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Abstract.  An innovative trust-based security model for Internet systems is 

proposed. The TCoRBAC model operates on user profiles built on the history 

of user with system interaction in conjunction with multi-dimensional context 

information. There is proposed a method of transforming the high number of 

possible context value variants into several user trust levels. The transformation 

implements Hierarchical Agglomerative Clustering strategy. Based on the us-

er’s current trust level there are extra security mechanisms fired, or not. This 

approach allows you to reduce the negative effects on the system performance 

introduced by the security layer without any noticeable decrease in the system 

security level. There are also some results of such an analysis made on the 

Gdańsk University of Technology central system discussed.  
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1 Introduction 

Internet systems are the most commonly used types of systems nowadays. Their 

popularity results from the ease of their use. They are accessible from nearly all types 

of computers – from traditional PCs to the more and more popular mobile devices, 

such as tablets and smartphones. It does not matter what operating system is used, 

because they are used with web browsers which implement the same standards of 

HTML, JavaScript, AJAX, etc. They are also accessible from any place where the 

Internet is available. So nearly everyone can try to access them. On the other hand, 

such openness poses a serious threat to their security. Also, their distributed and ser-

vice-oriented architecture has a significant impact on their security and reliability.  

The technology evolves very quickly. Every five years there is a major step made – 

a small revolution. The same applies to the area of security. There were solutions 

based on traditional MAC (Mandatory Access Control), DAC (Discretionary Access 

Control) and RBAC (Role Based Access Control) models [1], [2]. Then, they were 

expanded by using elements of dynamicity – they adaptively expand and shrink users’ 

permission sets [3]. Finally, the analysis of widely understood context was involved 

[4]–[7]. The expansion of the idea of “big data” created a new place for security 

mechanisms. They started to profile users’ behavior, and decide upon access on the 
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basis of these profiles [8]–[10]. In such a way we evaluate from strictly defined access 

control rules to user trust-based mechanisms – the decision of granting or denying 

access is based on the system-to-user trust [4], [11]–[13]. 

There is also another important matter connected with the security of Internet sys-

tems. There should be a balance between the security level and the usability and effi-

ciency of the system [14]. From the system point of view, the security mechanisms 

should provide an acceptable level of risk, but from the user’s point of view the secu-

rity layer should be nearly invisible as long as the user behaves in a predictable way 

[15].   

There are two main problems in building such efficient security mechanisms. The 

first one is the complexity of context and its analysis. The context nature is multidi-

mensional. That results in high complexity. Previously we proposed the universal 

CoRBAC (Context-oriented Role Based Access Control) model and the security au-

dit-based procedure of determining the system security level [6], [16], [17]. The other 

problem is that strong security mechanisms have a negative impact on the system 

performance. The remedy for this problem is building some correct and efficient user 

trust estimation procedures and forcing strong security mechanisms only on low user 

trust levels. This is the subject of this paper. 

2 User trust model for Internet systems 

Users behave in a predictable way. The same applies to their interaction with systems. 

For example, they usually use the same devices, the interaction takes place in the 

same hours and from the same place. This is very unique to each user and can be 

treated as the user’s fingerprint. As mentioned earlier, the user interaction with the 

system is accompanied by many context parameters which describe the current over-

all context of each activity. A written log of such activities, with accompanying con-

texts, creates an individual user profile. On the basis of such a profile, the system can 

determine if the user behaves typically, or not. That determines the system-to-user 

trust levels. We proposed the model with different security mechanisms which depend 

on the user trust level [13]. Now we want to deal with the problem of determining the 

correct amount of user trust levels. 

Let us define context (C) as a set of context parameters (CPi): 

 cx ∊ C = CP1 × CP2 × … × CPz (1) 

Each context parameter (CPi) is a finite, discrete set of possible values of the pa-

rameter: 

 CPi = {cpi1, cpi2, …, cpin} (2) 

Some context parameters have a continuous character (e.g. time). During the con-

text analysis they are clustered into certain groups, e.g. days of the week. The same 

situation applies to context parameters with discrete but numerous values, e.g. set of 

IP addresses. They are clustered into subsets of a specific netmask. 
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The current context (cx) accompanying each user with the system interaction is de-

scribed by the current values of each context parameter (CPi). Thus, the cardinality of 

the set of context items is the multiplication of cardinality of each context parameter 

values set.  

Let us analyze an example of a context consisting of three context parameters:  

 CP1 – logical localization of user – a set of the following elements: cp11 = internal 

network, cp12 = campus network, cp13 = external network (Internet), 

 CP2 – time of user’s activity in the system – a set of elements: cp21 = weekday, cp22 

= weekend, 

 CP3 – type of device being used – a set of elements: cp31 = traditional PC, cp32 = 

mobile device. 

Then the |C| = 12. Each context is a three-value tuple, e.g. c1 = (cp11, cp21, cp31). When 

any of the context parameter changes the value, the current context also changes. For 

example when the user changes the type of the device used, the accompanying con-

text also changes.  

We can create a bi-directional full graph of items transitions – see fig. 1.  The ver-

texes of this graph are context items (ci). The edges of the graph describe the changes 

of the context accompanying user requests. A history of such a user with system in-

teraction with accompanying context value creates a user’s profile. Each of the ver-

texes are also marked by a number determining how often the user interacted in this 

context (see fig. 2a). We can cluster vertexes of this graph into groups on the basis of 

this metric (f). The resulting groups form user trust levels, on the basis of which the 

appropriate security mechanisms are fired. 

 

 

Fig. 1. Example bi-directional graph of possible user context items transition 

It is worth mentioning some facts. Firstly, the multiplicity of context parameters 

results in time-consuming procedures of determining their values. Secondly, the num-
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ber of items in the graph (context items) is very numerous and grows exponentially. 

Thus, it is hard to analyze such a big amount of data, which again has a negative im-

pact on the system performance. 

3 Classification algorithm for determining categories in user 

trust model 

Each user profile can be represented as a histogram of the previously mentioned fre-

quency metric for each context value. Let us analyze the example graph of context 

items presented in fig. 2a. Each vertex has a frequency metric f assigned which de-

termines how often the user interacted in this context. An example histogram has been 

depictured in fig. 2b. Of course, in the real world the context is much more compli-

cated, multi-dimensional (consists of many more context parameters), and the context 

parameters have more different values. So the effective context items set is very nu-

merous.  

 

 

Fig. 2. a) Vertexes are marked by a number determining how often the user interacted in this 

context and clustered into 4 groups b) Histogram of frequency metric f which determines how 

often the user interacted in the specific context values 

There is a need to cluster the frequencies from the histogram into groups. For these 

groups some appropriate trust levels are assigned. Each trust level is associated with a 

corresponding security mechanism. The security mechanisms may include the follow-

ing: retyping captcha-code, entering the user password again, inputting a special code 

sent by SMS or e-mail, etc. 

The best way to determine the number of the clusters, and to do the clustering, is 

by using Hierarchical Agglomerative Clustering (HAC) [18]–[20]. As an input for 

this algorithm there is a vector of frequency metrics from the user’s profile used. Fig. 

3a presents an example dendrogram as a result of such clustering (all HAC analysis 

were made with the use of P. Wessa software [21]). There is the Euclidean distance 

metric used, and the Centroid Criterion strategy of computing the distance between 
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the clusters. Fig. 3b presents example distribution of the number of clusters and the 

distance between the closest clusters (also known as the height of dendrogram).  

 

 

Fig. 3. a) Example dendrogram as a result of HAC b) Example distribution of the number of 

clusters and the distance between the closest clusters (height) 

On the basis of this distribution it can be determined when the distance stops to de-

crease significantly – this is the most optimal number of clusters. After this point the 

differences between clusters are so tiny that it is pointless to extract any additional 

trust levels, and corresponding security mechanisms. Of course, this number is also 

dependant on the characteristics of the system, and the number of reasonable security 

mechanisms that may be introduced.  

The final step is to determine the ranges of frequency metrics corresponding with 

each cluster, sort them ascending, and assign them trust levels with security mecha-

nisms. This way we reduce the number of items (context values) from very numerous 

to four, in our case. This number results from the analysis of our university central 

system logs.  

 

Fig. 4. a) Dendrogram and b) distribution of the number of clusters and the distance between 

the closest clusters (height) in our university case 

Fig. 4 presents the dendrogram and distribution of the number of clusters and the 

distance between the closest clusters in the case of our university system. The analysis 

is taken on a population of 3,000 users. The results are presented for the top 20 clus-

ters cut – the subsequent clusters have small distances (near zero) and can be omitted, 
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they would result only in the illegibility of the charts. The system is used by over 

40,000 users. The analysis takes into account a  nearly four-year period of the sys-

tem’s operation. 

There is another approach – with the use of unsupervised K-means strategy [22]. 

The initial number of clusters may be determined using a Mean shift algorithm [23]. 

Next, there should be the results of determining the average distance from the cen-

troid for each cluster (treated as imperfection of clustering) compared. The analysis 

should start with the number of clusters determined by the Mean shift algorithm. 

Then, there should be the nearby numbers of clusters checked too. Finally, the best 

number of clusters is when the imperfection metric stops to decrease significantly 

(similarly to HAC). In our case this strategy gives some similar results to HAC strate-

gy, but it is less deterministic. Thus, in our opinion, HAC strategy seems to be a better 

approach to items reduction and transformation to trust levels. 

4 Application of trust model in TCoRBAC approach 

The above trust level determination mechanism was applied to a TCoRBAC (Trust- 

and Context-oriented Role Based Access Control) model [13], [17]. The main goal of 

this approach is to build separate profiles of each user’s interaction with the system. 

Using the strategy described in this paper of the items’ reduction, and assigning ap-

propriate user trust levels, it is possible to fire some extra security mechanisms. The 

algorithm of authorization and trust verification in the TCoRBAC model is presented 

as the pseudo-code below. 

foreach (userReq) do: 

 cx = determine current context; 

 authResult = do the basic permission check; 

 if(authResult == true) 

 then 

  profile = compute current profile of user(userReq); 

  clusters = do the HAC clustering (profile);  

  trustLvl = determine cluster containing current con-

text cx of userReq; 

  result = enforce extra security mechanism (trustLvl);  

  if(result satisfies security policy) 

  then grant access; 

  else deny access; 

 else deny access; 

 

The result of clustering the example items transition graph (mentioned at the be-

ginning of the paper) is depicted in fig. 5. There are four clustered items with the 

appropriate trust levels assigned. A user interacts in some context which changes 

while changing one of its context parameter values. This may cause a change of the 

trust level and adequate security mechanism. 
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Fig. 5. Items transition graph as a result of clustering procedure and trust level assignment 

The security mechanisms connected with trust levels may be as follows: 

─ TL4 – fully trusted user – there is no extra security action (cost: 0 second) 

─ TL3 – confirmation of user identity by pointing to 1 of 10 images (cost: 1 second) 

─ TL2 – re-entering the password or other personal data (cost: 3 seconds) 

─ TL1 – inputting the one-time-password sent by SMS (cost: 5 seconds) 

Table 1 presents an example simple scenario of user interaction with the university 

system. There is the time spent on each action (from the user’s point of view) indicat-

ed, as well as the type of action: business or security. 

Table 1. Example simple scenario of user interaction with the university system 

N
o
 Activity Time spent by user Type of activity 

1 Login  3 sec. τS 

2 Computation of current context ≈ 0 sec. τS 

3 Permission check ≈ 0 sec. τS 

4 Determination of trust level ≈ 0 sec. τS 

5 Execution of security mechanism  0 / 1 / 3 / 5 sec. τS 

6 “Student” application choice 1 sec. τB 

7 Selection of subject 1 sec. τB 

8 Grade reading  1 sec. τB 

9 Logout 1 sec. τS 

 

On the basis of this example scenario there is calculated the user-side efficiency 

metric (ε) defined as the ratio of the time spent on business activities (τB) to the over-

all time spent on business and security activities (τB + τS): 

 ε = τB / (τB + τS) (3) 

The resulting efficiency metric varies from 0.25 to 0.4286, depending on which se-

curity mechanism is fired. It has a nearly double difference, which is noticeable for 
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the user. Of course, in more complex scenarios this metric will decrease. It is worth 

mentioning that users mostly interact in TL4, so then the efficiency metric is from the 

top of the range. The metric decreases in lower trust levels, but it is the result of a 

higher security level. 

The TCoRBAC model was developed for the central system of Gdańsk University 

of Technology. More information about this model can be found at [6], [13], [16], 

[17]. 

5 Conclusions 

It is worth pointing out that the described approach is very effective in complicated 

multi-dimensional cases. The process of clustering is not very efficient, but it may be 

done asynchronously in the background. There may be one more optimization done: 

the clustering and profile computation may be actualized periodically – this also re-

duces the load of the system.  

The reduction of many context items to a few trust levels does not decrease the 

system security level significantly and does not have an impact on the user-side effi-

ciency metric (ε). With reference to Furnell’s insights [14], the security level is nearly 

invisible for the users who do not change their behavior – they are classified at the 

highest trust level, so there is no need to do any extra security checks.  

On the other hand, when the user changes the context very often, s/he gets a regu-

lar distribution of frequency metric f, so that it is hard to cluster their profile. In such a 

case it is worth considering doing global (per whole system) clustering and determin-

ing global ranges of this metric which cannot be exceeded during per-user clustering 

and trust level assigning. 

The clustering process may also take into account a weight metric pointing to the 

distance between the context values (computed on the basis of how many context 

parameter values change from one context value to another). It is a quite intuitive 

approach but also causes some blur of clusters and decrease of the system security 

level. In such a case an intruder may behave quite similarly to the real user (use simi-

lar context values) and will not be detected. If we use strict context clustering (with 

equal weight = 1) the intruder has to behave exactly the same as the user (the same 

context values) in order not to be detected. In the real world, where many context 

parameters are taken into account, it is very hard to copy the user’s behavior precise-

ly. 
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