
Research Article
Performance Analysis of Interaction between Smart Glasses and
Smart Objects Using Image-Based Object Identification

Jacek RumiNski,1 Adam Bujnowski,1 Tomasz Kocejko,1 Jerzy Wtorek,1

Alexey Andrushevich,2 Martin Biallas,2 and Rolf Kistler2

1Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
2Hochschule Luzern, iHomeLab, Technikumstrasse 21, 6048 Horw, Switzerland

Correspondence should be addressed to Jacek Rumiński; jacek.ruminski@pg.gda.pl

Received 20 November 2015; Revised 5 February 2016; Accepted 16 February 2016

Academic Editor: MoonBae Song

Copyright © 2016 Jacek Rumiński et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We propose the use of smart glasses to collaborate with smart objects in the Internet of Things environment. Particularly we are
focusing on new interaction methods and the analysis of acceptable reaction times in the process of object recognition using smart
glasses. We evaluated the proposed method using user studies and experiments with three different smart glasses: Google Glass,
Epson Moverio, and the developed eGlasses platform. We conclude that using the proposed method it is possible to recognize
objects and process information allowing object detection below the average acceptance response times specified by almost all
participants in the user study. Additionally, we showed that eye-tracking can be used for simple interaction between a user and a
graphical user interface presented in the near-to-eye display.

1. Introduction

Smart glasses can be a part of Internet ofThings (IoT). Partic-
ularly for intelligent buildings and homes smart glasses can
play a role of the interface between a user and surrounding
intelligence. In such environment a user of smart glasses
can control smart objects, acquire information from smart
objects, or change their configuration. However, this requires
implementing a method of objects identification (“Which
object am I controlling?”), generation and processing of
graphical user interfaces for objects, proper data exchange
protocols, and so forth. Smart objects can be recognized and
identified using different methods that can be implemented
using smart glasses. In this paper we would like to focus
on image-based identification of objects: using markers and
based on the visual appearance of objects.

When the smart object is identified the related processes
can be started that (1) connect the smart glasses to the
identified smart object, (2) present the GUI of the smart
object, and (3) execute user’s actions. We present the related
IoT scenario describing image-based object identification,
system architecture, objects representation methods (JSON),

and high-level communication (JSON-RPC).We also present
results of short user studies on acceptable response times
of the object identification process and related analysis
of computational performance of selected feature detec-
tion/extraction methods used for different smart glasses
(Google Glass, Epson Moverio, and eGlasses).

Communication with smart objects and related archi-
tectures are subjects of many papers [1–4]. Many authors
underline the need of integration of different smart objects
into one network or grid. In [5] authors proposed the
framework that allows users to register their own sensors into
a common infrastructure and access the available resources
through mobile discovery. Authors in [6] underline the
reconfiguration ability of the proposed smart objects that
is based on the context received from the Smart Space.
Additionally, the important role of gateways and smart object
identification is discussed. The role of data processing mid-
dleware based on SOA for the IoT is presented in [7]. Authors
conclude that the use of middleware is a good foundation
for the integration of diverse networks and better interaction
among heterogeneous systems in the future, which simplifies

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2016, Article ID 6254827, 14 pages
http://dx.doi.org/10.1155/2016/6254827

http://dx.doi.org/10.1155/2016/6254827
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2016%2F6254827&domain=pdf&date_stamp=2016-03-08


2 International Journal of Distributed Sensor Networks

the complexity of the integration process. Similar role of
middleware was also analyzed in [8].

Interaction with smart objects starts with the identifica-
tion of the smart object. Objects are often identified using
RFID-tags [9, 10] or using head-mounted sensors [11]. Some
authors propose using object identification methods based
on graphical features using cameras [12, 13] and smart-
phones [14]. Different local detectors and descriptors were
used for object detection in the context of interaction with
smart objects. The Attention Responsive Technology (ART)
system proposed in [15] uses eye-tracking and monitors
the allocation of visual attention in reference to the local
environment. It allows interaction when the users gaze falls
on a smart device. Authors in [12] presented another gaze-
based system for home automation. They compared “direct”
and “mediated” interaction solutions.The authors underlined
that often it is difficult to directly control complex devices
only by gazing at them. Therefore, PC-based, menu-driven
software can be used for such “mediated” interaction. The
menu-driven interface can be also controlled by gaze. In
[14] authors propose automatic user interface generation
on a handheld device using live visual object recognition.
Different views (10–15 images) of objects are used in the
training phase. The presented system allows differentiation
between 8 categories of objects using 128-dimensional SURF
descriptor. The processing performance tests run on the
tablet computer (1.7 GHz, dual-core processor) showed that
it takes approximately 150ms to process a single frame (up to
7 frames/s).

Objects can be also identified using dedicated graphical
markers [16, 17] or active markers [18]. Such methods were
also proposed for application of smart glasses in healthcare
[19].

In [20] authors proposed a solution for visual attention
driven networking with smart glasses (iGaze). Using the eye-
tracking the visual attention is captured and the correspond-
ing gaze vector to the visual target is calculated. The user
is asked to make a mild head gesture (e.g., head nod) as
the postfix of the attention. Together with the head gesture
smart glasses emit inaudible acoustic signal to adjacent
devices. Nearby devices invoke the phase tracking and device
direction determination modules for the estimation of the
device vector. The Doppler effect is used.

Dedicated architectures were also proposed for bidirec-
tional interaction between smartphone/smart glasses and
smart objects [21].

We can assume the following categories of object suitable
for interaction activities:

(i) Passive objects: objects equippedwith awireless inter-
face providing one or two directional transmissions of
data (synchronously or asynchronously); for example,
turn power on/off and read a value of parameter. It is
not possible to provide any parameters to the object
or to query the object.

(ii) Active objects: extended passive objects with pos-
sibility of querying the object or providing some
parameters (e.g., set temperature to𝑋).

Additionally, we assume that many “not smart” objects can
be transformed into smart objects when extended with addi-
tional electronics. Such objects can be additionally named
augmented objects.

In this paper we would like to propose the use of smart
glasses to collaborate with smart objects in the IoT environ-
ment. Additionally, we would like to focus on the analysis
of acceptable reaction times of the object recognition system
using smart glasses. We will evaluate this using user studies
and experiments with Google Glass, Epson Moverio, and the
eGlasses platform developed by us. The eGlasses platform
(http://www.eglasses.eu/) is developed to provide an open
platformwith which developers can change some electronics,
print another smart glasses cover using 3D printer, add
sensors or electrodes, change display, and so forth. The
current prototype uses OMAP 4460 processor, 1024 × 768
transparent display from ELvision Company, 5MPx cameras,
different sensors, and extension slots.TheAndroid 4.1 OS and
Linux Ubuntu OS can be used for experiments.

2. Methods

2.1. System Architecture and Proposed Interaction Methods.
Theoretically, smart glasses can directly discover smart
objects in the local environment (e.g., UPnP multicast in
local network). However, this assumes specific implemen-
tation constraints for (different) smart glasses (e.g., wireless
interface and protocols). Therefore, gateways or bridges are
often proposed for IoT environments. Also in this paper
we propose that architecture consisted of smart glasses,
a bridge, and smart objects. In this IoT scenario, smart
objects are connected to a bridge (gateway) in the local area
network using different interfaces (e.g., WiFi, ZigBee and
Bluetooth, and USB). Each smart object is represented in
the form of the JSON object and the actual software library
(drivers) that enables the control of the object. The library
provides the protocol implementation to interact with the
smart object on the low or/and high level. The properties
stored in the JSON object represent information, mainly
about the name/identifier of the object, the wireless interface
address, the transport method (e.g., JSON-RPC over WiFi
and ASCII stream over ZigBee), the physical location of the
object (name and coordinates), the image icon of the object
(encoded using BASE64), object detection method (e.g.,
VISUAL APPERANCE ORB, QRCODE), set of descriptors
(if required, e.g., ORB descriptors encoded using BASE64),
and a collection of available functions, each represented using
JSON notation and JSON-RPC2 description. In the proposed
system the application server is used in the bridge to process
multicast discovery queries (e.g., UPnP) and to interact with
smart glasses using REST-based services. For simplicity, we
assume that the smart glasses, using a dedicated service,
regularly scan available WiFi networks looking for known
ISSD identifiers. In our experiments we used ISSD names
starting with “eG” letters. When the router/access point
is detected a user is notified. When connected, the smart
glasses transmit the multicast query (e.g., UPnP), looking
for the IoT bridge. Actually, the URL of the bridge service
is retrieved. In the next step, the GET request is sent to the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


International Journal of Distributed Sensor Networks 3

Smart glasses WiFi router Bridge Smart object

(1) WiFi scanning service

(3) Connect to WiFi

(4) UPnP discovery

(5) Bridge URL
(6) GET smart objects collection

(7) Collection of JSON objects 

(2) “eG. . .” WiFi available

Figure 1: The initial interaction between smart glasses and the IoT
bridge.

URL address of the bridge. As a result a collection of JSON
objects is transmitted to the smart glasses (or error/exception
is raised). Each JSON object represents a smart object. The
initial interaction is presented in Figure 1.

A user is notified with the list of available smart objects
presented as a list of buttons with the name of the object and
its image icon. He or she can choose an object from the list
(then the dedicated GUI will be generated) or can switch to
the mode of the automatic identification of objects. Then the
camera is started detecting either graphicalmarkers (e.g., QR-
code) or visual descriptors (see Figure 2).

The related GUI is presented to the user when the object
is selected from the list or is detected and identified using
the camera. Selected properties from the related JSON object
(object name, image icon) are presented. Additionally, the
available actions are represented by GUI widgets: a button
(with the method name, e.g., POWER ON) and additional
widgets if required (e.g., ImageView for image data, e.g.,
frames received from the connected camera of the smart
object). The action listener is automatically generated for
each button. The implementation of the listener is generated
based on the transport mechanism described in the JSON
object. For example, if the transport mechanism is set to
JSON RPC OVER WIFI, the JSON RPC2 request is sent to
the bridge (Figure 3).The bridge processes the request for the
particular smart object executing related code.

As a result, smart glasses can receive the status of
information processing (e.g., success code) and results (data).
The received information is presented in the dedicated text
view (e.g., Android TextView) widget. The special form of
the request is the subscribe request. As a result of this
request, the smart objects automatically and systematically
(asynchronously) send new data when available (e.g., power
consumption values from the smart power e-socket). The
described procedure assumed that the remote method (the
service of the smart object) does not use any parameters.
However, if the method requires the parameter value, then
CheckBox or EditText widgets could be generated for the
GUI.

Smart glasses do not use typical data entry procedures.
Somededicated text/data entrymethods can be used. Possible
solutions include the application of the accelerometer [22],
smart fabrics [23], or eye-tracker [24]. Other methods and
comparison study were presented in [25]. In this study we
verified the fundamental interaction procedure using the eye-
tracker, which is a part of the eGlasses platform.

2.2. Interaction Using Eye-Tracking. The eye-tracking tech-
nology is not new; however the combination of smart glasses
with eye-tracking opens new possibilities for human-system
interaction. In this study we verified the possible use of eye-
tracking algorithms developed earlier [26] for the interaction
with graphical user interfaces for the control of smart objects.

In general the eye-trackingmodule is designed to operate
in 1 of 3 main modes as presented in Figure 4. The primary
mode is the one that enables controlling the variety of devices
and applications of the eGlasses using interaction with the
near-to-eye display of the eGlasses. The other two modes
allow gaze tracking (scene analysis) and communication by
gaze with an external computer/display.

In this study, the first mode is used. The implemented
pupil tracking algorithm provides the position of the pupil
center while the transformation algorithm relates this data
with the graphic content displayed on the near-to-eye display
(Figure 5).

The proper use of the eye-tracker requires performing the
calibration procedure. The subject looks at a series of target,
calibration points, while the eye-tracker records coordinates
corresponding to each gaze position. The calibration points
are spread at corners of the near-to-eye display. The eGlasses
platform is equipped with the display of the native resolution
of 1024 × 768, but it can be used with different smaller
resolutions, for example, 800 × 600, 800 × 480. To eliminate
the possibility that a user can omit some points during
the calibration procedure the 640 × 480 calibration board
is displayed in the center of the near-to-eye display as
shown in Figure 6. The 640 × 480 resolution was chosen
as the working resolution of the eye-scanning camera. It
provides satisfactory gaze-point detection resultswith limited
performance/power requirements [24]. After the calibration
procedure, the transformation matrix is calculated in regard
to the relative position of the test board’s corners.

The successful calibration allows mapping of the pupil
position into the near-to-eye display coordinate system. For
example, it gives a user the possibility of controlling the
mouse cursor by gaze [26]. The user can interact with GUI
by simply looking at it. The idea of interacting with recog-
nized object is to present graphic content (buttons, widgets)
around detected objects to enable sending commands using
the displayed GUI. Therefore, the interaction with smart
objects requires both selection and confirmation of desired
commands. In this study relating the selection of graphical
component directly to the gaze position (movements) and
using fixation within the region of interest (dwell time) for
confirmation were decided.

2.3. Implementation. The prototype of the system for inter-
acting with smart objects was implemented mainly using

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


4 International Journal of Distributed Sensor Networks

Bridge

Start interaction
with the identified

smart object

Smart object

(a) (b)

Figure 2: (a) The smart object can be identified using graphical markers or visual features. (b)The eGlasses platform was tested in the smart
home, iHomeLab, Switzerland.

Smart glasses Bridge

JSON to GUI
JSON to Web Services

Gateway to 
smart objects

Other 
protocols

JSON RPC2

Philips 
Hue

E-socket

Figure 3: The bridge can be a middleware between smart glasses
and particular smart objects.

Java programming language. The software for smart glasses
was implemented using Android SDK and OpenCV (using
both Java and native code by the Java Native Interface,
JNI). The services of the bridge were implemented using
Jetty Application Server with JSON and JSON-RPC2 librar-
ies. Additionally, low-level software was used to process
streamdata fromZigBee (using ZigBee for serial conversion).
A laptop computer was used as a bridge. Three categories of
smart objects were tested: a controllable power socket with
a ZigBee interface [21], a Philips Hue system with the pro-
priety bridge (http://www2.meethue.com), and the Parrot
Jumping Sumo robot (http://www.parrot.com/usa/products/
jumping-sumo/). The bridge directly controls the power
socket. For the Philips Hue system the bridge provided map-
ping of JSONmessages between smart glasses and the Philips
Hue system. For the Parrot robot the bridge delegates the
connection to the robot. Smart glasses execute downloaded
activity using Android Intent method. To control the robot
we used libraries and codes provided by producers.

The experimental prototype of the eGlasses platform was
used to perform experiments for possible interactions with
near-to-eye display using the eye-tracing module (Figure 7).
The eye-observing camera was located below the display
and was used to track the pupil position in reference to the
coordinating system of the display.

3. Experiments

Three categories of experiments were prepared. In the first
one we were interested in acceptable response times between
the beginning of looking at a controllable object and the point
of time when the object should be identified. Therefore, we
asked 22 volunteers (avg. age 36.36 ± 9.18; 11 females: avg.
age 39.45 ± 7.81 and 11 males: avg. age 33.27 ± 9.74) to look
through smart glasses toward three different types of objects:
computer screen (working), a fan (not working), and a lamp
(switched on). All objects were located at a distance 1-2m.
Each participant signaled two events: the beginning (START)
of looking at the object and the expected point of time
(STOP) when, according to the participant’s opinion, smart
glasses should have identified the object. Time period was
measured using the manual stopper (by the same operator)
between START/STOP commands issued by the participant.
The operator response time was additionally calculated in 10
trials and averaged. It was added to the standard deviation of
each measurement.

In the second group of experiments we verified the
computational performance (frames per second, FPS, versus
frame size) of different smart glasses to evaluate potential
response time of object detection algorithms. We used
Google Glass, Epson Moverio, eGlasses, and the Galaxy
Note 2 smartphone as a reference. Three tests were exe-
cuted for different feature detection/extraction methods
(ORB/ORB, FAST/FREAK, FAST/BRIEF): (1) feature detec-
tion/extraction time using smart glasses, (2) object detec-
tion time (description, matching, and minimal distance

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


International Journal of Distributed Sensor Networks 5

Eye-tracking
module

External 
display mode

Scene image
mode

Near-to-eye
display mode

Point-of-gaze
in display 

Point-of-gaze
in scene

Point-of-gaze
in external

display 

UDP module 
Localhost

WiFi

Figure 4: The main operation modes of the eye-tracking module.

Eye-observing
camera

Transformation 
matrix

Pupil center
detection

Processing unit
Near-to-eye

display 
coordinates

Pupil center
coordinates

Point-of-gaze
in display 
estimation

Calibration

Figure 5: The point-of-gaze estimation in the near-to-eye display mode.

Calibration board

Near-to-eye display

(80, 60)

(800, 600)

(0, 0)

(720, 540)

6
0
0

px

4
8
0

px

640px

800px

(a) (b)

Figure 6: Example of the calibration board displayed during the calibration procedure. (a) Basic idea, (b) practical use example: the first test
point is shown.

(a)

Eye-tracking
module

Eye camera

Modified lens
with special
filter

(b)

Figure 7: (a) The experimental prototype of the smart glasses with the eye-tracker. (b) The eye-observing camera located below the display.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


6 International Journal of Distributed Sensor Networks

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8: Smart objects images with key points of ORB/ORB descriptors ((a): SO1, SO2, SO3, SO4, and SO5; (f): SO6, SO7, SO8, SO9, and
SO0).

classification for 𝐾 best matches) using smart glasses, and
finally (3) efficiency of data compression and transmission for
object identification performed on the bridge (e.g., a laptop
computer with 1.7 GHz Intel Core i7 processor, 8GB RAM
1600Mhz).

Experiments were performed using two sets of images,
one consisting of images with the resolution of 1280 × 720
and the second with 800 × 480. Each set contained 40 images
(32 resampled images from the reference set described in
[27–29]) and 8 images of controllable smart objects (e.g.,
a lamp, a Parrot Jumping Sumo robot, and a TV decoder
connected to the e-socket). Since we were focused on the
time analysis the actual content of images in this experiment
was not very important (except the complexity of features).
Much more important was the number of descriptors used
in the performance analysis. After key point detection best
key points were sorted and two sets were generated with 100
or 500 best key points. For simplicity the spatial distribution
of points was not analyzed. All further matching/detection
experiments were performed in reference to sets about 100
descriptors and 500 descriptors generated for chosen key
points. The Brute Force-Hamming method was used. The
used smart glasses and the smart phone had different Camera
Preview resolutions (Google Glass 640 × 360, EpsonMoverio
640 × 480, eGlasses 1024 × 768, but reduced to 800 × 480
in experiments, and Samsung Galaxy Note 2 1280 × 720)
limiting the size of programmatically captured video frames.
Therefore, in one experiment, each device was capturing
frames, but for the processing predefined images from the
reference sets were used. Since the resolution and descriptor
size were known it was better to compare the results.

Additionally, to show the trade-off between runtime
versus accuracy of the used features, a simple experiment was
designed. Ten actual and potential smart objects were used
to perform real experiment: 2 driving robots (SO1, SO8), 2
lamps (SO6, SO7), 2 radio sets (SO2, SO3), 2 duster robots
(SO4, SO9), a humidifier (SO5), and a home printer (SO0).
In Figure 8 pictures of objects are presented with rendered
locations of key points for features detected using the ORB
algorithm (featureswere selected insidemanually drawn rect-
angle during the preprocessing step). Images were acquired

from a distance of 1m (±0.3m) with the resolution of 800
× 480. Descriptors were calculated using ORB, FREAK, and
BRIEF algorithms.The number of descriptors for each object
was as follows: (a) for the ORB algorithm: SO1-500, SO2-
500, SO3-500, SO4-500, SO5-326, SO6-401, SO7-500, SO8-
497, SO9-409, and SO0-500; (b) for the FREAK algorithm:
SO1-477, SO2-500, SO3-485, SO4-476, SO5-264, SO6-463,
SO7-443, SO8-490, SO9-328, and SO0-498; (c) for the BRIEF
algorithm: SO1-467, SO2-493, SO3-500, SO4-475, SO5-283,
SO6-488, SO7-465, SO8-428, SO9-361, and SO0-487.

TheAndroid software was modified tomeasure detection
accuracy and detection time. Only for experiments, it was
assumed that when the working camera (i.e., continuously
capturing frames) is targeted at the object the operator
manually starts (using a tap event) the measurement. When
the object is detected the current processing is paused, and
the related information is presented on the microdisplay:
picture of the detected smart object (to check if the object
was correctly detected), time period (from the first frame
captured after the user had invoked the tap event until
detection), and the number of frames (from the first frame
captured after the user had invoked the tap event until
detection). Smart objects were located on the floor (e.g.,
robots) or on the table (e.g., lamps, printer). The user was
sitting on the swivel chair observing objects from similar
distance as used during the generation of the reference set. In
this experiment we did not analyze the influence of distance
or viewing angle. All previously described feature extraction
algorithms were tested. First testes were used for 5 objects
in the reference set (SO1–SO5) and then for 10 objects in
the reference set. For the ORB algorithm, tests were also
executed for 20 (10 SO + 10 other) and 40 (10 SO + 30 other)
reference pictures. Additional pictures (other) were taken in
a room (books on the shelf, etc.) selecting those with 500
features.The pictures were added to simulate larger reference
set for performance tests. In these tests the false positive result
was defined as the wrong object detected within 10s. The
false negative result was defined as a lack of proper object
detection within 10 s. Five detection attempts were used (325
all together) for eachmethod (ORB, FREAK, and BRIEF), for

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


International Journal of Distributed Sensor Networks 7

(a) (b) (c)

Figure 9: Different layouts of the GUI used in experiments.The active areas aremarked using yellow color: (a)𝐷
1
design, active fields located

on the left side of GUI, (b) 𝐷
2
design containing elements on the left and right side, and (c) 𝐷

3
design containing element only on the right

side of the GUI.

(a) (b)

Figure 10: (a) An example of the object in typical user settings. (b) An example of the GUI for the power socket control.

each object (SO1–SO0), and for each configuration (O = 5, O
= 10, etc.).

The quantitative analysis of compression influence on
the quality of features was also performed. Pictures of SO1–
SO5 from the reference sets were used to produce com-
pressed version of the original pictures using 4 different
compression/quality factors: 90%, 80%, 70%, and 10%. The
JPEGImageWriteParam class from the Java NIO package was
used to specify these compression factors in the specially
prepared software. After the generation of the compressed
images features were extracted and compared. The threshold
for distance measure between descriptors was set to very
low value (<3). Then the number of features with distances
lower that the threshold was analyzed. Additionally, the
sum of distances of the 10 best features (distances sorted in
descending order) was calculated.

In the third group of experiments, we verified the use of
eye-tracking module for the needs of interaction between a
user and the GUI presented on the near-to-eye display.

The GUI for tests was constructed using 16 regularly
distributed widgets. Each widget was designed to register and
notify a user of its current state. It included the “onGazeOver”
state (state 1) that corresponds to the event, when gaze is
focused on the current widget and the “onClick” state (state
2).The “onClick” event is fired when the “onGazeOver” state
lasted at least 𝑇 milliseconds (dwell time) for the particular
widget. During the experiment three basic GUI layouts were
tested (Figure 9). Designs correspond to the possible location
of buttons/hot areas displayed around the recognized object.

Our intention was to evaluate these designs in terms of
the rate of correct selections of GUI elements and to check

the optimal dwell time. To do so, the software randomly high-
lighted one of the active areas.Theuser’s taskwas to select and
confirm this element by gaze. The new area was highlighted
every time the confirmation signal was received whether the
user focused on the right element or not.The test was finished
after receiving 100 confirmation signals.Three different dwell
times were tested (500ms, 1000ms, and 1500ms) for each
prepared layout. Each test was repeated five times preceded
every time by the calibration procedure. Three parameters
were recorded during each event: the selected element’s name,
the ID, and the result of confirmation (HIT or MISS).

4. Results

The implemented prototype of the system was verified
using experiments in smart home laboratories: iHomeLab in
Switzerland (Figure 2(b)) and the AAL laboratory in Poland.

In Figure 10(a) an example of the object in typical user
settings is presented. Another example of the graphical user
interface generated for the recognized, augmented object
connected to the power socket is presented in Figure 10(b).
When the smart object is identified (TV decoder) the GUI
is automatically presented. In this case the user can turn on
or off the power and observe related power consumption
parameters.

In Figure 11 example of image from the robot interface
is presented. The control of the robot is performed using
the accelerometer sensor of smart glasses: head up: forward;
head down: backward; head left: turn left; head right: turn
right; head shake: jump. Additionally, the jump control is
possible using the magnetometer sensor and the magnetic

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8 International Journal of Distributed Sensor Networks

Figure 11: Remote control of the robot using smart glasses: the
image is transmitted from the robot to smart glasses. The possible
application includes the use of robot for remote monitoring of
dangerous events, for example, fall detection.

ring. When the magnetic ring (finger/hand) is reaching the
eGlasses (magnetometer) the change in the magnetic field is
detected and the related event is fired. The experiments were
performed for the monitoring of possible fall of the elderly
person.

The control of the Philips Hue lamps was performed
based on recognition of identifiers of lamps encoded in QR-
codes attached to lamps.

In this paper we are mainly focusing on feasibility of
image processing for object detection using smart glasses.
Therefore, below, the related results are presented.

4.1. Acceptable Response Time. The results of this experiment
were very interesting. The average acceptable response time
was 2.62 s ± 1.6 s. The difference between men and women
was observed. The result for females was 3.12 s ± 1.91 s,
while for males it was 2.11 s ± 0.99 s. Particularly women
at middle age (>45) accepted longer response times. Both
women and men accepted longer response for computer
screen, probably because of the active content. The shortest
acceptable response time was 0.87 s (man, 32 y) and the
longest one was 6.92 s (woman, 48 y). The average accuracy
of timemeasurement by the operator was calculated as 0.103 s
± 0.026 s (the average response for a sequence of fast 10
START/STOP commands).

4.2. Data Processing by Smart Glasses. First the number of
frames per second was calculated for each device without any
frame processing tasks.The value was calculated after captur-
ing 110 frames (10 frames skipped and then 100/time between
the first and the last frame) in three trials. The results are
as follows: Google Glass: 33.11 FPS (640 × 360; 7.28Mpx/s);
Epson Moverio: 25.0 FPS (640 × 480; 7.32Mpx/s); eGlasses:
29.89 FPS (800 × 480; 10.95Mpx/s); and SamsungNote 2: 16.6
FPS (1280 × 720; 14.59Mpx/s).

Frame processing times for key point’s detection and
feature description are presented in Table 1 (simulated frame
size 1280 × 720).

Of course for smaller resolution of frames performance
results were better. For example, for the eGlasses, processing
of images with resolution of 800 × 480 for FAST/BRIEF
descriptor was performed with 15.03 FPS rate (but for ORB
only 4.24 FPS). The results mentioned in Table 2 were
obtained for the matching of descriptors and actual object
detection. In this paper only results for eGlasses (processing
using algorithms implemented using JNI) are presented later.

Table 1: Values of FPS for different algorithms and devices (EG:
eGlasses; N2: Samsung Note 2; EM: Epson Moverio; GG: Google
Glass). The set of key points was reduced to 500. Frame resolution:
1280 × 720.

Device ORB/ORB FAST/BRIEF FAST/FREAK
EG/Java 1.55 8.84 6.24
EG/JNI 1.37 6.17 2.29
EM/Java 1.23 5.99 6.02
EM/JNI 1.66 7.75 2.33
GG/Java 0.30 2.37 2.27
GG/JNI 0.62 3.21 0.94
N2/Java 1.85 8.14 7.79
N2/JNI 3.02 8.26 7.00

For frame resolution of 1280 × 720 results were up to
two times worse. Another method for object detection in IoT
environment using smart glasses could use bridge/gateway
for actual data processing. Therefore we tested the transmis-
sion rate for frames acquired by smart glasses. First, trans-
mission speedwas estimated sending data packets of different
sizes during each onFrame event.The resultswere very similar
for all devices: 20.63Mbps ± 1.74 (the same router at the same
distance, signal strength about −62 dBm). For very small data
packets the transfer was smaller because of the limitation
of frame capture rate for the particular device. In further
tests 7 different data sets were processed: uncompressed YUV
data (e.g., 1382400B), uncompressed Y data (921600B), GZIP
compressed YUV data (737435B), GZIP compressed Y data
(572727B), and JPEG compressed data with quality indicator
100%, best (572539B), 90% (148822B), and 80% (97184B).The
transmission of uncompressed frame data was slow, allowing
only about up to 2 FPS for NV21 YUV data (1.5 ∗ 1280 × 720
bytes) and up to 3 FPS for Y data (1280 × 720 bytes). Results
were very similar for all devices as the data transfer rate
depends mainly on the quality of the communication link.
To obtain better processing of frames the compression must
be introduced (or faster networks). However, compression
is computationally expensive. For all YUV data the lossless
compression (GZIP, Snappy) leads to small reducing of FPS
rate. For Y data the FPS was about 4 FPS (about 1 FPS better).
Results obtained using JPEG compression were much better
especially for higher compression factors (90% and 80%).
Of course the compression effect is related to the original
content of an image. Therefore we executed tests for images
from the prepared test set (known size, etc.). Test images
were compressed with the quality factor of 90% (smallest
PSNR for test set was 27.67 dB). This allowed obtaining the
efficiency of compression and transmission about 7.43 FPS
for the smart glasses and 13.18 FPS for the smartphone.
Higher compression factors produce even better results (for
80%: 8.88 FPS for the smart glasses and 14.90 FPS for the
smartphone).The final efficiency of object detection depends
on the computational performance of the bridge/gateway. For
the computer used in the study (ORB implemented in Java
OpenCV using threads of the application server) the average
results for 1280 × 720 test images were as follows: 6.94 ±
0.87 FPS for F = 500/O = 5; 6.69±0.94 FPS for F = 500/O = 10;

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


International Journal of Distributed Sensor Networks 9

Table 2: FPS for object detection using different algorithms, different number of reference objects (O), and different size of features (F) in
the representation of each object (res. 800 × 480).

Method F = 500, O = 5 F = 500, O = 10 F = 500, O = 20 F = 500, O = 40
ORB 3.36 2.84 2.29 2.34
FAST/FREAK 1.81 1.66 1.41 0.91
FAST/BRIEF 9.6 6.73 4.28 2.46

F = 100, O = 5 F = 100, O = 10 F = 100, O = 20 F = 100, O = 40
ORB 4.23 4.27 4.06 3.89
FAST/FREAK 2.59 2.37 2.29 2.06
FAST/BRIEF 15.25 15.22 14.92 14.28

(a) (b)

Figure 12: Some examples of the matched features (distance < 6) between the compressed picture (left) and the original one (right) for two
different compression factors: (a) quality 90% and (b) quality 10%.

5.36 ± 0.30 FPS for F = 500/O = 20; 3.08 ± 0.15 for F = 500/O
= 40.The average size of the compressed frame was 229.81 kB
± 85.49. Of course the efficiency for many connected smart
glasses would depend on the architecture of the bridge, but it
was not evaluated in this work.

The results of the experiment with 10 smart objects (SO1–
SO0) are presented in Table 3. In each cell of the table
the calculated precision value is presented (for 5 attempts,
precision = TP/(TP + FP)) and average detection time is in
milliseconds.

In the entire experiment 3 FP and 1 FN results were
observed for the ORB algorithm, 5 FP and 1 FN results for the
BRIEF algorithm, and 6 FP and 1 FN results for the FREAK
algorithm.The average number of frames to detect the object
(without FP and FN results) was 1.98 ± 3.19.

In Table 4 some results of the quantitative analysis of
influence of compression on the quality of features are
presented.
𝐷min indicates the set of descriptors, whose distances are

lower than the threshold value (equal 3). The term “max
distance” used in the table means the highest value of the
distance in the entire set of matched features between two
images.

In general, images compressed with the 90% quality
factors have about 50% of all descriptors almost identical
(distance < 3) or very similar (∼80% with distance < 6). For
images compressed with 80% quality factor about 33% of all
descriptors were almost identical with those calculated for
the original image (distance < 3) or very similar (∼71% with
distance < 6).

In Figure 12 some examples of the matched features (dis-
tance < 6) are graphically presented between the compressed

picture (left) and the original one (right) for the SO1 object.
Images with two different compression factors are presented:
quality 90% (Figure 12(a)) and 10% (Figure 12(b)).

4.3. Interaction Using Eye-Tracking. The possible use of the
eye-tracker for the interaction with GUI of the smart glasses
was verified using experiments described in Section 3. First
test was performed using dwell time set for 1500ms. The
user was asked to calibrate the eye-tracker and then the first
designed layout (𝐷

1
) was displayed. The active fields were

located on the left side. After 100 randomly stimulated events
the response results were stored. Next, the user was asked to
calibrate again the device and repeat the test. Five repetitions
were used for each test layout. The same procedure was
repeated for the other two dwell times: 1000ms and 500ms.
Results are presented in Tables 5, 6, and 7.

The pseudorandom generator was used to highlight
widgets (user stimulation) for each test layout. In Figure 13
the distribution of generated events in tested layouts is
presented.The figure presents how often each active field was
highlighted for the particular layout.

5. Discussion and Conclusions

The average acceptable response time for volunteers was
about 2.6 s. However, the performed experiments showed
that the acceptable time differs between participants. Dis-
cussions with participants after the experiments showed that
such acceptance levels might depend on the physical and
mental state of a person, hour of a day, and so forth. What
was interesting was that many participants underlined that

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


10 International Journal of Distributed Sensor Networks

Ta
bl
e
3:
Th

er
es
ul
ts
of

th
ee

xp
er
im

en
tw

ith
10

sm
ar
to

bj
ec
ts
(S
O
1–
SO

0)
.

SO
1

SO
2

SO
3

SO
4

SO
5

SO
6

SO
7

SO
8

SO
9

SO
0

FA
ST

/F
RE

A
K
O
=
5

10
0%

(5
26
±
58
8)

10
0%

(1
39
1±

21
48
)

10
0%

(3
07
±
10
7)

10
0%

(2
75
7
±
24
68
)

10
0%

(5
07
±
40

4)

FA
ST

/F
RE

A
K
O
=
10

80
%

(1
16
8
±
85
7)

10
0%

(7
04
±
61
3)

10
0%

(4
24
±
16
7)

60
%

(3
52
5
±
38
63
)

60
%

(1
18
9
±
17
29
)

10
0%

(4
64
±
41
)

80
%

(8
14
±
53
5)

10
0%

(6
07
±
49
4)

10
0%

(6
55
±
30
3)

10
0%

(1
32
8
±
22
01
)

FA
ST

/B
RI
EF

O
=
5

10
0%

(1
29
±
21
)

10
0%

(1
77
±
51
)

10
0%

(19
7
±
54
)

10
0%

(1
63
±
18
)

10
0%

(1
74
±
21
)

FA
ST

/B
RI
EF

O
=
10

10
0%

(1
82
±
23
)

80
%

(2
22
±
11
2)

10
0%

(3
00
±
13
8)

10
0%

(2
24
±
85
)

10
0%

(19
7
±
21
)

60
%

(2
25
±
34
)

60
%

(1
82
±
5)

10
0%

(1
88
±
35
)

10
0%

(2
10
±
78
)

10
0%

(2
07
±
14
)

O
RB

/O
RB

O
=
5

10
0%

(2
49
±
18
)

10
0%

(2
76
±
26
)

10
0%

(3
61
±
28
9)

10
0%

(3
36
±
13
2)

10
0%

(2
34
±
16
)

O
RB

/O
RB

O
=
10

10
0%

(2
84
±
27
)

10
0%

(3
07
±
38
)

10
0%

(2
96
±
40

)
80
%

(3
34
±
16
2)

10
0%

(3
01
±
34
)

80
%

(2
89
±
15
)

10
0%

(3
09
±
39
)

10
0%

(2
75
±
12
)

10
0%

(2
75
±
26
)

10
0%

(3
01
±
31
)

O
RB

/O
RB

O
=
20

10
0%

(3
85
±
27
)

10
0%

(4
03
±
43
)

10
0%

(4
01
±
48
)

10
0%

(1
34
1±

16
68
)

10
0%

(4
67
±
18
2)

10
0%

(3
64
±
12
)

10
0%

(4
05
±
42
)

10
0%

(7
69
±
85
3)

10
0%

(5
88
±
29
4)

10
0%

(3
86
±
21
)

O
RB

/O
RB

O
=
40

10
0%

(5
80
±
19
)

10
0%

(9
46
±
80
8)

10
0%

(14
26
±
118

3)
80
%

(1
33
9
±
16
56
)

10
0%

(7
58
±
24
2)

10
0%

(6
25
±
60
)

10
0%

(5
68
±
20
)

10
0%

(1
83
8
±
19
81
)

10
0%

(5
52
±
44

)
10
0%

(7
40
±
24
4)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


International Journal of Distributed Sensor Networks 11

Table 4: Results of the quantitative analysis of influence of compres-
sion on the quality of features.

Sum of 10
best distances

Max.
distance

Size
(𝐷min)

File size
[kB]

SO1 500 119
SO1 90 versus SO1 0 78 278 62
SO1 80 versus SO1 0 79 224 41
SO1 70 versus SO1 0 78 164 32
SO1 10 versus SO1 23 84 5 10
SO2 500 119
SO2 90 versus SO2 0 103 250 62
SO2 80 versus SO2 0 102 177 42
SO2 70 versus SO2 0 101 119 34
SO2 10 versus SO2 27 86 5 12
SO3 500 119
SO3 90 versus SO3 0 75 209 63
SO3 80 versus SO3 0 75 114 42
SO3 70 versus SO3 0 76 81 33
SO3 10 versus SO3 59 85 0 12
SO4 500 116
SO4 90 versus SO4 0 83 258 69
SO4 80 versus SO4 0 73 199 44
SO4 70 versus SO4 0 77 133 35
SO4 10 versus SO4 23 92 5 12
SO5 326 107
SO5 90 versus SO5 0 82 130 55
SO5 80 versus SO5 3 82 72 35
SO5 70 versus SO5 6 70 34 28
SO5 10 versus SO5 71 89 1 10
SO9 versus SO4 346 91 0

Table 5:The accuracy of correctly confirmed selections obtained for
dwell time = 1500ms.

Layout/attempt 1 2 3 4 5 Mean
𝐷
1

89% 87% 89% 88% 90% 89%
𝐷
2

91% 90% 91% 91% 92% 91%
𝐷
3

98% 97% 98% 98% 99% 98%

Table 6:The accuracy of correctly confirmed selections obtained for
dwell time = 1000ms.

Layout/attempt 1 2 3 4 5 Mean
𝐷
1

88% 84% 86% 89% 87% 86.8%
𝐷
2

88% 85% 88% 87% 88% 87.2%
𝐷
3

94% 95% 93% 95% 94% 94.2%

they would not expect the fastest response of the system, but
response time should be in a preferable range.

In the experiments with object detection algorithms
standard OpenCV implementations of key points detection
and feature extraction/description algorithms were used.

Table 7:The accuracy of correctly confirmed selections obtained for
dwell time = 500ms.

Layout/attempt 1 2 3 4 5 Mean
𝐷
1

39% 43% 56% 49% 43% 46%
𝐷
2

41% 40% 41% 56% 44% 44.4%
𝐷
3

40% 44% 55% 56% 53% 49.6%

1

2

3

4

5

6

7

8

0

10

20

D1

D2

D3

Figure 13: The distribution of randomly generated events in the
tested𝐷

1
–𝐷
3
layouts. Numbers from 1 to 8: the ID of the widget, for

which the stimuli were randomly generated; total number of events:
100.

Sometimes these implementations differ from the implemen-
tations provided by authors of algorithms (e.g., therefore we
did not use the BRISK algorithm).

The interaction with GUIs of smart objects presented
on the smart glasses display was performed using a mouse
wirelessly connected to the eGlasses. Additionally, the eye-
tracker was tested.

In this study we were not primarily focused on the
evaluation of the precision and recall of particular object
detection algorithms. This can be found elsewhere (e.g.,
[28, 30]). However, we did simple experiments to verify the
methodology for the optimistic assumptions: short distance
to objects (up to 1.3m), one observation angle, and similar
lighting conditions. We tested the system for ten smart
objects. The results showed good precision for the tested
methods.The analyzed processing times of the methods were
acceptable (response time < 2.6 s). The worst results were
achieved for the FREAK algorithm (6 false positives, 1 false
negative, and longest processing times). Excluding FP and FN
cases objects were detected in first 5 frames. Only for some
cases it required more frames to detect the object (even 21
frames). For all 325 trials only 3 FN cases were detected. The
false negative result means that the object was not detected
with 10 s. Such cases (FN or many frames to process) were
sometimes related to the camera auto settings (auto zoom,
auto exposure). In this experiment we used preprocessed
single images of smart objects to calculate descriptors and
build the reference set. However, relatively good results of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


12 International Journal of Distributed Sensor Networks

the processing times suggest that more images for each smart
object could be used, especially when the number of smart
objects is limited. In conclusion, when smart glasses are
used for the detection and control of small number of smart
objects it is possible to process frames with the rate allowing
object detection below the average acceptance response times
specified by almost all participants of the initial study.

In general, the results related to the detection accuracy
would not be so good if we take into account different angles
of observation, different distances, changing illumination,
camera properties, and so forth. Those are very well-known
limitations of object detection methods based on visual
appearance of objects. However, this requires larger study and
it will be a subject of another analysis we will perform.

For more objects to be detected (e.g., in a large building)
a proper bridge/gateway can provide the service of object
detection. The very important goal of this paper was to
analyze the performance of two setups for object detection:
by smart glasses and using external service (a gateway).
Standalone smart glasses (i.e., not glasses connected by a
cable to a raspberry pi or other external computer) are tech-
nologically limited because of acceptable thermal emission
of the electronics, limited power capacity of batteries, and
so forth. These technological features are design limitations
in the choice of processors. If more processing is required
(e.g., more smart objects) object detection procedure should
be performed mainly using external services. However, the
question is how to efficiently provide data for such external
analysis. One possibility is to process each frame to detect
descriptors and transfer those descriptors to the gateway
for further object detection steps (e.g., feature matching).
Another possibility is to transfer each frame to the gateway.
In this paper we performed many experiments to analyze
this problem analyzing different algorithms, different image
representation methods (lossless and lossy compression),
different color models (e.g., use only 𝑌 component), and
so forth. It was shown that lossy compression with good
quality factors (e.g., 90%) preserves about half of the features
practically unchanged (distance < 3; about 80%with distance
< 6) and enables fast object detection.

There are also other practical aspects important for the
future use of such interaction methods. For example, if in
the field of view of the camera there is more than one smart
object then only one object (one nearest neighbor) will be
detected. Future solutions can offer a menu with all detected
objects in the current view, and the user could choose the
proper one. Another possibility is to use the eye-tracker to
select the detected object (e.g., select this object for which
gaze is focused inside the rectangle containing the object).
Similar, gaze-based procedure can be used if more than one
similar object is present in the camera view (e.g., two identical
lamps).

The gaze-based interface for the interactionwith the near-
to-eye display was tested for possible use in simple gaze-
based actions.Thedesign of the interfacewith the camera and
the display built into the frame of smart glasses potentially
excludes the negative influence of head movements. That

is because the user’s head and utilized hardware remain in
constant geometrical relation. In this study we assumed that
the smart glasses are well fixed on the head and there are
no rapid movements of the head that could lead to the
change of the smart glasses position in reference to the user’s
head. The main challenge was the accurate pupil detection.
It is essential for the reliable transformation from the pupil
position to accurate and precise “cursor” position on the
near-to-eye display. The used eye-tracking algorithm was
previously described in [26] and the study dedicated to the
accuracy analysis in reference to near-to-eye display was
presented in [24]. Here we analyzed the possible use of events
that are related to eye movements for the interaction with a
simple GUI of the smart object. Each tested layout contained
eight active GUI components that cover approximately half
of the available display size. Such an approach simulates
the situation when a user observes the smart object and
can interact with it by sending commands controlling GUI
widgets/buttons displayed around or next to the object icon
(or preview). Different confirmation actions are possible
to model using the eye-tracking module. Some examples
include “eye blink” or “gaze-fixation for 𝑇 milliseconds.” In
this study we verified the second approach. The achieved
accuracy was very high for all tested layouts for relatively long
dwell times: 1.5 s and 1 s. For shorter values of dwell times
results were poor. It might be explained that the very short
dwell time and randomly highlighted widgets to “visually
press” lead to some confusion. The user does not have time
to overtake fast changes in the GUI. Additionally, short
dwell times can also lead to involuntary selections (events).
The proper dwell time parameter could be specified for the
particular user as his/her preference and therefore it was not
necessary to perform studies with many users. Such a study
can be interesting for many other reasons (e.g., acceptance
of the technology) and will be performed in future studies.
The simultaneous generation of different events using gaze
tracking and gaze-fixation can have some limits, especially
for rapid actions. Therefore other sources for “confirmation
events” can be potentially used, including head movements
(accelerometer) and change in head muscle signals (elec-
trodes in the inner part of smart glasses). Potentially such
methods allow increasing the privacy of simple data input
in comparison to audio commands or the use of traditional
keyboards (that can be observed by bystanders).

In [31] authors identified two distinct styles of smart
object sensing: object-centric style and human-centric style.
Smart objects belonging to the object-centric type are
deployed in the real world and can detect changes in their
physical status or/and changes in the surrounding envi-
ronment. Smart objects from the second category serve as
personal companions. Smart glasses or smart watches belong
to the second category of smart objects [32]. However, as
shown in this paper, smart glasses can cooperate with smart
objects located in the user’s neighborhood. Using discovery
services and the shared protocol smart glasses can potentially
connect to different networks or objects, especially when the
user changes his or her location. This gives many interesting
opportunities in different fields of applications for smart
homes, intelligent buildings, smart cities, and so forth.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


International Journal of Distributed Sensor Networks 13

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work has been partially supported by NCBiR, FWF,
SNSF, ANR, and FNR in the framework of the ERA-NET
CHIST-ERA II, European project eGlasses—The Interactive
Eyeglasses for Mobile, Perceptual Computing, and by Statutory
Funds of Electronics, Telecommunications and Informatics
Faculty, Gdansk University of Technology.

References

[1] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: a survey on enabling tech-
nologies, protocols, and applications,” IEEE Communications
Surveys & Tutorials Journal, vol. 17, no. 4, pp. 2347–2376, 2015.

[2] Internet Architecture Board, “Architectural considerations in
smart object networking,” RFC 7452, IAB, 2015, https://www.iab
.org/2015/03/20/rfc-7452-architectural-considerations-in-smart-
object-networking/.

[3] L. Mainetti, V. Mighali, and L. Patrono, “A software architecture
enabling the web of things,” IEEE Internet ofThings Journal, vol.
2, no. 6, pp. 445–454, 2015.

[4] T. Perumal, A. R. Ramli, and C. Y. Leong, “Interoperability
framework for smart home systems,” IEEE Transactions on
Consumer Electronics, vol. 57, no. 4, pp. 1607–1611, 2011.

[5] A. J. Jara, P. Lopez, D. Fernandez, J. F. Castillo, M. A. Zamora,
and A. F. Skarmeta, “Mobile digcovery: discovering and inter-
acting with the world through the internet of things,” Personal
and Ubiquitous Computing, vol. 18, no. 2, pp. 323–338, 2014.

[6] S. Bartolini, B. Milosevic, A. D’Elia, E. Farella, L. Benini, and
T. S. Cinotti, “Reconfigurable natural interaction in smart envi-
ronments: approach and prototype implementation,” Personal
and Ubiquitous Computing, vol. 16, no. 7, pp. 943–956, 2012.

[7] F. Wang, L. Hu, J. Zhou, and K. Zhao, “A data processing
middleware based on SOA for the internet of things,” Journal
of Sensors, vol. 2015, Article ID 827045, 8 pages, 2015.

[8] D. Villa, C. Mart́ın, F. J. Villanueva, F. Moya, and J. C. López, “A
dynamically reconfigurable architecture for smart grids,” IEEE
Transactions on Consumer Electronics, vol. 57, no. 2, pp. 411–419,
2011.

[9] Y. Jie, J. Y. Pei, L. Jun, G. Yun, and X. Wei, “Smart home
system based on IOT technologies,” in Proceedings of the 5th
International Conference on Computational and Information
Sciences (ICCIS ’13), pp. 1789–1791, Shiyang, China, June 2013.

[10] S. Dey, J. K. Saha, and N. C. Karmakar, “Smart sensing: chipless
RFID solutions for the internet of everything,” IEEEMicrowave
Magazine, vol. 16, no. 10, pp. 26–39, 2015.

[11] P. Simoens, J.-F. VanWijmeersch, E. De Coninck, T. Ingelbinck,
T. Vervust, and T. Verbelen, “Vision: smart home control
with head-mounted sensors for vision and brain activity,” in
Proceedings of the 5th International Workshop on Mobile Cloud
Computing and Services (MCS ’14), pp. 29–33, ACM, New York,
NY, USA, June 2014.

[12] D. Bonino, E. Castellina, F. Corno et al., “A blueprint for
integrated eye-controlled environments,”Universal Access in the
Information Society, vol. 8, no. 4, pp. 311–321, 2009.

[13] J. Ruminski and K. Czuszynski, “Application of smart glasses
for fast and automatic color correction in health care,” in
Proceedings of the 37th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC ’15),
pp. 4950–4953, Milan, Italy, August 2015.

[14] S. Mayer, M. Schalch, M. George, and G. Sörös, “Device
recognition for intuitive interaction with the web of things,” in
Proceedings of the ACM Conference on Ubiquitous Computing
(UbiComp ’13), pp. 239–242, Zürich, Switzerland, September
2013.

[15] F. Shi, A. G. Gale, and K. J. Purdy, “Eye-centric ICT control,” in
Contemporary Ergonomics 2006, pp. 215–218, Taylor & Francis,
London, UK, 2006.

[16] K. Czuszynski and J. Ruminski, “Interaction with medical
data using QR-codes,” in Proceedings of thev 7th International
Conference on Human System Interactions (HSI ’14), pp. 182–187,
Costa da Caparica, Portugal, June 2014.

[17] J. Ruminski, M. Smiatacz, A. Bujnowski, A. Andrushevich, M.
Biallas, and R. Kistler, “Interactions with recognized patients
using smart glasses,” in Proceedings of the 8th International
Conference onHuman System Interactions (HSI ’15), pp. 187–194,
June 2015.

[18] A. Bujnowski, M. Benoit, M. Kaczmarek, P. Przystup, J. Rumin-
ski, and I. Pecci, “Active and dynamic graphical code for object
identification in healthcare,” Journal of Medical Imaging and
Health Informatics, vol. 5, no. 8, pp. 1631–1639, 2015.

[19] C. Borchers, Google Glassmoves into the hospital at Beth Israel,
the Boston Globe, 2014, http://www.bostonglobe.com.

[20] L. Zhang, X.-Y. Li, W. Huang et al., “It starts with iGaze:
visual attention driven networking with smart glasses,” in 20th
ACM Annual International Conference on Mobile Computing
and Networking (MobiCom ’14), pp. 91–102, Maui, Hawaii, USA,
September 2014.

[21] J. Ruminski, A. Bujnowski, J. Wtorek, A. Andrushevich, M.
Biallas, and R. Kistler, “Interactions with recognized objects,”
in Proceedings of the 7th International Conference on Human
System Interactions (HSI ’14), pp. 101–105, Costa da Caparica,
Portugal, June 2014.

[22] R. McCall, B. Martin, A. Popleteev, N. Louveton, and T.
Engel, “Text entry on smart glasses,” in Proceedings of the 8th
International Conference on Human System Interactions (HSI
’15), pp. 195–200, IEEE, Warsaw, Poland, June 2015.

[23] M. Stoppa and A. Chiolerio, “Wearable electronics and smart
textiles: a critical review,” Sensors, vol. 14, no. 7, pp. 11957–11992,
2014.

[24] T. Kocejko, J. Ruminski, J. Wtorek, and B. Martin, “Eye tracking
within near-to-eye display,” in Proceedings of the 8th Interna-
tional Conference on Human System Interactions (HSI ’15), pp.
166–172, IEEE, Warsaw, Poland, June 2015.

[25] Y.-C. Tung, C.-Y. Hsu, H.-Y. Wang et al., “User-defined game
input for smart glasses in public space,” in Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing
Systems (CHI ’15), pp. 3327–3336, ACM, Seoul, South Korea,
April 2015.

[26] T. Kocejko, A. Bujnowski, and J. Wtorek, “Eye mouse for
disabled,” in Proceedings of the Conference on Human System
Interaction (HSI ’08), pp. 199–202, Krakow, Poland, May 2008.

[27] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an
efficient alternative to SIFT or SURF,” in Proceedings of the IEEE
International Conference on Computer Vision (ICCV ’11), pp.
2564–2571, IEEE, Barcelona, Spain, November 2011.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


14 International Journal of Distributed Sensor Networks

[28] O. Miksik and K. Mikolajczyk, “Evaluation of local detectors
and descriptors for fast feature matching,” in Proceedings of the
21st International Conference on Pattern Recognition (ICPR ’12),
pp. 2681–2684, IEEE, Tsukuba, Japan, November 2012.

[29] X. Xu, L. Tian, J. Feng, and J. Zhou, “OSRI: a rotationally invari-
ant binary descriptor,” IEEE Transactions on Image Processing,
vol. 23, no. 7, pp. 2983–2995, 2014.

[30] Y.-D. Kim, J.-T. Park, I.-Y. Moon, and C.-H. Oh, “Performance
analysis of ORB image matching based on android,” Interna-
tional Journal of Software Engineering and its Applications, vol.
8, no. 3, pp. 11–20, 2014.

[31] B. Guo, D. Zhang, Z. Yu, Y. Liang, Z.Wang, and X. Zhou, “From
the internet of things to embedded intelligence,” World Wide
Web Journal, vol. 16, no. 4, pp. 399–420, 2013.

[32] S. Cirani and M. Picone, “Wearable computing for the Internet
of things,” IT Professional, vol. 17, no. 5, pp. 35–41, 2015.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

