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Abstract: The paper presents a method of processing measurement
data due to remove slowly varying component of the trend
occurring in the recorded waveforms. Comparison of computational
complexity and trend removal efficiency between some commonly
used methods is presented. The impact of these procedures on
probability distribution and power spectral density is shown.
Effectiveness and computational complexity of these methods
depend essentially on nature of the removed trend. This paper
describes several procedures: Moving Average Removal (MAR),
fitting a polynomial of degree appropriate to the analyzed data,
Empirical Mode Decomposition (EMD).
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1. INTRODUCTION

Recorded time series, especially noise records, exhibit
often slowly changing component — trend. Trend removal
(also called drift removal) is a data processing procedure
which has many practical applications [1-6]. In general,
trend removal can be treated as a high-pass filtration of
recorded data. In order to remove the trend component, we
can use a high-pass filter (analog or digital) at the stage of
data acquisition. However, we often have to deal with the
data, in which a trend component is needed to carry out other
analysis and cannot be removed at the stage of data
registration. Furthermore, signal may be non-stationary and
high-pass filtering will not be efficient. In such cases, we
should consider other, often more advanced methods [7-10].

Chapter 2 presents several trend removal methods,
classical like high-pass filtering, Moving Average Removal
(MAR) and polynomial fitting, as well as more sophisticated
method Empirical Mode Decomposition (EMD). In chapter
3 we present simulation results, which consider the effect of
trend removing on the probability distribution and power
spectral density. Chapter 4 concludes the paper.

2. TREND REMOVAL METHODS

2.1. High-pass filtering

The most general method of trend removal is high-pass
filtering. We can say that all trend removal methods, even
very complex, can be classified as high-pass filtering.
Figure 1 presents idea of trend removal. On the left side
there is graph of noise imposed on the extremely low
frequency trend, which is the input data. On the right side we

see noise with the removed trend after high-pass filter (HPF)
and noise after low-pass filter (LPF). The red rectangle
represents an operation of trend removal.
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Fig. 1. General idea of trend removal operation

However, high-pass filtering at signal acquisition stage
is rather a simply method, it losses completely information
about trend component, which can be used for further
analysis.

2.2. Moving Average Removal

Well-known Moving Average (MA) method is a low-
pass filtering, but Moving Average Removal (MAR) is
a high-pass filtering [1]. Principles of operation of the MAR
can be illustrated by following equations:
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where: n—sample number, p — filter parameter (averaging
over 2p+1 points), X, —n-th input sample (raw data), m, —
average of the segment from point n-p to n+p, y,—n-th
output sample (processed data).

The p parameter have big influence on resulting MAR
filter as can be seen by analysis of its transfer function H(f)
given by the formula:
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where: f — frequency, f; — sampling frequency.
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The MAR filtering procedure does not introduce a phase
shift and effectively removes drift component, but also
a large part of low-frequency components of the input signal
[1]. It is clear from the equation (3) that the passband of the
filter is within the frequency range from fJ/(2(2p+1) to fJ/2.
Consequently, if p is small the range of the filter is quite
narrow. On the other hand, for a high order filter (when p is
high), the nonlinear trend filtering generates artifacts, visible
as slow changes in the detrended waveform. For that reason
a high order MAR filtering cannot be used in each case,
especially when a drift is a nonlinear function.

2.3. Polynomial fitting

Polynomial detrending is another high-pass filtering
method [1]. This procedure fits the analyzed signal to
apolynomial of given order and then subtracts this
polynomial from the analyzed signal. If order of the
polynomial is equal to one, we are limited to linear
detrending — the simplest case.

There is a big variety of commonly used polynomial
fitting methods, but the most popular is a method based on
least squares criterion. It is also worth to notice that some of
methods, especially fitting to higher order polynomials,
might not give correct results. We should underline that
polynomial detrending can be repeated a few times, even
with consecutively increased degree of polynomial until
trend component is removed efficiently.

2.4. Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is a method of
signal decomposition without leaving time domain. This is
in contrast to other methods, like Fourier transform or
wavelet transform. It is suitable for nonlinear and
nonstationary trend components [7-10], so it pretends to be
efficient method for noise signals analysis.

Time record is decomposed into the finite additive
oscillatory components called Intrinsic Mode Function
(IMF). There are two conditions which must be satisfied by
each IMF:

1. number of extremes and number of zero crossing of

the signal must be equal or differ at most by one,

2. the average value of the envelope interpolating local
maxima and the envelope interpolating local
minima is zero.

In the figure 2 a block diagram of EMD algorithm is
presented. In first step local extremes of input signal x(t)
should be determined. Based on the determined values, we
can interpolate (using spline function) from local maxima
an upper envelope ey(t) and from local minima a lower
envelope g|(t). In the next step we calculate local mean value
m,(t) and determine function h,(t) which is a first candidate
for an IMF component. If h,(t) satisfies the conditions 1 and
2 itis an IMF component. If not, we take it as a signal being
analyzed and repeat previous steps until it satisfies both
conditions. When we obtain an IMF component, we subtract
it from the original signal and obtain a residual signal r(t).
Treating now rn(t) as an analyzed signal and repeating
n times these operations, the consecutive IMF components
can be determined. Decomposition stops when ry(t) is
a monotonic or a constant function, which means that it is
not possible to extract more IMF components (due to the
conditions 1 and 2). The exemplary results of EMD
decomposition for fast fluctuating process y(t) superimposed
on quadratic trend are shown in the figure 3.

n=1
rolt) = x(t)

Determination of the local extremes of the signal x(t)

Interpolation of local maxima — creation of upper
envelope e, (1)

Interpolation of local minima — creation of lower
envelope eft)
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l
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Fig. 2. Block diagram of Empirical Mode Decomposition method
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Fig. 3. Exemplary results of EMD decomposition

When an input signal x(t) consists of slowly varying
trend superimposed to a relatively fast fluctuating
component y(t), which can be e.g. a recorded noise, the trend
is expected to be captured by the IMF’s of large indexes.
The above presented EMD decomposition algorithm can be
used to detrended signal y(t) estimation [9]. For this purpose
we can use following formula:

D
Jo )= hy(0) Q)

n=1

where: Y, (t) —estimate of the detrended signal y(t) using
first D consecutive IMF components, h,(t) —n-th IMF
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function, D — the largest IMF index prior contamination by
the trend.

A rule of thumb for selection D value is to observe the
evolution of the standardized empirical mean of y,(t) as

a function of a test value d, and to identify for which d = D it
departs significantly from zero.

3. SIMULATION RESULTS

Random component y(t) was simulated in Matlab
environment using randn() function. Several trend
components were simulated and added to y(t) signal to
obtain a few signals which were investigated to assess
effectiveness of detrending methods. Equations for the
investigated signals are presented in Table 1.

Table 1. A set of all investigated signals (x is independent variable)

No. Equation Trend
component
1 y(t)+30 Constant value
2 y(t)+0.2x+3 Linear function
. Sinusoidal
3 y(t)+30sin(4nx/1000)+30 function
Exponential
4 y(t)+200exp(-x/100) function
: 2 Quadratic
5 y(t)+0.001(x-500) function
Sum of
y(t)+200exp(-x/100)+ .
6 | 1107(x+800)(x-1200)(x-1200) polynomial and
exponential

Probability distribution (histogram — figure 4) and
power spectral density (figure 5) were estimated for signal
y(t) and then used for testing quality of detrending by means
of it similarity, by random error estimation, to those
parameters established for the detrended signals.
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Fig. 4. Histogram of random process y(t) having normal distribution

In the figure 6 we can compare histograms of y(t)
signal, y(t) signal combined with sinusoidal trend and
detrended signal y(t) using three different methods: MAR,

polynomial fitting and EMD. It is easy to determine that all
histograms for the detrended signals are almost the same as
a histogram of original signal y(t), while histogram for
original signal superimposed on sinusoidal trend is
significantly different.
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Fig. 5. Power spectral density (sampling frequency was chosen
arbitrary) of random process y(t)
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Fig. 6. Histograms of detrended signals by selected methods
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Fig. 7. Power spectral densities of detrended signals by selected
methods

Figure 7 compares power spectral densities of y(t)
signal, y(t) signal combined with exponential trend and
detrended signal y(t) using three different methods: MAR,

polynomial fitting and EMD. We can notice that power
spectral densities of original signal and detrended using
polynomial fitting and EMD are almost the same. It is
obvious that for a signal with trend component the curve
shape is different than in the case of original signal.
Spectrum of the signal detrended by MAR method has
changed significantly because it should be similar to
an applied filter transfer function given by equation (3).
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Table 2 includes results of detrending using three
mentioned methods and six exemplary signals under
investigation (Table 1). Accuracy of trend removal is
estimated by root mean squared error (RMSE) between
original signal y(t) and detrended signal y(t) for all

considered methods. We can conclude that efficiency of
trend removal depends on type of trend component.
Polynomial fitting is very efficient for almost all considered
signals except of a signal with sinusoidal trend. The MAR
filtering has a constant and highest RMSE due to its low
complexity. The EMD shows low RMSE for all considered
signals.

Table 2. Accuracy of all investigated methods using exemplary
signals

Accuracy (RMSE)
Signal number

MAR | Polynomial fitting | EMD
1 35 0.3 -
2 35 0.6 2.0
3 35 6.5 2.1
4 35 1.6 2.3
5 35 0.8 2.4
6 35 0.9 2.5

4. CONCLUSIONS

We showed that power spectral density and probability
distribution (histogram) can evaluate quality of trend
removal from the recorded random data. Three trend
removal methods were investigated: MAR, polynomial
fitting and EMD. Efficiency and computational complexity
significantly depends on type of the removed trend. The
MAR filtering is the simplest method, but its efficiency is
rather poor. Good results were observed for the EMD
method.

There are numerous applications where the presented
methods could be applied. Our considerations were inspired
by applying detrending of discharging current in
supercapacitors. Another important issue are Raman spectra
slowly varying due to bleaching in biological objects.
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ANALIZA SKUTECZNOSCI I ZEOZONOSCI OBLICZENIOWEJ METOD USUWANIA
SKEADOWEJ TRENDU Z DANYCH POMIAROWYCH

W pracy przedstawiono sposob przetwarzania danych pomiarowych w celu usunigcia wolnozmiennej sktadowej
trendu wystepujacego w rejestrowanych przebiegach. Porownano kilka czgsto stosowanych w tym celu metod pod wzgledem
ich zlozonosci obliczeniowej oraz skutecznosci w usuwaniu trendu. Pokazano wplyw tych procedur na rozktad
prawdopodobienstwa wartosci chwilowych oraz przebieg gestosci widmowej mocy. W ogdlnosci operacj¢ usuwania trendu
mozemy traktowaé jako filtracje goérnoprzepustowa danych pomiarowych. W celu usunigcia trendu mozna uzy¢ filtru
gornoprzepustowego (analogowego lub cyfrowego) juz na etapie akwizycji danych pomiarowych. Jednakze czgsto mamy do
czynienia z danymi, w ktorych sktadowa trendu jest potrzebna do przeprowadzania innych analiz i nie moze by¢ usunigta na
etapie rejestracji danych pomiarowych. Ponadto, moze mie¢ charakter niestacjonarny i metody filtracji gérnoprzepustowej
nie beda skuteczne. W takich przypadkach nalezy rozwazy¢ inne, czesto bardziej zaawansowane metody. Skuteczno$c
i zZtozono$¢ obliczeniowa takich metod zalezy istotnie od charakteru usuwanego trendu. W pracy opisano procedure usuwania
éredniej kroczacej (ang. Moving Average Removal — MAR), metody o niskiej zlozono$ci obliczeniowej, ale dajacej
zadowalajace rezultaty w duzej liczbie potencjalnych zastosowan. Rozwazono usuwanie trendu przez dopasowanie
wielomianem odpowiedniego stopnia do analizowanych danych pomiarowy. Procedura ta moze by¢ powtarzana kilkukrotnie,
nawet ze zwigkszaniem stopnia wielomianu przy kazdym z krokow, az do uzyskania przebiegu, w ktorym usunigto sktadowa
trendu. Czg$¢ pracy poswiccono prezentacji bardziej ztozonych obliczeniowo metod, ktore zostaly rozwinigte dopiero
W ostatnich latach i wymagaja znacznie bardziej intensywnych obliczen.

Stowa kluczowe: usuwanie trendu, filtracja gérnoprzepustowa, empiryczna metoda dekompozycji.

114 Zeszyty Naukowe Wydziatu Elektrotechniki i Automatyki PG, ISSN 2353-1290, Nr 51/2016


http://mostwiedzy.pl

