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Abstract: The paper presents the hardware implementation of the 

improved alpha max plus beta min algorithm for calculating the 

magnitude of complex numbers. This version of the algorithm 

requires the general division which is performed using a non-

iterative multiplicative division algorithm. We analyze in detail the 

division algorithm, its error and the impact of finite word-length 

signal representations on the assumed total computation error. An 

analysis is performed to determine the binary length of operands at 

each stage of the magnitude calculator in order not to exceed the 

assumed total error. An FPGA implementation is presented along 

with its hardware requirement and delay. 
 

Keywords: alpha max plus beta min algorithm, complex numbers 

magnitude, FPGA. 

 

1. INTRODUCTION 
 

Processing of digital complex signals may require the 

computation of magnitude and/or phase. In [1] we have 

presented a magnitude calculation algorithm being an 

extended and improved version of alpha max and beta min 

algorithm [2]. The new form allows to control accuracy of 

magnitude approximation by dividing the approximation 

interval into a certain number of subintervals called 

approximation regions. By increasing .the number of regions 

we may reduce the approximation error. Prior to 

implementation the number of regions has to be chosen 

which provides an acceptable maximum approximation 

error. During operation of the magnitude calculator the 

selection of the proper region is performed which determines 

the pair of coefficients used for magnitude calculation. For 

this purpose the quotient r=y/x  is used, where y is the 

imaginary part of the complex number and x the real part. 

This quotient r  is computed using a non-iterative 

multiplicative division algorithm. In this algorithm an 

extended version of the reciprocal computation algorithm 

has been applied in order to limit the quotient approximation 

error. However, the hardware implementation requires the 

detailed analysis of all possible error sources. The total error 

resulting from using the algorithm from [1] has two 

components. The first one is the approximation error and the 

second is the incorrect region choice error. The first depends 

on the number of regions assumed for implementation. The 

second error results from the erroneous choice of the 

neighboring region instead of the correct one. The 

approximation error can be controlled only by increasing 

number of approximation regions, while the region choice 

error depends on accuracy of the estimate r̂  of r  for the 

given ( )yx ,  pair. It can be remarked that the use of the 

standard division would be ineffective because of its 

computational complexity. We have applied the non-iterative 

division algorithm [4] that requires only four table look-up’s, 

one addition and three multiplications. The division problem 

in this case is simplified because the dynamic range of both 

parts of the complex signal is usually limited to 12-bits in 

high-speed DSP systems. The primary application of the 

considered magnitude calculator can be at the output of the 

high speed FFT processor. However, the dynamic range in 

the presented implementation can be easily extended, for 

example, to 16 bits. 

The magnitude approximation algorithm has been 

implemented using 12-bit fixed point arithmetic. The applied 

approach allows to compute the quotient with the maximum 

error not exceeding 0.3%. An analysis of the influence of the 

improper choice of the approximation region and its 

application for the determination of divider parameters is 

given. Additionally, we analyze the hardware 

implementation of the magnitude calculator in order to 

assess its amount of hardware and maximum attainable 

pipelining frequency. These parameters have been obtained 

from the synthesis for the FPGA using the VHDL 

description in the Xilinx environment [5]. 

The main contribution of the work is the synthesis of 

the circuit that computes the magnitude using the improved 

magnitude calculation algorithm. The synthesis encompasses 

the formulation and error analysis of the non-iterative 

division algorithm, magnitude error estimation and 

determination of the lengths of the binary arguments used 

within the algorithm. The proper lengths ensure that the 

maximum allowable error is not exceeded. 

In Section 2 the principle of the magnitude calculation 

algorithm is reviewed. In Section 3 we present the 

computation of r error and its impact on the overall accuracy 

of the magnitude calculation. In Section 4 the non-iterative 

division algorithm for computation of r is presented. Section 

5 contains the determination of reciprocal dynamic ranges 

for hardware realization that is shown in Section 6. Finally, 

results the synthesis results of magnitude calculator are 

presented in Section 7 and in Section 8 the discussion and 

comparison with other solutions is provided. 
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2. PRINCIPLE OF THE METHIOD 

 

The improved magnitude calculation algorithm has 

been described in detail in the accompanying paper [1]. The 

problem is to compute 22 QPR += , where P and 

Q represent the quadrature pair, i.e., the real and imaginary 

part. The method calls for the computation of 

( )QPx ,max= , ( )QPy ,min=  for ),( QP  pair, calculation 

of xyr /= , determination of  the i-th proper approximation 

region, based on r , and the proper pair ),( ii βα , ni ,..,2,1=  

and finally the computation of the magnitude as yx ii βα + . 

 

3. COMPUTATION OF r ERROR 

 

The adequate approximation region is selected using an 

estimate r̂  of r=y/x  for a given (x,y)  pair. We have 

 

rrr ε+=ˆ ,                                    (1) 

 

where rε  is the division error. In the following, we will 

discuss the sources and impact of this error. We start by 

considering the magnitude approximation error maxε  in the 

vicinity of the boundary of two regions, which is the sum of 

the algorithm approximation error maxe  and an error βαε ,  

due to the use of the ),( 11 ++ ii βα  pair of the neighboring 

region instead of the use ),( ii βα  of the proper region. The 

total error maxε can be expressed as 

 

βαεε ,maxmax += e ,                              (2) 

 

where βαε ,  for coefficients ),( ii βα  and ),( 11 ++ ii βα  of 

neighboring regions has the following form 
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Inserting rxy ⋅=  and rrr ε−= ˆ  into (3) we obtain  
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The general formula for n  regions has the following form 

 

.321                                                   

,)()(ˆ)( 111

,

,..,n,.,i

xrxx iiriiiii
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−+−−−= +++ ββεββααε βα

 (5) 

 

Moreover, at the common point at two adjacent 

approximation regions there is 

 

0)( 11 =−+− ++ iiiii r ββαα , ni ,...,3,2,1=  .   (6) 

 
Using (5) and (6) we obtain 

 

riii x εββε βα ⋅−⋅= + )( 1
, , ni ,...,3,2,1= .            (7) 

 

βαε ,
i attains its maximum for maxxx =  and 

)(max 1],1[max −∈ −= iinixx ββ . 

We remind that βαε ,
max,i  is a maximum error resulting 

from the use of 1+iα  instead of the correct 
1+iα . Hence for 

the given acceptable βαε ,
max,i , we may determine the upper 

bound of rε  which is given as 

 

)max( 1max

,
max,

+−
<

ii

i
r

x ββ
ε

ε
βα

, ],1[ ni ∈ .          (8) 

 

Remark that we impose the given upper bound for βαε ,
max,i . 

 

Example 1. Calculation of the lower bound of rε  for 

1211
max −=x  and )max( 1−− ii ββ , ]4,1[∈i . For four regions 

iβ  have the following values β1= 0.0983, β2= 0.2910, β3= 

0.4725, β4= 0.6359 (Table 1 from [1]). Using (8) for the 

assumed max
,

max %24.0 x⋅=βαε we receive  

 

2
10245.1

19273.02047

91.4 −⋅≅
⋅

<rε .          (9) 

 

 

4. NONITERATIVE DIVISION ALGORITHM  

    FOR COMPUTATION OF r 

 

Computation of r  requires general division which is 

implemented here by calculating first the approximate 

reciprocal xR /1ˆ ≅  with the subsequent multiplication yR ⋅ˆ . 

The reciprocal is computed using the algorithm from [4]. 

This algorithm relies upon decomposition of the m-bit binary 

representation of ],0[ maxxx ∈ , where 12max −= mx , into 

two shorter segments a and b, with 12 +−= kxxa  and 

lxb
2

=  with lkm += . Such approach allows to use 

smaller look-up tables for the reciprocal calculation. 

The principle of the division algorithm is given by the 

following formula 

 

)(

111

baa

b

abax
R

+⋅
−=

+
== .                (10) 

 

In order to compute the denominator of the right-hand 

term in (10) by the look-up table, m-bits would be required. 

But by replacing b by a certain constant 1K  only k-bits are 

needed 

 

)(

1ˆ

1Kaa

b

a
RR

+⋅
−=≅ .                      (11) 

 

Moreover, we assume that ],0[ max1 bK ∈ , 12max −= lb . 1K  

is a suitably chosen constant that minimizes the maximum 

error of replacing 
)(

1
baa +  by 

)(
1

1Kaa + . Now we shall 

evaluate the error rε  resulting from this simplification 
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ba

Kb

Kaa
RRr

/1)(

1ˆ 1

1 +
−−

+⋅
=−=ε .        (12) 

 

It is evident that rε  attains its maximum with respect 

to a for minaa =  and with respect to b for maxbb =  

 

maxmin

1max

1minmin

max

/1)(

1

ba

Kb

Kaa m

r +
−−

+⋅
=ε .     (13) 

 

In order to estimate max
rε , we have to multiply max

Rε  

by the maximum dividend maxy . We obtain 

 

max
maxmax yRr ⋅= εε .                          (14) 

 

First we shall review the simplified version of the 

method. This version does not give the sufficiently small 

reciprocal approximation error but it serves as an 

introduction to the final version. 

The reciprocal approximation error resulting from 

using 1K  instead of b is expressed as 

 

))((

)(
),,(ˆ

1

1
1

Kabaa

Kbb
KbaRR

++⋅
−⋅==− ε .              (15) 

 

As 1K  has to approximate b, it should belong to 

],0[ kb , where 12 −= k
kb  is the end of the interval. It is 

evident that ),,( 1Kbaε  is maximum with respect to a when 

minaa =  and with respect to b when kbb =  or for a certain 

maxbb = . Using (15) and minaa =  the maximum division 

error for the maximum dividend maxx  can be written as 

 

max1min
max ),,( xKbadiv ⋅= εε                   (16) 

 

The extreme of (26) with respect to maxb  is obtained as 

 

)( 1max Kaaab ++−= .              (17) 

 

Using maxb , we want to equalize the division error, at 

the endpoint of the interval kb  and at a certain internal point 

maxb  

 

),,(),,( 1min1maxmin KbaKba kεε =− .         (18) 

 

The condition of equalization can be expressed as using 

(18) 
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Inserting (17) into (19), we obtain the equation for 1K  

that allows to determine such 1K  that provides the 

fulfillment of (17) 
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Example 2. Computation of max
rε  for m=11, k=5 (binary 

length of a) and l=6 (binary length of b). Then for 

64min =a , 63max =b  and 366.491 =K we have  

 

4max 103.9
)366.4964(64

1

63/641

366.4963 −⋅=
+

⋅
+
−=Rε ………. 

 

In order to reduce the reciprocal approximation error, 

the term that approximates the error given by (12), can be 

used as the correction 
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1
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−≈

+
        (21) 

 

To compute the third term in (21), by the table look-up 

with the use of a only, b has been replaced by a second 

constant 2K . After applying the correction as in (21), the 

reciprocal approximation error has the following form 

 

))()((

)()(
),,,(

21

21
21

KaKabaa

bKbKb
KKba

+++⋅
−⋅−⋅=ε .       (22) 

 

Generally, we may receive an equiripple error 1ε  when 

the following conditions are fulfilled 

 

),,,(),,,( 21min1211maxmin1 KKbaKKba kεε = ,   (23a) 

),,,(),,,( 21min1212maxmin1 KKbaKKba kεε =− ,   (23b) 

 

where 1maxb  and 2maxb  are the locations of the extremes of 

the error function. To solve these equations we have to 

determine 1maxb  and 2maxb  as functions of 1K  and 2K . 

However, we shall apply here an simplified form that will 

lead to the satisfactory solution by assuming that kbK =2 . 

Computing the derivative of (22) we get 

 

2maxmin

2max212max2max

1maxmin

1max21max11max )()()()(

ba

bKKbb

ba

bKbKb

+
−⋅−⋅=

+
−⋅−⋅ .  (24)  

 

We shall determine the optimum 1K  using an iterative 

procedure by minimizing the difference between the left and 

right side of (24). Denoting the left side of (24) as )( 1KLε  

and the right side as )( 1KRε  we shall try to find ],0[1 kbK ∈  

that minimizes )()( 11 KK RL εε − . This means that we have 

to find an approximate solution of the 0)()( 11 =− KK RL εε . 

This equation was numerically solved using the bisection 

method. 

Next we shall calculate the values of extrema of 1ε . 

The approximate location of extrema is determined using the 

derivative of the nominator only. We have found that such 

way of determining of these extrema is sufficient with 

respect to the obtained maximum reciprocal error. The 

derivative of the nominator has the following form 

 

0)(23 2121
2 =++− KKbKKb .              (25) 

 

The solutions of (25) are equal to 
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3

)(
2
221

2
121

2max,1max

KKKKKK
b

+−±+
= ,      (26) 

 

but we shall use the approximate solution using kbK =2  

 

3

)(
2

21
2
11

2max,1max
kk bKKKbK

b
+−±+

≅  .   (27) 

 

Using (27) in (24) we will find approximate solution of 

0)()( 11 =− KK RL εε . 

Example 3. The computation of Rε  for the modified 

reciprocal approximation method. 

Regarding that 1ε  attains its extrema for 1maxb , 2maxb  

for minaa =  and 959.271 =K , we obtain the following 

value of )( 1max
max bRε  
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4
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k

k
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 .(29) 

 

The maximum of max
Rε  is attained for 

7649641maxmin1max =+=+= bax  and for 

11349642maxmin2max =+=+= bax . As it results from the 

principle of the alpha max and beta min algorithm the 

allowable dividend y is smaller than x at least by 1. Thus we 

have 751761max =−=y and 11211132max =−=y . Hence 

we receive the maximum approximation error of xyr /=  as 

019.0112maxmax =⋅= Rr εε . 

Having max
rε , we may determine the approximation 

error βαε ,
max  resulting from the using the approximate division 

 
max

1max
,

max )max( riix εββε βα
+−⋅= , ]4,1[∈i .       (30)  

 

Since 2max1max xx =  we receive 

 

41.0019.0192732.0112,
max =⋅⋅=βαε .            (31) 

 

We can also find the maximum percentage error of the 

magnitude introduced by the approximate division 

 

%25.0%100
113112

41.0

222
2max

2
2max

,
max,

max, =
+

=
+

=
yx

perc

βα
βα εε . (32) 

 

Concluding, we may remark that the used division 

algorithm does not substantially increase the magnitude 

approximation error (from 0.24% to 0.25%) resulting from 

the number of used approximation regions. 

 

5. RECIPROCAL DYNAMIC RANGES  

    FOR HARDWARE REALIZATION 

 

In the fixed-point hardware implementation of the 

algorithm the limited binary length of reciprocal 

representation introduces an additional magnitude 

approximation error. We would like to determine the 

relationship between binary lengths and an error value. 

In this section we shall determine the binary lengths of 

representations of terms on the right-hand side of (32). The 

allowable reciprocal errors )( 1max

max bRε  and )( 2max

max
bRε  

have been determined for the acceptable rε  as in (19). 

The reciprocal error in (21) can be expressed as 
 

321
)( 1 RRRR bKbb εεεε −++=                 (33) 

 

where 
iR

ε , 3,2,1=i  denote errors of the nominators of the 

individual terms in (21). It is evident that Rε  attains its 

maximum for maxbb = . Hence we have 

 

321
)( max1maxmax RRRR bKbb εεεε −++= .         (34) 

 

The lengths of binary representations of terms of (21) 

depend on the dynamic ranges and on 
iR

ε , 3,2,1=i . Rε  

must fulfill the inequality 

 

maxRR εε < ,                               (35) 

 

where 
maxRε  is a certain upper bound of the reciprocal error. 

We may introduce certain error distribution for 

individual terms in (34). For example, we may assign a 

certain allowable error to terms in (34), for example, as: 

2/
max1

RR
εε < , )(/1)4/( maxmax2

bRR
⋅< εε  and 

))(/1()4/( max1maxmax3
bKbRR

−⋅< εε . Regarding the form of 

the binary representation of each individual term in (21) we 

have to consider its maximum and minimum values. The 

maximum value is determined by the smallest value of each 

of the denominators in (21) and the minimum value depends 

on the allowable error. The intervals of representations of 

individual terms can be determined as follows 

 

1) for a/1  interval:  
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Example 4. Calculation of the minimum and maximum 

ranges of exponents in (47) - (49). 

Substituting 4
max 10717.1 −⋅=Rε , 959.271 =K , 

632 =K  and 63min =a  we have obtain: 

for 1) we get )2...2( 146 −− , 

for 2) we get )2...2( 196 −− , 

for 3) we get )2...2( 2310 −− . 

 

6. FPGA HARDWARE REALIZATION  

    OF MAGNITUDE CALCULATOR 

 

In this section we shall present a hardware realization 

of the magnitude calculator in the Xilinx FPGA 

environment. The alpha max plus beta min algorithm with 

four approximation regions has been chosen. For the 

hardware implementation of the algorithm we have to 

consider an additional error introduced by the limited 

precision of algorithm coefficients, as we mentioned earlier. 

This error may cause that the improper selection of r will 

lead to the selection of ),( βα  coefficients pair belonging to 

the neighboring interval instead of the right one. We remind 

that the maximum approximation error of the algorithm is 

0.24%.  

 
 
Fig. 1. Hardware implementation of magnitude calculator for four 

approximation regions 

 

The first step of the hardware implementation of the 

algorithm (Fig. 1) includes the determination of 

),max( QPMax =  and ),min( QPMin = . For this purpose 

subtraction of P-Q is performed using 12-bit two's 

complement binary adder (BA1). The sign of the sum is used 

to select Min and Max using two multiplexers MUX1 and 

MUX2. MUX1 selects Max and MUX2 selects Min. Once 

Max and Min are selected, the approximate reciprocal of 

Max is calculated within the RECP block and multiplied by 

Min using MULT4. The ranges of binary representation used 

in RECP block are given in Fig. 2. The product represents 

the approximate r. In the next step using r the adequate pair 

of ),( βα  is selected (LT6, LT7) and this pair is used to 

calculate the approximate magnitude (MULT6, MULT7 and 

BA3). 

 

 
 

Fig. 2. Binary vectors used within the RECP  

 

The crucial issue in hardware implementation is the 

computation of the approximate reciprocal of Max 

subsequently used for the computation of r. For this purpose 

the reciprocal determination algorithm from [4] was used. 

As shown in Section 5, the main goal of the algorithm is to 

decompose the binary representation of the divisor into two 

segments that can be used as the addresses of look-up tables 

utilized for computation of the reciprocal. In this way the 

look-up tables are smaller and faster. The m-bit binary 

representation of x is decomposed into one k-bit segment of 

msb bits and one m-k-bit segment of lsb bits. Such 

decomposition allows to compute the second term in (21) 

using only k bits and not m bits. If m=11 six-bit and five-bit 

look-up tables can be used in the RECP block. LT1 and LT2 

tables store values of 1/a and )(/1 1Kaa + . The values 

of ))((/1 21 KaKaa ++   are stored in LT3 and for the bK −1  

in LT4 and they are multiplied using the MULT3 multiplier. 

The required multiplication by b is performed using the 

MULT1 and MULT2. The product is subtracted by BA2 and 

finally, the value of Min/Max is obtained at the output of 

MULT4. 

It should be mentioned that the dynamic ranges for the 

reciprocal analyzed before, have a direct impact on the 

stored words in LT1 - LT4 and binary lengths of MULT1, 

MULT2, MULT3. It can be seen that the vectors 

representing binary values of each factor are shifted to the 

right by 6bits, 8bits and 10bits, respectively. The subtraction 

algorithm realized by BA2 is illustrated in (Fig. 2). 

According to the analysis performed earlier, it results that 

the assumed accuracy can be achieved using 14-bit output 

words in the RECP block. 

 

7. ANALYSIS OF HARDWARE COMPLEXITY AND 

TIME DELAY OF THE MAGNITUDE CALCULATOR 

 

In Table 1 the synthesis results of implementation of 

the magnitude calculator in the Virtex 6 FPGA 

6vcx75tff484-2 device are shown. The magnitude 

calculation requires three 4.48 ns clock cycles for three stage 

pipelining, and about 13.44 ns without pipelining. 
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Table 1. Hardware amount, delay and pipelining frequency of 

the magnitude calculator architecture for Xilinx FPGA 

 
Device utilization and 

timing 

Synthesis summary 

Number of slice registers 224 out of 93120 

Number of LUTs 118 out of 46560 

Number of DSP48E1s 6 out of 288 

Pipelining rate [ns] 4.48 

Maximum pipelining 

frequency [MHz] 

223.082 

Delay [ns] 13.44  

 

 

8. COMPARISON AND DISCUSSION 

 

Before we compare the new method with other 

solutions some general remarks have to be made. The alpha 

max plus beta min algorithm in its original version has the 

maximum error equal to 3.98%, whereas the extended 

version of the algorithm allows to reduce the error almost 

freely. The original version requires only two multiplications 

by a constant and one addition. This is advantageous for both 

the ASIC and FPGA technology. For the smaller number 

ranges, eg. 12-bit number range, the magnitude calculator 

can be implemented using combinational circuits only. In 

ASICs it allows to attain very high pipelining frequencies 

limited only by the FA delay and power consumption. For 

example, for 40 nm CMOS technology this delay is about 75 

ps [7], hence there are no architectural obstacles to attain 

gigahertz operating frequencies. The extended version of the 

algorithm calls for one additional division. In order to avoid 

the iterative realization, eg. using the digital recurrence or 

Newton-Raphson method [8], a non-iterative multiplicative 

division has been applied to reduce the delay and retain high 

pipelining rate. Now we shall compare the results from 

Table 1 with other solutions. In general, we may distinguish 

two approaches to magnitude calculation. With the direct 

approach the magnitude is computed for the given arguments 

as one stage process, while with the indirect approach 

initially the sum of squares of arguments is computed and 

next square rooting is performed. The algorithm presented in 

this work uses the former approach. A solution using the 

CORDIC algorithm was presented by the authors in [8]. The 

circuit uses five CORDIC iterations and requires 203 LUTs, 

the delay is equal to 10.035 ns that corresponds to the 

maximum pipelining frequency of about 100 MHz. The 

delay is smaller than that for the new method but at the cost 

of the maximum error equal to 2.48. This error could be 

reduced but at the cost of additional CORDIC iterations that 

would increase the delay. 

For the purpose of comparison with indirect methods 

we shall review selected square-rooting algorithms only 

because the square-rooter and adder is the common part and 

we shall assume that it is implemented with three Xilinx 

DSP48E1. In dependence upon the Virtex 6 FPGA speed 

grade the delay belongs to the interval [1.66, 2.22] ns. 

Assuming speed grade -1 we have tDSP48E1=2.22 ns. 

Therefore the total delay of the square rooter and adder is 

equal to tsqradd=4.44 ns. 

As the first example we shall shortly analyze square 

rooting using the Xilinx CORDIC IP core [6]. For magnitude 

calculation the real and imaginary parts have to be squared 

and added. It can be easily verified by numerical simulation 

of the CORDIC algorithm and 16-bit fixed-point arithmetic 

that to achieve the accuracy of 1ulp 12 iterations are needed. 

The Xilinx CORDIC core can operate with the maximum 

clock frequency of 339 MHz, which gives a 2.94 ns clock 

cycle. Assuming that one iteration requires 16-bit addition 

and 1-bit shift and is performed in one clock cycle, we 

obtain for 12 iterations the delay equal to 

nsnsnsnstsqradd 72.3928.3544.494.212 =+=⋅+ . 

The hardware amount of this core for square rooting is about 

461 LUTs.  
We shall also make a comparison with the CORDIC 

square-root realization in Altera Cyclone V that belongs to 

the similar FPGA class as the Xilinx Virtex 5. The operating 

frequency of NCO CORDIC IP Core is equal to 260 MHz 

and 838 ALMs [9] are needed. (ALM corresponds roughly 

to Xilinx LUT). The delay is equal to 2N+2 clock cycles 

where N is precision of magnitude in bits. For N=12 we 

receive 28 clock cycles, that gives the delay of 130 ns.  

In [8] the results obtained for floating-point square 

rooting for numbers with 8-bit exponent and 23-bit mantissa 

in Virtex 4 4vfx100 have been given. The number of 

iterations was 25. The algorithm required 28 cycles for 

LogiCore with clock frequency 353 MHz and hardware 

amount of 464 slices (928 LUTs). 

It can be concluded from the above that the new method 

has decisively smaller delay than iterative methods. 

Nevertheless, the hardware amount is comparable. Although 

the number of LUTs is much smaller but three DSP48E1 

have been used. The important feature of the new circuit is 

also the feature, that the pipelining frequency can be 

increased by inserting additional pipeline register layers 

between the stages.  

 

9. SUMMARY 

 

The paper presents an implementation of the improved 

version of alpha max plus beta min algorithm for non-

iterative calculation of the magnitude of complex numbers 

presented in [1]. This algorithm allows to control the 

magnitude approximation error but the total computation 

error in hardware is determined by the error resulting from 

the division algorithm and finite representations of internal 

signals used in the hardware implementation. We analyze in 

detail the error of division algorithm and the impact of finite 

word-length signal representations on the assumed total 

computation error. The error analysis is performed to 

determine such binary length of operands at each stage of the 

magnitude calculator, so that the assumed total error is not 

exceeded. We presented Xilinx FPGA implementation with 

the calculation delay about 14 ns. It is worthwhile to 

mention that the delay of the original Xilinx CORDIC IP 

core delay for magnitude calculation is about 35.28 ns.  
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IMPLEMENTACJA SPRZĘTOWA OBLICZANIA MODUŁU LICZBY ZESPOLONEJ  

Z WYKORZYSTANIEM ULEPSZONEGO ALGORYTMU  

ALPHA MAX PLUS BETA MIN 
 

W artykule przedstawiono układową implementację ulepszonego algorytmu wyznaczania modułu liczby zespolonej. 

Wersja ta wymaga realizacji dzielenia sprzętowego. Zaproponowano wykorzystanie własnej nieiteracyjnej metody dzielenia. 

Wykonano szczegółową analizę algorytmu dzielenia pod kątem wyznaczenia wpływu skończonej długości reprezentacji 

binarnych sygnału wejściowego i sygnałów wewnętrznych układu na całkowity błąd dzielenia. Oszacowano również błąd 

całkowity obliczania modułu liczby zespolonej wynikający z wykorzystania nieiteracyjnej metody dzielenia. Ostatecznie 

wyprowadzono zależności pozwalające na dobór długości binarnej reprezentacji współczynników algorytmu dzielenia, przy 

której nie zostanie przekroczony maksymalny błąd obliczania modułu wynikający z właściwości numerycznych. Finalnie 

przedstawiono realizację rozwiązania układowego dedykowanego dla FPGA wraz z wynikiem syntezy w środowisku Xilinx. 

 

Słowa kluczowe: algorytm alfa max beta min, moduł liczby zespolonej, FPGA. 
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