criterion (CAM) 

 

Despite the fact that the global compressive force, which causes FPF, yields similar 

values in present calculations, different failure locations within the same aforementioned ply 

are observed in Abaqus and CAM. In Abaqus the failure initiates within the column web 

slightly above the structure mid length, while in CAM the damage occurs on the column 

flange in the vicinity of flange-web connection, a little bit below the column mid length. This 

difference is attributed to the drilling rotation effect, which can be caught only in the non-

linear 6p shell theory. It is observed in the area of complex deformations, where the buckling 

half-waves change their sides. What is more interesting, the difference constitutes a 

qualitative change in obtained results, in which the failure location area is moved to the edge 

of the shell irregularity. As a consequence, moderate shear components asymmetry appears in 

CAM result. The stress state, which produce the failure in CAM is 201.1 MPaaa  

21.91 MPabb  , 31.33 MPaba   ( 22.39 MPaab  ). This is also the reason why the magP  

load obtained in CAM is slightly lower in comparison with the one from Abaqus. 
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6. Conclusions 

A brief description of non-linear 6p shell theory and a particular constitutive relation for 

laminated composites is given in this work. Modifications of Tsai-Wu and Hashin failure 

criteria are proposed, which follow the assumptions of the aforementioned approach. To 

verify if these modifications allow to estimate FPF load capacities properly some FEA are 

carried out. The analyzes of compressed plate and cylindrical panel subjected to pressure 

revealed that it is possible to analyze laminated shell structures, regarding the description of 

their initial failure, by means of the non-linear 6p shell theory. The FPF loads for modified 

criteria yield similar results as for classical ones, when there is no big difference between ab  

and ba  in-plane shear stress components. The authors results correspond also well with the 

reference values for similar analyses. Some essential conclusions follow from the analyzes of 

the rib-stiffened, partially clamped panel, rib-stiffened, partially clamped compressed panel 

and the compressed column with C-cross section. It is observed that additional effects 

connected with drilling rotation may develop, even if the global force-displacement response 

is similar as for standard theory with symmetric strain and stress measures. The drilling 

rotation in the non-linear 6p shell theory is not introduced artificially. Therefore, behaviour of 

irregular, multifold shells can be predicted in a more detailed way. Additionally, as a 

consequence of the constitutive relation some in-plane shear stress components asymmetry 

arises, that also affects FPF estimations. We believe that the 6p shell theory allow one to 

predict more detailed deformations of shells. This together with the proposed criteria 

modifications results in different FPF estimations, as compared with 5p theory. 

Appendix 

To establish explicit form of matrices from (21)-(24) we further assume that the shell under 

discussion is sufficiently thin so that 1μ  . As thin shell we define the shell which thickness 
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h  is substantially smaller than typical dimension L  and the curvature radius minR  is smaller 

than h . Hence 

  
14 4
{ }

LN

m k k kk
ζ ζ 


  CA ,      2 21

2 14 4
{ } ( ) ( )

LN

m k k kk
ζ ζ 


  CB ,  (A.1) 

  3 31
3 14 4

{ } ( ) ( )
LN

m k k kk
ζ ζ 


  CD ,      

12 2
( ) { }

LN

s k s k k kk
α ζ ζ 


  CS . (A.2) 

In the case of the drilling couples we proposed in [33] to use the relation 

 
1 2 2

( ) { }
kL

k

ζN

d t t k d k d dk ζ
α α μdζ



 

 
  

 
  Cs ε Gε . (A.3) 

Here constitutive matrices mC  and sC  are defined from (20) through orthogonal 

transformations  

 1

m m m m

T TC C ,     1

s s s s

T TC C , (A.4) 

 

2 2

2 2

2 2
4 2

2 2
2 4

0 0

0 0

0 0

0 0

0 0 0 0

0 0 0 0

m

k

s
k

k

C S SC SC

S C SC SC

SC SC C S

SC SC S C

C S

S C





 
 

  
   

    
      
 
 
  

T 0
T

0 T
, (A.5) 

and in (A.3) is assumed as 2

d sζC C . 
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