
Multi-level virtualization and its impact on
system performance in cloud computing

Pawe l Lubomski1, Andrzej Kalinowski1, and Henryk Krawczyk2

1 IT Services Centre, Gdańsk University of Technology, Gdańsk, Poland
{lubomski, andrzej.kalinowski}@pg.gda.pl

2 Faculty of Electronics, Telecommunications and Informatics,
Gdańsk University of Technology, Gdańsk, Poland

hkrawk@eti.pg.gda.pl

Abstract. The results of benchmarking tests of multi-level virtualized
environments are presented. There is analysed the performance impact
of hardware virtualization, container-type isolation and programming
level abstraction. The comparison is made on the basis of a proposed
score metric that allows you to compare different aspects of performance.
There is general performance (CPU and memory), networking, disk op-
erations and application-like load taken into account. The tested tech-
nologies are, inter alia, VMware ESXi, Docker and Oracle JVM.

Keywords: virtualization, performance, benchmark

1 Introduction

For the last few years an intensive growth of popularity in the cloud services
has been observed. Nearly all hosting providers now offer such a dynamic cloud
service for an affordable cost. The most popular services are Infrastructure-as-
a-Service (IaaS) or Platform-as-a-Service (PaaS). There are three main types of
cloud: public, private and hybrid [2].

There has also been a significant progress in technology supporting widely
understood clouds. Many types of virtualization were developed. They can be
divided into 3 main groups [3]. There are hardware virtualizations, containers
inside systems, and programming language abstractions such as e.g. Java Virtual
Machine (JVM). The last type concerns mainly large scale, service-oriented sys-
tems which use .NET or Java Enterprise Edition (JEE) platforms. More detailed
classification will be described later on.

The main reason for the popularity of dynamic cloud solutions is comfort and
ease of use. Dynamic clouds help share resources among many virtual systems
and manage them dynamically depending on the systems’ load. This way it
is possible to overbook the resources. But the most important advantage is the
time of a new virtual server deployment - it is incomparably shorter than buying
traditional hardware, placing it in datacenter and operating system installation.
Thereby, it is very easy and cheap to add some new virtual machines to a cluster
for the short time of an increased system load, e.g. academic session, recruitment

2 Pawe l Lubomski, Andrzej Kalinowski, Henryk Krawczyk

for the university. When the load decreases, the resources are released and can
be used for other purposes.

The deployment process is very fast thanks to, among other reasons, using
some prepared templates and snapshots. It may also be a way of releasing new
versions of software - the new image is only introduced. Especially Docker images
[4][5] are popular for this way of releasing software [6].

There is no rose without a thorn. All these benefits come together with a cost
of performance decrease. Of course, the developers of cloud solutions intensively
work on the performance improvement, so that this cost is getting lower every
day. There are not currently available any reliable reports comparing the costs
of these solutions. The last good job was done in 2014 by IBM Research Division
[1].

At our university we started to use virtualization intensively, and put it one
into another. We use VMware ESXi virtualization on which we run a Debian
Linux guest OS. Inside the guest OS we run a Docker image containing the
release of our central system. Because our university system is very big, it was
designed as a distributed JEE system written in Java language. In this way we
have a three-level virtualization used. Thus, we want to check what the real cost
of such an approach is.

2 Virtualization methodologies

As mentioned earlier there are three types (levels) of virtualization: hardware,
containers and platform (e.g. JVM). We will briefly describe them below.

2.1 Hardware virtualization

The hardware virtualization can be divided into two main groups depending
on the type of host operating system (hypervisor). The first one is a native
hypervisior (also known as ‘type 1’ or ‘bare-metal’) where the guest OS works
on virtualized hardware and the host OS is not a standard OS but a highly
specialized solution. They are able to take advantage of all hardware capabilities,
especially those supporting virtualization. The main representatives of this group
are: VMware ESXi [7], XenServer [8], MS Hyper-V [9].

The second type are hosted hypervisors (also known as ‘type 2’). These so-
lutions cannot work alone - they require a standard operating system and work
as a regular application in this system. For better performance they use special
kernel modules and/or libraries of host operating system such as KVM (Kernel
Virtualization Module) [10][11].

The intention of using this solution is not productive environments - they
are rather for testing images of virtual machines (VMs) during the develop-
ment and testing process. They may also be an easy and cheap solution of a
multi-technology environment for testing traditional software on different oper-
ating systems, etc. The most famous solutions of this type are: VirtualBox [12],
VMware Player [13], QEMU [14].D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

Multi-level virtualization and its impact on system performance 3

2.2 Containers

Another approach accompanies the development of containers. This is the oldest
type, also known as para-virtualization. The most characteristic aspect of this
type of virtualization is that the host OS only separates processes and resources
so that it is impossible to run another operating system than the host OS. It
started with chroot, then there were FreeBSD jails [15] and Solaris zones [16].

Nowadays there are two mainly-used solutions: OpenVZ [17] based on a cus-
tomized Linux Kernel, and Docker [4] which uses LinuxContainers [18] or lib-
container library (from version 0.9).

Due to the taken architectural assumptions, they should have a lower per-
formance overhead (than hardware virtualization solutions) but they also have
some limitations (e.g. impossibility to choose another guest OS) and a worse
isolation of processes and resources usage.

2.3 Programming language abstraction

In large-scale distributed e-service systems there are mainly used .NET and JEE.
Both of them use a specific level of programming language abstraction - .NET
Framework and JVM. Especially in the case of JVM the portability is on a high
level, however it is done at the cost of a negative impact on performance.

Fig. 1. Virtualization stack of our university system

Fig. 1 presents the virtualization stack of our university central system. We
use either hardware virtualization (hypervisor type 1 - VMware ESXi), contain-
ers (Docker) with images containing release versions of software written in Java,
so it is run inside a JVM. The use of Docker images ensure that the system
is configured and behaves the same in every environment: development, testing
and production.

3 Benchmark methodology and tools

The IBM research report[1] focused on the global performance of Docker, bare-
metal, and pure virtualization environments. They have taken the assumption
that so-called double virtualization is redundant and has a negative impact on
performance. In our paper we want to verify this hypothesis and check if theD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

4 Pawe l Lubomski, Andrzej Kalinowski, Henryk Krawczyk

ease of use (in terms of maintenance, resource reallocation and scalability) of
such virtualization infrastructure is worth the cost of the predicted performance
drop.

The IBM research team performed comprehensive benchmarking of Docker
containers, including both networking mechanisms (i.e. direct host mapping and
port forwarding) and two I/O subsystems (direct mounts and AUFS - they have
omitted: device mapper and btrfs backends). In our paper we want to focus on
both the double and triple virtualization problems. In order to achieve that,
we need to run our test containers in the same manner as the IBM team did.
Therefore, the containers were tested in several different configurations (see table
1).

3.1 Test configurations and suites

For benchmarking purposes we have used three concepts:

test configurations - a set of all available testing environments (i.e. all com-
binations of virtual/bare-metal and Docker instances),

test suites - a set of test cases which measure a similar aspect of performance
in a specified test configuration,

test case - an individual performance measurement.

Table 1. Benchmarked test configurations

Machine type OS configuration Docker configuration

bare-metal metal.local metal.aufs
metal.remote metal.mnt

metal.aufs.nat
metal.aufs.host
metal.mnt.nat
metal.mnt.host

virtual machine vm.local vm.aufs
vm.remote vm.mnt

vm.aufs.nat
vm.aufs.host
vm.mnt.nat
vm.mnt.host

Table 1 presents tested configurations. They correspond to the first two lowest
levels of virtualization in our university system stack presented in fig. 1: hard-
ware virtualization (VMware ESXi) and container (Docker). The highest layer
of virtualization (JVM) is covered not by the test configuration, but by two test
suites: java and rich java application (see table 2) - this way we could test java
applications on every considered type of virtualization. So we benchmarked the
16 following configurations:D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

Multi-level virtualization and its impact on system performance 5

(metal|vm).local pure operating system with no Docker container layer, tests
are performed locally,

(metal|vm).remote pure operating system with no Docker container layer,
tests are performed from a remote location, thus the network layer is also
being tested,

(metal|vm).aufs tests are performed on a Docker shared file system - AUFS,
therefore I/O operations have a serious drawback,

(metal|vm).mnt tests are performed on mounted volume, therefore I/O per-
formance is significantly improved,

(metal|vm).aufs.nat the same as .aufs but uses port forwarding,

(metal|vm).aufs.host the same as .aufs but uses direct host mapping,

(metal|vm).mnt.nat the same as .mnt but uses port forwarding,

(metal|vm).mnt.host the same as .mnt but uses direct host mapping.

The performance of each test configuration was separately measured in the
following aspects: CPU, memory, I/O and network. The final test suite covered
a typical web application resource usage. This way, we adopted 7 test suites:

1. CPU - overall computation performance tests

2. multicore - specific tests run to verify multiple CPU cores’ performance

3. memory - overall memory performance tests

4. java - CPU utilization during java application execution

5. disk - overall disk performance tests

6. network - overall network layer performance tests

7. application - complex performance tests

Table 2 presents the combinations of test configurations and test suites which
were measured during our benchmarking. One can easily notice that only the
most representative and not-redundant combinations were taken into account.

Table 2. Test configurations and suites matrix.

Test configuration
Test suites

CPU multicore memory java disk network application

(metal|vm).local X X X X X X
(metal|vm).remote X X
(metal|vm).aufs X X X X X X
(metal|vm).mnt X X
(metal|vm).aufs.nat X X
(metal|vm).aufs.host X X
(metal|vm).mnt.nat X
(metal|vm).mnt.host X

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6 Pawe l Lubomski, Andrzej Kalinowski, Henryk Krawczyk

3.2 Hardware and software configuration

Our tests were launched on Dell R210 hardware with one Intel Xeon E31270
@3.39GHz (8 cores) processor and 16 GiB of RAM. Network throughput was 1
Gbps. And we used 1 TB Western Digital WD1003FBYX-0 disk.

Our tests were based on a standard GNU/Linux Debian 8.2 distribution
which was used as a host and guest OS and also as a base for Docker containers.
As for Docker daemon we used a currently available version 1.9. For hardware
virtualization tests we used VMware ESXi 6.1. For Java applications we used
Oracle Java 1.8.0 45-b14.

We did not use any limitations like ulimit, cgroups or ESXi mechanisms,
hence all tests were run on all available resources. On ESXi we used Hardware
version 11 with all default options, for disk storage we used Local Storage with
thin provisioning and standard 1 MiB data blocks.

To measure our tests we used mainly Phoronix Test Suite 6.0.1 which was
run on PHP 5.6.14. Additionally, for measuring network performance we used
netperf 2.6.0. And finally, for overall testing we used IBM Daytrader 3 web
application with Apache Jmeter 2.13.

3.3 General and disk performance

As mentioned earlier we divided our tests into 7 test suites. For suites 1-5 we
used Phoronix Test Suite, with the following standard test suites:

1. pts/cpu (27 different test cases)

2. pts/multicore (19 different test cases)

3. pts/memory (9 different test cases)

4. pts/java (6 different test cases)

5. pts/disk (17 different test cases)

Each of these test cases consisted of three runs. The average score of those
runs was selected as the result. The results of each test case were normalized,
and finally summed to provide a total score for each test suite.

3.4 Network performance

For test suite no. 6 we used two test cases:

1. netperf in tcp mode

2. netperf in udp mode

Each test case contained 10 identical tests. After running them, the average
score was computed, and afterwards the total score was calculated in the same
manner as in the previous test suites. In all cases the tested machine was used
as a server.D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

Multi-level virtualization and its impact on system performance 7

3.5 Application stack performance

For test suite no. 7 we used a complex application which tries to utilize all previ-
ous test suites to provide a final performance result. It consists of IBM Daytrader
3 web application which is a Java EE 6 application built around an online stock
trading system. The application allows users to login, view their portfolio, look
up stock quotes, buy and sell stock shares, and more[19]. We deployed it on a
WildFly 9.0.2.Final Application Server, H2 standalone database and with EJB3
Mode enabled in the Daytrader application (which uses EJBs with JPA to con-
nect to the database).

To measure the total performance of this test suite we used an Apache JMeter
which was run within the tested system, and also from a remote host, to check
network performance. For each run we started with a clean database and a 180
seconds dry-run. After that, we measured the performance for 180 seconds, in
6-second intervals.

3.6 Score calculation

We propose the following score calculation methodology. Each completed test
case produces an average result. This value is normalized with all average results
collected from all test configurations. The acquired values are called test scores.
After completion of a particular test suite, those test scores are summed up
to present a final performance score in each of the 7 test suites. Most of values
collected by test runs are presented as HIB (higher is better) but some (especially
in multicore test suite) are presented as LIB (lower is better). In the second case
the test score must be subtracted from the final performance score.

Let us assume that our results can be stored in a large 3 dimensional array -
t containing all test suites, test cases and test configurations with s, i, c as their
indices. Therefore, ts,i,c is a single result of test configuration c on test case i in
suite s. ts,i is a vector containing the results of test case i in suite s and |ts,c| is
the number of test cases in the test suite s for the particular configuration c. In
such a case we can use the following formulae:

test scores,i,c =
ts,i,c

max(ts,i)
(1)

total scores,c =

|ts,c|∑
i=1

sgns(i) · test scores,i,c (2)

where sgns(i) is ‘−1’ when LIB and ‘+1’ in HIB case.

4 Benchmark results

4.1 CPU and memory performance

Table 3 presents aggregated results for CPU, java and memory test suites. The
final results were predictable and are similar to those presented in the IBM re-
port. Docker performance drop in single core configuration is around 3% for bothD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

8 Pawe l Lubomski, Andrzej Kalinowski, Henryk Krawczyk

bare-metal machine and virtualized environment. The multicore performance has
a higher drop of 8%. Java performance tests were based on scimark, bork file en-
crypter and sunflow rendering system. Therefore, they mainly focused on CPU
and memory efficiency. The outcome is similar to the CPU performance. Mem-
ory drop is insignificant. ESXi virtualization layer produces around 15% of CPU
performance drop and lowers java application efficiency by 10%. Memory drop
is lower than 2%.

When testing Docker CPU/memory efficiency we were really benchmark-
ing the cgrups/namespaces efficiency, thus the Docker overhead is almost non-
existent. The differences between metal-docker test cases were minimal (less than
1%), but while summing 27 results we ended up with an overhead of 3%.

Table 3. CPU and memory performance - total scores

Test suite metal.local metal.aufs vm.local vm.aufs

CPU 7.43 7.29 6.36 6.08
multicore −4.31 −4.64 −4.79 −5.16
java 2.17 2.03 1.96 1.93
memory 9 9 8.83 8.82

4.2 Network performance

In table 4 there is presented the overall network performance. The Docker in
direct host mapping configuration (.host) has no significant performance drop.
The port forwarding configuration (.nat) lowers performance by around 4%. The
highest efficiency drop (14%) can be observed in the ESXi environment.

Table 4. Network performance

Test suite metal.
aufs.host

metal.
aufs.nat

metal.
remote

vm.
aufs.host

vm.
aufs.nat

vm.
remote

netperf tcp 1.00 0.93 1.00 0.86 0.84 0.86
netperf udp 1.00 0.97 1.00 0.88 0.84 0.87

Total score 2.00 1.9 2.00 1.72 1.68 1.73

4.3 Disk performance

The disk performance results are shown in tables 5 and 6. Oddly, the overall disk
performance is significantly greater in the ESXi environment (roughly, by 39%).
This is probably the effect of VMware VMFS filesystem features[22], notablyD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

Multi-level virtualization and its impact on system performance 9

the huge block size of 1 MiB. The ext4 file system used on bare-metal system
has a maximum block size of 4 KiB. Therefore, file system buffers will sync more
frequently than the VMFS counterpart, leading to the observed performance
drop.

Table 5. Bare-metal configurations disk performance test scores. In brackets there are
in-normalized results denominated in given units.

Test case Order Unit metal.local metal.mnt metal.aufs

AIO-Stress HIB MB/s 1.00 (2637.12) 0.92 (2430.07) 0.89 (2336.56)
SQLite LIB Seconds 1.00 (524.31) 0.88 (463.31) 0.86 (448.47)
FS-Mark HIB Files/s 0.34 (15.67) 0.40 (18.43) 0.40 (18.43)
Dbench1 HIB MB/s 0.13 (39.22) 0.14 (41.72) 0.15 (43.72)
Dbench2 HIB MB/s 0.13 (66.93) 0.14 (72.27) 0.14 (69.34)
Dbench3 HIB MB/s 0.28 (67.5) 0.30 (72.43) 0.24 (58.63)
Dbench4 HIB MB/s 0.36 (9.68) 0.41 (10.76) 0.40 (10.5)
IOzone1 HIB MB/s 1.00 (8059.31) 0.97 (7780.49) 0.38 (3032.21)
IOzone2 HIB MB/s 0.60 (69.02) 0.97 (111.48) 0.96 (110.45)
Threaded I/O Tester1 HIB MB/s 1.00 (13595.01) 0.99 (13453.36) 0.83 (11330.63)
Threaded I/O Tester2 HIB MB/s 0.42 (0.55) 0.41 (0.53) 0.45 (0.59)
Compile Bench1 HIB MB/s 0.89 (487.95) 1.00 (548.2) 0.71 (388.47)
Compile Bench2 HIB MB/s 0.95 (261.22) 1.00 (274.74) 0.56 (154.23)
Compile Bench3 HIB MB/s 0.80 (1460.93) 0.74 (1343.32) 0.29 (533.12)
Unpacking LIB Seconds 0.89 (8.61) 0.89 (8.61) 0.92 (8.95)
PostMark HIB TPS 0.99 (5208.0) 1.00 (5282.0) 0.60 (3178.0)
Gzip Compression LIB Seconds 0.94 (12.85) 0.94 (12.93) 0.95 (13.05)
Apache Benchmark HIB RpS 1.00 (29040.6) 0.89 (25830.51) 0.80 (23352.62)

Total score HIB 7.06 7.57 5.07

In some test cases the efficiency of the Docker AUFS file system is greater
than pure OS. This is the effect of the COW (copy on write) mechanism which
writes changes to the disk only when it is needed [20, 21]. Similar COW mecha-
nisms are used while mounting volumes inside Docker (metal.mnt and vm.mnt).

The bare-metal supremacy performance can be observed in asynchronous
AIO-Stress, IOzone1 (8GiB read test), Threaded I/O tester1 (64 MiB random
read by 32 threads), Gzip Compression (2 GiB file) and Apache Benchmark.
While analysing the results one can notice that the bare-metal environment
shows some serious performance drops on writes (e.g. IOzone2, Threaded I/O
tester2). This is the effect of the aforementioned COW mechanisms on Docker
and VMFS buffers.

4.4 Application stack performance

The results of the most comprehensive test suite are presented in table 7. We
ran this test suite on 16 test configurations, thus benchmarking all useful combi-
nations. The most important finding is the overall low performance of the ESXiD

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

10 Pawe l Lubomski, Andrzej Kalinowski, Henryk Krawczyk

Table 6. Virtualized configurations disk performance test scores. In brackets there are
in-normalized results denominated in given units.

Test case Order Unit vm.local vm.mnt vm.aufs

AIO-Stress HIB MB/s 0.85 (2239.05) 0.79 (2094.9) 0.75 (1969.52)
SQLite LIB Seconds 0.26 (136.46) 0.28 (144.8) 0.28 (144.39)
FS-Mark HIB Files/s 1.00 (46.03) 0.97 (44.87) 0.98 (44.97)
Dbench1 HIB MB/s 1.00 (301.23) 0.98 (295.08) 0.90 (272.4)
Dbench2 HIB MB/s 1.00 (508.15) 0.93 (472.84) 0.84 (428.83)
Dbench3 HIB MB/s 1.00 (244.02) 0.80 (194.63) 0.80 (196.13)
Dbench4 HIB MB/s 1.00 (26.55) 0.96 (25.51) 0.95 (25.24)
IOzone1 HIB MB/s 0.94 (7559.72) 0.96 (7714.91) 0.69 (5569.87)
IOzone2 HIB MB/s 1.00 (115.35) 0.99 (114.35) 0.98 (112.72)
Threaded I/O Tester1 HIB MB/s 0.91 (12390.95) 0.89 (12157.88) 0.81 (11076.75)
Threaded I/O Tester2 HIB MB/s 0.90 (1.17) 1.00 (1.3) 0.95 (1.24)
Compile Bench1 HIB MB/s 0.66 (360.75) 0.65 (356.42) 0.61 (336.42)
Compile Bench2 HIB MB/s 0.73 (199.35) 0.76 (208.75) 0.61 (166.58)
Compile Bench3 HIB MB/s 1.00 (1825.35) 0.75 (1367.49) 0.76 (1389.03)
Unpacking LIB Seconds 0.99 (9.64) 0.98 (9.52) 1.00 (9.69)
PostMark HIB TPS 0.89 (4716.0) 0.90 (4746.0) 0.72 (3807.0)
Gzip Compression LIB Seconds 1.00 (13.66) 1.00 (13.63) 1.00 (13.69)
Apache Benchmark HIB RpS 0.77 (22259.71) 0.67 (19492.16) 0.59 (17089.18)

Total score HIB 11.4 10.74 9.66

network stack (around 25%, thus lower than in network performance bench-
mark).

Table 7. Application stack performance - total scores

Test configuration Total score

L
o
ca

l
ex

ec
u
ti

o
n metal.local 0.95

metal.aufs 0.94
metal.mnt 0.95
vm.local 0.95
vm.aufs 0.91
vm.mnt 0.95

R
em

o
te

ex
ec

u
ti

o
n

metal.remote 1
metal.aufs.host 0.96
metal.aufs.nat 0.95
metal.mnt.host 1
metal.mnt.nat 0.99
vm.remote 0.79
vm.aufs.host 0.75
vm.aufs.nat 0.74
vm.mnt.host 0.75
vm.mnt.nat 0.76

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Multi-level virtualization and its impact on system performance 11

Fig. 2. Application stack performance - Lo-
cal JMeter executions

Fig. 3. Application stack performance -
Remote JMeter executions

If we compare the local executions of JMeter (thus removing the network
stack) we can see that the overall performance of the virtualized environment is
almost identical to the bare-metal one (see figure 2), with some minor fluctuation
of the AUFS filesystem (4%). Docker with mounted volume and direct network
mapping is almost identical in performance to its bare-metal counterpart. The
only difference can be observed in the virtualized environment where pure OS
versions are faster by 6% (see figure 3).

Fig. 4. Docker port forwarding vs direct
host mapping comparison

Fig. 5. Docker AUFS vs mounted volumes
comparison

There are no significant differences between Docker network modes (NAT
and direct network mapping) in this test suite (see figure 4). The performance of
AUFS and mounted volumes is almost identical to ESXi, some slight differences
appear in the bare-metal environment(see figure 5).D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

12 Pawe l Lubomski, Andrzej Kalinowski, Henryk Krawczyk

5 Conclusions and future work

The most significant benchmarking results were obtained in disk and applica-
tion stack performance measurements. The overall results show that there is no
significant decrease in performance while using three-level virtualization con-
figurations. The decrease is from 1 to 9% with the exception of ESXi network
layer overhead. The ESXi network layer is significantly slower when using a stan-
dard configuration. The observed network bottleneck in ESXi environment can
probably be reduced by changing the default network driver.

Container layer (Docker) has a negligible impact on performance indepen-
dently of using hardware virtualization or not. This refers to medium loaded
systems such as our university system. The Docker default settings are produc-
tion ready - the overall performance drop is insignificant.

Superior ESXi disk performance may be obtained by using external disk
storage. In the future there should be used some larger files (bigger than RAM)
for benchmarking disk operations. For additional disk performance measurement
we should also focus on a large database.

Finally, we can say that the cost (understood as system performance de-
crease) of using multi-level virtualization in our university system is acceptable,
especially while taking into account the advantages of such configuration (see
Introduction). This cost can be balanced by introducing horizontal scaling (clus-
tering) when the system load is higher. It is very quick and easy to do thanks to
the usage of virtualization on the first and second levels. There is an overwhelm-
ing need to check non-default ESXi network drivers because effective networking
is very important while clustering large scale distributed e-service systems, which
is the point of cloud configurations.

References

1. Felter W., Ferreira A., Rajamony R., Rubio J., “An Updated Performance Com-
parison of Virtual Machines and Linux Containers. IBM Research Report” (2014)

2. T. Mather, S. Kumaraswamy, and S. Latif, “Cloud Security and Privacy. An Enter-
prise Perspective on Risks and Compliance” OReilly, 2009.

3. R. Perez, L. Van Doorn, and R. Sailer, “Virtualization and Hardware-Based Secu-
rity”, IEEE Security Privacy Magazine, vol. 6, no. 5, pp. 24-31, 2008.

4. D. Merkel, “Docker: lightweight Linux containers for consistent development and
deployment”, Linux Journal, vol. 2014, no. 239, p. 2, 2014.

5. D. Bernstein, “Containers and Cloud: From LXC to Docker to Kubernetes”, IEEE
Cloud Computing, vol. 1, no. 3, pp. 81-84, 2014.

6. P. Di Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M. L. Heuer, and C.
Notredame, “The impact of Docker containers on the performance of genomic
pipelines”, PeerJ PrePrints, vol. 3, p. e1428, 2015.

7. VMware, “Performance Best Practices for VMware vSphere 6.0” http://www.

vmware.com/files/pdf/techpaper/VMware-PerfBest-Practices-vSphere6-0.

pdf
8. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.

Pratt, A. Warfield, “Xen and the Art of Virtualization” http://www.cl.cam.ac.

uk/research/srg/netos/papers/2003-xensosp.pdfD
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Multi-level virtualization and its impact on system performance 13

9. Microsoft, “Why Hyper-V? Competitive Advantages of Microsoft Hyper-
V Server 2012 over the VMware vSphere Hypervisor” http://download.

microsoft.com/download/5/7/8/578E035F-A1A8-4774-B404-317A7ABCF751/

Competitive-Advantages-of-Hyper-V-Server-2012-over-VMware-vSphere-Hypervisor.

pdf

10. A. Kivity, U. Lublin, A. Liguori, Y. Kamay, and D. Laor, “kvm: the Linux virtual
machine monitor”, Proceedings of the Linux Symposium, vol. 1, pp. 225-230, 2007.

11. M. Fenn, M. A. Murphy, J. Martin, and S. Goasguen, “An Evaluation of KVM for
Use in Cloud Computing”, Proceedings of the 2nd International Conference on the
Virtual Computing Initiative - ICVCI08, vol. V, pp. 1-7, 2008.

12. https://www.virtualbox.org/

13. http://www.vmware.com/products/player/

14. D. Bartholomew, “QEMU: a Multihost, Multitarget Emulator” http://www.ee.

ryerson.ca/~courses/coe518/LinuxJournal/elj2006-145-QEMU.pdf

15. P. Kamp, R. Watson, “Jails: Confining the omnipotent root.” http://phk.

freebsd.dk/pubs/sane2000-jail.pdf

16. Oracle, “Oracle Solaris 11.1 Administration: Oracle Solaris Zones, Oracle Solaris 10
Zones, and Resource Management” http://docs.oracle.com/cd/E26502_01/pdf/

E29024.pdf 2013
17. https://openvz.org/Features

18. R. Rosen, “Resource management: Linux kernel Namespaces and cgroups” http:

//www.haifux.org/lectures/299/netLec7.pdf 2013
19. J. McClure, “Measuring performance with the Daytrader 3

benchmark sample” https://developer.ibm.com/wasdev/docs/

measuring-performance-daytrader-3-benchmark-sample/ 2014
20. S. Kasampalis, “Copy On Write Based File Systems Performance Analysis And

Implementation” Kongens Lyngby 2010
21. https://docs.docker.com/engine/userguide/storagedriver/aufs-driver/

22. https://www.vmware.com/pl/products/vsphere/features/vmfs

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

