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Sharp transitions in low-
number quantum dots Bayesian 
magnetometry
Paweł Mazurek1,2, Michał Horodecki1,2, Łukasz Czekaj1,2 & Paweł Horodecki2,3

We consider Bayesian estimate of static magnetic field, characterized by a prior Gaussian probability 
distribution, in systems of a few electron quantum dot spins interacting with infinite temperature spin 
environment via hyperfine interaction. Sudden transitions among optimal states and measurements are 
observed. Usefulness of measuring occupation levels is shown for all times of the evolution, together 
with the role of entanglement in the optimal scenario. For low values of magnetic field, memory effects 
stemming from the interaction with environment provide limited metrological advantage.

Quantum metrology relies on the fact that quantum correlations make state evolution more sensitive to dynamics 
which depends on some parameter that is supposed to be revealed. It is known that, in the so called frequentist 
approach, for estimating small variations of a deterministic parameter, for locally unbiased estimators dependent 
on its value and N systems undergoing independent evolution, quantum mechanics can offer a 1/N (so called 
Heisenberg scaling) improvement of the precision (defined by the deviation from the precise value) in the asymp-
totic limit1–3. This should be compared to a scaling N1/ , available for classical resources, and referred to as 
quantum shot-noise limit. Generally it is known that in a situation when the parameter is a phase generated by 
some Hamiltonian evolution, then the local noise usually destroys the quantum effect (both in atomic spectros-
copy4,5 and quantum optics6,7), leading to at most constant improvement over classical scaling.

In the so-called Bayesian approach8–10, this scenario is altered so that the parameter to be estimated is a ran-
dom variable with some a priori probability distribution. In many cases, this framework is more justified than the 
frequentist approach: it does not assume perfect knowledge about a system under consideration before an exper-
iment and it outputs optimal estimators even for small N. Compared to quantum frequentist approach, there is 
not much work regarding quantum Bayesian approach. In particular, precision bounds in the asymptotic limit 
have been established11,12. In ref. 10, authors investigate effects of noise introduced as a classical random phase, 
and ref. 6 takes into account photonic losses. However, in both cases the noise does not depend on the value of 
the parameter to be estimated.

In this paper we apply Bayesian metrology to a physical scenario where the form of the noise depends on the 
parameter. Specifically, we analyze a system of independent quantum dots interacting via hyperfine interaction 
with their local, maximally mixed spin environments13, under a so called box model approximation14,15,16,17,18. 
Spins of the electron dots are subject to external time independent magnetic field B with the random value 
according to Gaussian probability distribution with a given variance Δ​2Bprior and mean B0. As a case study, we 
choose a Gaussian prior due to its unimodality and the fact that it does not vanish for all possible values of the 
parameter to be estimated, which describes well possible initial knowledge about the unbounded parameter. The 
Bayesian approach allows to diminish the variance of magnetic field estimator which relies on measurements 
that may in general depend on time and give extra information about that value. The purpose of our analysis is 
twofold: (i) We want to see to what extent entangled states allow for better estimation than classical resources. 
(ii) We want to check how the sensitivity of the dynamics depends on initial states for different times of duration 
of the evolution. Regarding the first goal, we are looking for such time duration, for which there is an optimal 
reduction of relative uncertainty. In the second case, we look for an optimal reduction of uncertainty at each time, 
and analyse the form of states leading to such optimal reduction.
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We find that, in the considered model, entanglement wins over classical estimation, however only to a very 
modest extent. More importantly, the analysis of an optimal estimation at given times reveals sharp transitions in 
the space of optimal initial states and optimal observables. In particular, we can identify transitions of the zeroth 
kind (when there is a discontinuity in the spectrum of an optimal observable), and of the first kind (with dis-
continuity in the first derivative of the spectrum of an optimal observable). Due to rapidly increasing numerical 
complexity, our analysis is restricted to low number of dots. However, the mentioned sharp transitions appear 
irrespectively of the value of N, with the number of transitions increasing with N.

Outline of The Results
In this section we give an overview of the main results. The more detailed description will be given in Sec. Optimal 
Strategies for Magnetometry. Our aim is to find the optimal initial state and measurement scheme which results 
in the narrower variance Δ​2Best – a signature of the gain of information about the field. It is achieved by numerical 
optimization10 yielding optimal strategies for given time of the evolution and initial probability distribution of 
the parameter.

For a given variance and mean, after initial time of approximately unitary evolution, a transition of the first 
kind occurs — the optimal observable changes such that its spectrum attains a non-differentiability point during 
the transition. The optimal initial state changes smoothly from GHZ state of N qubits, +⊗ ⊗( 0 1 )N N1

2
, to a 

coherent superposition of GHZ with a product of ‘plus’ states, |+​〉​⊗N. The GHZ-plus superposition is the one that 
achieves the global optimum in the rate of ∆

∆

B

B
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2

2
. The evolution of the optimal strategy is further marked by 

transitions of the zeroth kind, they are accompanied by non-smooth transitions in the space of initial states. The 
optimal initial state jumps to + ⊗ ⊗ + ⊗ 0 , then to + ⊗ ⊗ + ⊗ ⊗ 0 0 , and so on. Thus, the 
number of qubits that should be prepared in |+〉 states decreases with increasing time of measurement, until the 
product structure with no coherences in the standard basis becomes optimal for long times.

The above can be explained by the interplay between two metrological strategies, out of which the first relies 
on information extracted from the field-dependent phase factors, and the second is based on field-dependent 
population levels. Therefore, optimizing over initial states and measurement strategies can be rephrased in terms 
of searching for a balance between these two strategies. The large number of the observed transitions is the conse-
quence of this trade-off evaluated for different times of the evolution. In the most global picture, we find quantum 
strategies relying on initial entanglement be superior to classical ones in the first stages of the evolution (where the 
global optimum is achieved), while product, non-coherent strategies are dominant in long time regime. This is in 
this regime that, for a unitary evolution, solely phase-dependent strategies would lead to no increase of informa-
tion about the magnetic field value, due to a non-zero Δ2Bprior.

However, one should note that measurement strategies in all the regimes rely at least partially on measure-
ments of occupation levels, in a response to the noisy character of the quantum channel. For small times, GHZ 
remains the optimal state, and optimal measurement scheme includes projections onto occupation levels initially 
non-available by the state, which are output with probabilities raising with time. Another metrological feature of 
the system is that the population scenario is not the only one that could be used for long times. As a signature of 
non-Markovian evolution, in small fields we observe a partial recovery of the initial correlation factors of spin 
states, with information about the magnetic field encoded in their amplitude.

Model of an Electron Spin in a Quantum Dot System
Below we describe the system of an electron confined within a quantum dot, interacting with an environment of 
nuclear spins. In the so called box-model13, the Hamiltonian (in units ħ =​ 1) of a dot is given by

α α
Ω + + ++ − − +S S I S I S I

2
( ), (1)

z z z

with Ω =​ −​gμBB, where B denotes the magnetic field, μB is a Bohr magneton, and g an effective gyro-magnetic 
factor of an electron in a dot. Above we use the operator of the total nuclear spin = ∑I Ik k and its projection  
Iz onto the direction of the magnetic field, with eigenstates |K, m〉​ and associated eigenvalues +K K( 1)  and m, 
respectively. In the box model, we assume that hyperfine interaction constant is the same for all nuclei inside a 
quantum dot and equal to α = n/ , where n is the number of nuclei interacting with the electron spin, and  is 
the value of total hyperfine interaction energy dependent on a host material. Our calculations are performed for 
quantum dots in gallium arsenide, where we have n =​ 1.5 ×​ 106 and  µ= 83 ev13,14,16. Furthermore, with a 
requirement that n/  remains constant, we simulate spin evolution with small numbers of nuclei in the environ-
ment. This is due to disappearance of few-body coherent effects already for environments composed of 10 nuclei, 
and the fact that 50 spin systems are large enough to reproduce large-number-of-nuclei evolution13. General 
conclusions of the paper hold for quantum dot systems in every material with hyperfine interaction playing a 
leading role in decoherence of electron spin, as long as decoherence takes place within the box model time range 
of validity. The box model of hyperfine interaction is valid for initial times of the evolution wherever the state of 
environment is maximally mixed. The time range of applicability of the box model is t n/14, which is 
1.2 ×​ 104 ns for the parameters used. Unless the system is especially experimentally prepared, for quantum dots in 
gallium arsenide the state of environment can be taken as maximally mixed due to small values of nuclear 
gyro-magnetic ratios, which results in nuclear Zeeman splittings corresponding to less than a mK for each Tesla 
of magnetic field applied to the system.

In the basis of total nuclear spin and its projection to the direction of the magnetic field, the state of environ-
ment can be therefore expressed as ρ = ∑ P K m K m, ,env K m K m, ,  with {PK,m} satisfying ∑ =P 1K m K m, ,  and
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where i ∈​ [0, n] is an integer17.
We obtain the following form of a single-dot evolution

∑ρ ρ=
=

†t K K( ) (0) ,
(3)i

i i
1

4

with Kraus operators, satysfying ∑ †K Ki i i =𝟙and Ki >​ 0, given by

= −K A1 0 1 , (4)1
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We use the notation =S 0 0z 1
2

, = −S 1 1z 1
2

, S± =​ Sx ±​ iSy for electron spin operators S and similarly for 
total spin operator I of the nuclei. For brevity, above we do not show dependence on B, t and α of the following 
terms:

∑α =A B t P X t( , , ) ( ) ,
(8)K m

K m K m, ,
2

∑α = −E B t P X t X t( , , ) ( ) ( ),
(9)K m

K m K m K m, , , 1

α θ θ= +χ χ− +X B t e e( , , ) cos sin , (10)K m K m
i t

K m
i t

,
2

,
2

,K m K m, ,

χ α α α α= Ω + Ω + + + + .B m K K( , ) 1
2

(2 1)
4
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(11)K m,

2
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2

We have

θ =
+ ++

+
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with α = αΩ +E B( , )m
m

2
, α = + − +αM B K K m m( , ) ( 1) ( 1)K m, 2

, = − +α+ + ++EK m
E E M

, 4

( ) 4

2
m m K m1

2
,

2

.
For very large magnetic fields > α

µ( )B n
g B

, distribution in the environment of the Zeeman energy Ω (resulting 

from a spin flip) is suppressed. This leads to freezing of occupation levels (A(t) =​ 1), and pure dephasing of coher-

ences ( µ=




−




⁎( )E t ig Bt( ) exp( ) expB

t
T

2

2
, with α=

+
⁎T /

I I n2
6

( 1)
). For smaller magnetic fields, oscillations of 

occupation levels appear. For very small magnetic fields < α
µ( )B n

g B
, phase decoherence resembles the evolution 

of occupation levels, which are partially leveled out in high evolution times due to the interaction with 
environment.

Bayesian Metrology
In this section we will recall Bayesian approach from ref. 10. We consider a parametrized family of states {ρB}, and 
assume some prior distribution p(B) over the parameter B, which in our case will be the magnetic field. Denote by 
B0 the average value of B according to prior distribution ∫=B BBp Bd ( )0 . In order to estimate the value of B, one 
performs a measurement Π



{ }B , whose outcomes B are the estimated values of B. After the measurement, knowl-
edge of the parameter B is supposed to increase. The resulting variance (averaged over the distribution of the 
magnetic field) is defined by

∫∆ = −  B B Bp B B B Bd d ( , )( ) , (13)est
2 2

where a joint probability distribution p B B( , ) is given by
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ρ= Π .



p B B p B( , ) ( )Tr( ) (14)B B

One is interested in a measurement which maximizes the difference between the variance of the prior Δ​2Bprior 
and a post-measurement variance Δ​2Best. It is proven18 (see an easy proof in ref. 10) that the optimal measurement 
is a von Neumann one, so that POVM elements Π

B are orthogonal projections, and the measurement can be 
represented by an observable = ∑ Π





L BB B. Then the maximal difference is given by

ρ∆ − ∆ = −B B L BTr( ) , (15)prior est
2 2 2

0
2

where ∫ρ ρ= Bp Bd ( ) B and the optimal observable L can be computed from

ρ ρ ρ+ = ′L L1
2

( ) , (16)

with

∫ρ ρ′ = .Bp B Bd ( ) (17)B

Explicitly, L is given by

∑
ρ

λ λ
=

′
+

L
i i j j

2
(18)i j i j,

where ρ λ= ∑ i ii i .
We shall exploit the above in the next section. For the sake of slightly broader view let us recall briefly a 

connection of the present picture with Fisher information, the quantity that belongs to the asymptotic regime. 
Namely, under some regularity conditions19, the following bound holds:

∫
∆ ≥

+
B

Bp B F
1

d ( )
,

(19)
est

B

2



where ρ=F Tr( L )B B B
2  is quantum Fisher information, determined the symmetric logarithmic derivative operator 

LB defined by

ρ ρ ρ+ = ′L L1
2

( ) , (20)B B B B B

where ρ ′ =
ρ

B Bd
B  and  ∫= ( )Bd

p B
p B

B
1
( )

d ( )
d

2
. For a Gaussian distribution one has  =

∆ B
1

prior
2

.

Optimal Strategies for Magnetometry
In our model of the evolution of a system of N independent quantum dots, the family of states {ρB} at specified 
time t is determined by the magnetic field B, time t and an initial N-qubit state ρN (0) by

∑ρ ρ ρ= Λ = ⊗ … ⊗ ⊗ … ⊗
… =

† †t K K K K( ) ( (0)) (0) ,
(21)

B B t
N

i i
i i

N
i i,

, , 1

4

N
N N

1
1 1

where 
= …K{ }i i 1, ,4

 is given by Eqs (4–7). We are interested in minimizing the Δ​2Best of Eq. (13) over time and initial 
states, for a given prior distribution. The latter we take Gaussian, determined by an average B0 and a variance  
Δ​2Bprior ≡​ Δ​2B. Our aim, among others, is to understand to what extent multi-particle entanglement can lead to a 
smaller value of Δ​2Best.

For optimizing over all initial states, we will use an iterative algorithm of ref. 10. At the first instance, one picks 
a random initial state. Then the optimal observable L is computed according to the formula (18). An eigenvector 
of ∫ Λ −⁎Bp B L BLd ( ) ( 2 )B

2  corresponding to its smallest eigenvalue is taken for the next iteration. In the above, Λ⁎
B 

corresponds to a map dual to Λ​B. One continues the iterations until obtaining a convergence in Δ2Best. 
Independent runs of the above algorithm enable the calculation of the optimal preparation and measurement 
strategy for given values of N, B0, Δ​2Bprior and t.

Single qubit (N = 1).  We start with the analyzis for one quantum dot. In Fig. 1 we depict the ratio Δ2Best/Δ​2Bprior,  
optimized over all initial states. For any fixed spread Δ​2Bprior, we consider several values of the mean B0. For large 
fields, we observe single minimum, while for small fields there are two minima. To understand this difference, let 
us first consider the large fields. For the large fields, occupation levels are not influenced by the dynamics, hence 
an estimation of the magnetic field B can only be done through the phase dependence on B. The single minimum 
comes from a trade-off between damping of the phase, and rotation of the phase by the magnetic field. For times 
long enough so that the coherences are nearly completely damped, the state ceases to depend on the magnetic 
field, hence there is no improvement, i.e. the variance after estimation is equal to the variance of the prior distri-
bution. As in the noiseless case, a representation of the optimal state on a Bloch sphere is perpendicular to the 
direction of the field, and the representation of the optimal observable is perpendicular to both the field and the 
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state directions. Indeed, in this way, the state is most sensitive to changes of the field, and also the observable is 
most sensitive to changes of the state during the evolution.

Let us now consider the small fields. Here the situation becomes more complex as the dynamics affects both 
coherences as well as the diagonal of the density matrix of the electron, and the change of the diagonal depends 
on B. We see a cusp dividing two regions, each one possessing its minimum. The interpretation is the following: 
We have two time regimes, phase regime and population regime. In the phase regime, the phases are not yet 
damped, and the mechanism of the estimation is based as before on a rotation of the state on a Bloch sphere in a 
plane perpendicular to the direction of the field. In the population regime, the phases are damped, and the esti-
mation is based on measuring occupation levels. In this regime both the optimal state and the optimal observable 
are parallel to the field direction, as in this way, the populations will be most affected by field changes, and the 
parallel observable is just the one that measures occupation levels. The cusp between the two regimes is formed 
by an intersection of curves corresponding to the aforementioned “perpendicular” and “parallel” strategy, with 
the optimal states +0 11

2
 and |0〉​. This is visible in Fig. 2, where the evolution of ∆

∆

B

B
est

prior

2

2
 is showed for 

B0 =​ 7 mT and Δ​Bprior =​ 4 mT. One should note that for small magnetic fields the “perpendicular” strategy proves 
to be effective even in the long time regime. This can be explained by the fact that, due to memory effects stem-
ming from the interaction with the environment, the coherences experience a revival to the value dependent on 
B and remain unaffected by phase factors of a type exp[igμBBt], which for a non-zero variance Δ​2Bprior would lead 
to their decay. As it was previously observed20, the revival of coherences remains in a connection with a revival of 
rescaled geometric discord of a singlet state of a 2 qubit quantum dot system.

For prior distributions with B0 =​ 0, the evolution of the occupation levels can not be exploited in order to gain 
information about the magnetic field, due to the symmetry A(B, t, α) =​ A(−​B, t, α) stemming from maximal mix-
edness of the initial state of environment. Therefore, while in the regime of very small fields we still observe two 
minima, the origin of the second one can be explained only by memory effects in which coherences are injected 
back to the system from the environment.

Clearly, apart from the mentioned minor memory effects, the long time regime is entirely classical, as the esti-
mation there is purely statistical, while in the short time regime, quantum coherences are crucial. For this reason, 

Figure 1.  Estimation of B for a single qubit. We plot Δ​2Best/Δ​2Bprior optimized over states, against time, for 
several values of the mean B0 and variance Δ​Bprior =​ 1 mT (a1,a2), Δ​Bprior =​ 4 mT (b1,b2), Δ​Bprior =​ 10 mT 
(c1,c2). For small B0 there are two time regimes, the phase one to the left and the population one to the right.
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as we will see further for more particles in non-negligible magnetic field, only for low times entanglement will 
lead to an enhancement of the estimation.

Two particles (N = 2).  Before we go to more complex systems, it is instructive to focus on two quantum dots, 
as this will give a hint on the general behavior. We consider a Gaussian prior with B0 =​ 7 mT and Δ​B =​ 4 mT, as for 
these values we have very well separated two minima and can analyse the transition between the two regimes. 
Actually, in the case of two particles one can single out several regimes, still clearly separated from each other. The 
regimes are presented in Fig. 3. The Fig. 3a represents corrections given by the optimal strategy as well as optimal 

Figure 2.  Comparison between ‘perpendicular’ (green dashed line) and ‘parallel’ (solid purple line) 
strategies for 1 quantum dot and B0 = 7 mT, ΔBprior = 4 mT. Red points represent the optimal strategy.

Figure 3.  System of N = 2 dots, with prior distribution given by B0 = 7 mT, ΔB = 4 mT. (a) Relative precision 
gain for various initial states: GHZ(2) (green solid line), aGHZ(2) +​ b|+​〉​ |+​〉​, with a =​ 0.07071 and b =​ 0.63640 
(blue dot-dashed line), |0 +〉 (grey dashed line), |+​ +​〉​ (purple double-dot-dashed line). Points correspond to 
the optimal strategy; (b) Eigenvalues of the optimal observable L; (c) Probabilities of their measurement.
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corrections to some guessed initial states, while Fig. 3b,c show eigenvalues of the optimal observable, and proba-
bilities of obtaining the corresponding outcomes for the optimal state, respectively. Sharp transitions between 
four regions are clearly visible in these latter figures. In the first region the optimal state is the GHZ(2), defined as 

= +⊗ ⊗GHZ(N) ( 0 1 )N N1
2

. At about 2.2 ns, phase damping becomes too strong for GHZ (2) state, which 
causes a transition of the first kind to the second region, where a superposition of aGHZ (2) +​ b|+​〉​ |+​〉​ is opti-
mal, and we use the notation + = +( 0 1 )1

2
. The transition is smooth in a space of the initial optimal 

states, yet curves describing the evolution of spectrum of L (Fig. 3b), as well as curves describing probabilities of 
obtaining measurement outcomes (Fig. 3c) are non-differentiable. The weight of |+​〉​ |+​〉​ in the optimal superpo-
sition increases with selected time of the evolution, reaching approximately the value of b =​ 0.63640 (with 
a =​ 0.07071). This marks a transition to the next region, with the optimal initially separable state |+​〉​ |0〉​. This 
region is very short, and soon the final, fourth regime begins, where the state |0〉​ |0〉​ becomes optimal. Both pre-
vious transitions are of the zeroth kind – they are discontinuous in the spectrum of the optimal observable.

In comparison with the single particle case, there are thus two main changes: (i) The phase regime has been 
split into two new regions; in these two regions, we need initial entanglement, not only superposition. (ii) The 
boundary between the phase and the population regimes has now become a new, intermediate region, where 
entanglement is not needed, but we still need superposition, although only in one particle state.

We obtain the following sequence of optimal states:

→ + + + → + → .a bGHZ GHZ 0 0 0

One should note that in the above a ≠​ 0, which may be partially explained by the fact that GHZ(2) state pro-
vides sensibility to B for longer times due to ability to sense it through the measurement of the occupation levels 
(green line in Fig. 3a). This is due to GHZ high initial imbalance on the diagonal.

The situation can be summarized as follows. We can distinguish three main regimes: (1) Regime of ini-
tially entangled states, with (1a) Regime of GHZ(2) and (1b) Regime of GHZ(2) superposed with |+​〉 |+​〉;  
(2) Intermediate regime of product coherent states (optimal |+​〉​ |0〉​); (3) Regime of product states without 
coherences.

In order to fully describe the optimal measurement strategy for different time regimes, below we move to a 
description of the optimal observables. In the (1a) region, the measurement strategy is based on projections onto 
± ⊗ + ⊗π

e S S( 1 1 )i z z
4  GHZ(2) states that evolve according to a Hamiltonian gμBB0Sz. This basic metrologic scenario of 

a parameter sensing via a parameter-dependent phase is efficient for low times, when the evolution is close to 
unitary, and probabilities of projecting the system at time t into µ− ± ⊗ + ⊗π

e eig B S t S S2 ( 1 1 )B
z i z z

0 4  GHZ(2) are close to 1/2 
(see Fig. 3c). However, for longer times in the regime, these probabilities decay in favour of likelihood of obtain-
ing two other projections: |01〉​ 〈​01| and |10〉​ 〈​10|. Due to maximal mixedness of environment and symmetry in 
the initial state of the system, the probabilities remain partially degenerate.

In the regime (1b), the GHZ(2) ceases to be optimal both because of the external noise and initial lack of 
knowledge described by a non-zero Δ​2Bprior, which results in an inability to extract information about the mag-
netic field from pure phase measurements for longer times. The significance of the second mechanism in limiting 
magneto-detection is illustrated by the fact that a phase-based magnetometry for a unitary evolution and the 
initial GHZ(N) state leads to a constant optimal reduction factor ∆

∆

B

B
est

prior

2

2
, achieved at times ∝

∆
topt N B

1  (which, for 

parameters of Fig. 3, is topt ≈​ 3.3 ns); for longer times the reduction factor increases abruptly to 1 (no information 
about B is provided). The optimal measurement scheme consists of projections that depend both on diagonal and 
outer-diagonal elements of a density matrix. It is in this, phase-population strategy mixing regime, that the global 
minimum of ∆

∆

B

B
est

prior

2

2
 is achieved thanks to a prolonged field-dependency of Λ​B,t(|+​ +​〉​) through the phase, as well 

as a field-dependency of Λ​B,t(GHZ(2)) both through the phase and occupation levels. In the regime (2) the struc-
ture of measurements becomes more transparent, with two projections into the occupation levels and two relying 
purely on phase-sensing, while in the regime (3), the optimal strategy is to extract information about magnetic 
field solely from measurements of occupation levels. This, altogether with the aforementioned symmetry of the 
environment and the structure of the initial state, leads to a degeneration in the spectrum of L.

Many particles: enhancement from entanglement.  In the next step, we move to systems of N >​ 2 
quantum dots. We find here the enriched dynamics of the optimal preparation and measurement strategies, that is 
naturally build on previously explained mechanisms of magneto-detection. A comparison between Fig. 3a and 4a  
shows that for N =​ 3 it is possible to achieve a better correction in the global minimum associated with the initial  
state in a superposition of GHZ(N) and |+​〉​⊗N. Figure 4b depicts the smoothness in the transition between 
optimal states for different times in this regime and underlines the necessity of the presence of entanglement 
– granted by non-zero presence of GHZ-term in superposition. Monte-Carlo simulation, by which the correc-
tion was calculated for randomly selected product initial states, corroborates that entanglement is the necessary 
resource for achieving this minimum. This is visible for N =​ 4 quantum dot systems in Fig. 5.

A growing structural complexity of the region that relies on product coherence states is a characteristic feature 
for a transition into larger systems. Here, all possible combinations of qubits prepared in |0〉​ and |+​〉​ states (except 
from |+​ +​ +​〉​) prove to be optimal, with higher times favoring less coherence present in the initial state. Figure 4c 
shows the time-dependence of corrections for the series of transitions of zeroth kind.

One should note that precision of the estimation of the field grows with increasing N for all possible times at 
which measurements are performed (see Fig. 6). The justification is the following: for time regimes with optimal 
GHZ(N) state, the evolution (being close to a unitary one) is affected by increasing N mainly through a change of 
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time scale, as ∝topt N
1 . On the other hand, the coherent state |+​〉​⊗N structure, largely responsible for 

magneto-sensitivity of the setup in the neighborhood of the global optimum, for a unitary evolution of systems 
with increasing N gives the improving optimal correction at times non-dependent on N. Therefore, we can pos-
tulate that for moderate values of N, the GHZ(N)-based range of applicability will decrease in favor of a superpo-
sition regime. The population regime is expected to give increasing sensitivity to the field purely due to an 
increasing number of values one can attribute to an increasing number of measurements, by which the field can 

Figure 4.  Relative precision gain for various initial states, for N = 3 dots, B0 = 7 mT, ΔB = 4 mT. Red dots 
correspond to the optimal strategy. (a) Optimal measurement strategies for the initial product states and for 
states of the form n(g GHZ(3) +​ (1 −​ g)|+​ +​ +​〉​), with normalizing factor n. (b) Transition from strategies based 
on GHZ(3) to those based on its superposition with |+​ +​ +​〉​ states. (c) Transition from strategies based on 
product coherent states to strategies based on product states without coherences.

Figure 5.  Relative precision gain for optimal states (red dots) and optimal product states (blue squares) for 
N = 4 quantum dots, B0 = 7 mT, ΔB = 4 mT. 
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be probed more precisely. In contrast to the entanglement regime, one does not need to take into account effects 
connected with lack of initial knowledge described by non-zero Δ​2Bprior; simultaneously, the physical noise plays 
only positive role. Note that the whole regime is absent for a unitary evolution, which implies lack of transitions 
of zeroth kind. The strategy based on initially product state with coherences is going to enjoy effects of both mech-
anisms, achieving increasing sensitivity with growing N. One should note that product state strategy relies entirely 
on local measurements.

To fully demonstrate the effects of increasing N on field-probing sensitivity, in Fig. 7 we illustrate corrections 
at the global minimum for prior Gaussian distributions with different parameters.

Discussion
We have performed a Bayesian magnetometry analysis for a Gaussian prior distribution of the magnetic field for 
small (N =​ 1–5) systems of electron spin quantum dots independently interacting with nuclear spin environments 
in maximally mixed states. The quantitative picture showing sharp transitions of both the optimal initial states 
(except the first transition point), as well as of the optimal measurements has been identified.

The standard situation considered in the literature is when the parameter under consideration (here – the 
magnetic field) is encoded into the system directly and the noise can only destroy that information. Here the 
dynamics makes the parameter imprinted both on the system and environment or — strictly speaking — into a 
global state of both. Despite the fact that the initial ancillas are maximally noisy and that the final noisy dynamics 
acts here completely locally, the corresponding noise is unavoidably “convoluted” with the original dynamics and 
the final result is such that we get the product noisy dynamics which has the parameter imprinted in a nonstand-
ard, nonlinear way. On the other hand the imprinting of the magnetic field by unitary dynamics is restricted to 
the Bloch sphere. Effectively we have then the two scenarios.

In the latter the parameter is imprinted in the states on the sphere, while in the former, it is imprinted in the 
mixed states that in general belong to the interior of the sphere. It seems that this is the geometry of the two sets 
out of which only the one has the nonzero volume, that in general might make the difference in favor of the noisy 
scenario.

Figure 6.  Comparison of relative precision gains for different number of dots N, for prior distribution 
given by B0 = 7 mT, ΔB = 4 mT. 

Figure 7.  Comparison of relative precision gains at optimal times, for different number of dots N, 
dependent on priors: ΔB = 1 mT (dashed lines), ΔB = 4 mT (solid lines), ΔB = 10 mT (dot-dashed lines), 
B0 = 0 mT (red lines), B0 = 1 T (blue lines). For a given Δ​B and 0 <​ B0 <​ 1 T, the corresponding line lies between 
the corresponding red and blue lines. Discrete data points are connected by lines for visual transparency.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


www.nature.com/scientificreports/

1 0Scientific Reports | 6:34327 | DOI: 10.1038/srep34327

There are other questions that one can ask here. First, to what extent the cascade structure of optimal states, 
from GHZ state to a product of eigenstates of Pauli σz operator, is a universal phenomenon? Second, is it possible 
to find a quantum model where the effect of memory is more visible? The important problem is also the optimal 
increase of information gain in Bayesian approach, which corresponds to the question how the minimum of the 
variance ratio behaves in the limit of large N. This is the problem of high numerical complexity. Finally, let us note 
that in our model, local Hamiltonians of the environments are absent. This is because Zeeman splittings of the 
nuclear spins are much smaller than that of the electron spin. It makes the effects stemming from the selfhamil-
tonians negligible for time scales under the consideration. On the other hand, if we had another physical system 
with comparable time scales for all subsystems - the ones that we can initiate and measure and the ones that are 
not controlled (environment), then it may happen that the presence of the local hamiltonians of the environment 
leads to better imprinting of the field into the final state of the measured system. This would require a separate 
research on another physical model.
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