

Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej Nr 51

XXVI Seminarium

ZASTOSOWANIE KOMPUTERÓW W NAUCE I TECHNICE 2016

Oddział Gdański PTETiS

IMPLEMENTATION OF MAGNITUDE CALCULATION OF COMPLEX NUMBERS USING

IMPROVED ALPHA MAX PLUS BETA MIN ALGORITHM

Robert SMYK
1
, Maciej CZYŻAK

2

1. Politechnika Gdańska, Wydział Elektrotechniki i Automatyki

tel.: +48 58 347 13 32 e-mail: robert.smyk@pg.gda.pl

2. Politechnika Gdańska, Wydział Elektrotechniki i Automatyki

tel.: +48 58 347 15 02 e-mail: maciej.czyzak@pg.gda.pl

Abstract: The paper presents the hardware implementation of the

improved alpha max plus beta min algorithm for calculating the

magnitude of complex numbers. This version of the algorithm

requires the general division which is performed using a non-

iterative multiplicative division algorithm. We analyze in detail the

division algorithm, its error and the impact of finite word-length

signal representations on the assumed total computation error. An

analysis is performed to determine the binary length of operands at

each stage of the magnitude calculator in order not to exceed the

assumed total error. An FPGA implementation is presented along

with its hardware requirement and delay.

Keywords: alpha max plus beta min algorithm, complex numbers

magnitude, FPGA.

1. INTRODUCTION

Processing of digital complex signals may require the

computation of magnitude and/or phase. In [1] we have

presented a magnitude calculation algorithm being an

extended and improved version of alpha max and beta min

algorithm [2]. The new form allows to control accuracy of

magnitude approximation by dividing the approximation

interval into a certain number of subintervals called

approximation regions. By increasing .the number of regions

we may reduce the approximation error. Prior to

implementation the number of regions has to be chosen

which provides an acceptable maximum approximation

error. During operation of the magnitude calculator the

selection of the proper region is performed which determines

the pair of coefficients used for magnitude calculation. For

this purpose the quotient r=y/x is used, where y is the

imaginary part of the complex number and x the real part.

This quotient r is computed using a non-iterative

multiplicative division algorithm. In this algorithm an

extended version of the reciprocal computation algorithm

has been applied in order to limit the quotient approximation

error. However, the hardware implementation requires the

detailed analysis of all possible error sources. The total error

resulting from using the algorithm from [1] has two

components. The first one is the approximation error and the

second is the incorrect region choice error. The first depends

on the number of regions assumed for implementation. The

second error results from the erroneous choice of the

neighboring region instead of the correct one. The

approximation error can be controlled only by increasing

number of approximation regions, while the region choice

error depends on accuracy of the estimate r̂ of r for the

given ()yx , pair. It can be remarked that the use of the

standard division would be ineffective because of its

computational complexity. We have applied the non-iterative

division algorithm [4] that requires only four table look-up’s,

one addition and three multiplications. The division problem

in this case is simplified because the dynamic range of both

parts of the complex signal is usually limited to 12-bits in

high-speed DSP systems. The primary application of the

considered magnitude calculator can be at the output of the

high speed FFT processor. However, the dynamic range in

the presented implementation can be easily extended, for

example, to 16 bits.

The magnitude approximation algorithm has been

implemented using 12-bit fixed point arithmetic. The applied

approach allows to compute the quotient with the maximum

error not exceeding 0.3%. An analysis of the influence of the

improper choice of the approximation region and its

application for the determination of divider parameters is

given. Additionally, we analyze the hardware

implementation of the magnitude calculator in order to

assess its amount of hardware and maximum attainable

pipelining frequency. These parameters have been obtained

from the synthesis for the FPGA using the VHDL

description in the Xilinx environment [5].

The main contribution of the work is the synthesis of

the circuit that computes the magnitude using the improved

magnitude calculation algorithm. The synthesis encompasses

the formulation and error analysis of the non-iterative

division algorithm, magnitude error estimation and

determination of the lengths of the binary arguments used

within the algorithm. The proper lengths ensure that the

maximum allowable error is not exceeded.

In Section 2 the principle of the magnitude calculation

algorithm is reviewed. In Section 3 we present the

computation of r error and its impact on the overall accuracy

of the magnitude calculation. In Section 4 the non-iterative

division algorithm for computation of r is presented. Section

5 contains the determination of reciprocal dynamic ranges

for hardware realization that is shown in Section 6. Finally,

results the synthesis results of magnitude calculator are

presented in Section 7 and in Section 8 the discussion and

comparison with other solutions is provided.

174 Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki PG, ISSN 2353-1290, Nr 51/2016

2. PRINCIPLE OF THE METHIOD

The improved magnitude calculation algorithm has

been described in detail in the accompanying paper [1]. The

problem is to compute 22 QPR += , where P and

Q represent the quadrature pair, i.e., the real and imaginary

part. The method calls for the computation of

()QPx ,max= , ()QPy ,min= for),(QP pair, calculation

of xyr /= , determination of the i-th proper approximation

region, based on r , and the proper pair),(ii βα , ni ,..,2,1=

and finally the computation of the magnitude as yx ii βα + .

3. COMPUTATION OF r ERROR

The adequate approximation region is selected using an

estimate r̂ of r=y/x for a given (x,y) pair. We have

rrr ε+=ˆ , (1)

where rε is the division error. In the following, we will

discuss the sources and impact of this error. We start by

considering the magnitude approximation error maxε in the

vicinity of the boundary of two regions, which is the sum of

the algorithm approximation error maxe and an error βαε ,

due to the use of the),(11 ++ ii βα pair of the neighboring

region instead of the use),(ii βα of the proper region. The

total error maxε can be expressed as

βαεε ,maxmax += e , (2)

where βαε , for coefficients),(ii βα and),(11 ++ ii βα of

neighboring regions has the following form

)()(

)(

11

11,

++

++

−+−=

+−+=

iiii

iiii

yx

yxyx

ββαα
βαβαε βα

 . (3)

Inserting rxy ⋅= and rrr ε−= ˆ into (3) we obtain

)))(ˆ()((

))()((

11

11,

++

++

−−−−=

−−−=

iirii

iiii

rx

rx

ββεαα
ββααε βα . (4)

The general formula for n regions has the following form

.321

,)()(ˆ)(111

,

,..,n,.,i

xrxx iiriiiii

=
−+−−−= +++ ββεββααε βα

 (5)

Moreover, at the common point at two adjacent

approximation regions there is

0)(11 =−+− ++ iiiii r ββαα , ni ,...,3,2,1= . (6)

Using (5) and (6) we obtain

riii x εββε βα ⋅−⋅= +)(1
, , ni ,...,3,2,1= . (7)

βαε ,
i attains its maximum for maxxx = and

)(max 1],1[max −∈ −= iinixx ββ .

We remind that βαε ,
max,i is a maximum error resulting

from the use of 1+iα instead of the correct
1+iα . Hence for

the given acceptable βαε ,
max,i , we may determine the upper

bound of rε which is given as

)max(1max

,
max,

+−
<

ii

i
r

x ββ
ε

ε
βα

,],1[ni ∈ . (8)

Remark that we impose the given upper bound for βαε ,
max,i .

Example 1. Calculation of the lower bound of rε for

1211
max −=x and)max(1−− ii ββ ,]4,1[∈i . For four regions

iβ have the following values β1= 0.0983, β2= 0.2910, β3=

0.4725, β4= 0.6359 (Table 1 from [1]). Using (8) for the

assumed max
,

max %24.0 x⋅=βαε we receive

2
10245.1

19273.02047

91.4 −⋅≅
⋅

<rε . (9)

4. NONITERATIVE DIVISION ALGORITHM

 FOR COMPUTATION OF r

Computation of r requires general division which is

implemented here by calculating first the approximate

reciprocal xR /1ˆ ≅ with the subsequent multiplication yR ⋅ˆ .

The reciprocal is computed using the algorithm from [4].

This algorithm relies upon decomposition of the m-bit binary

representation of],0[maxxx ∈ , where 12max −= mx , into

two shorter segments a and b, with 12 +−= kxxa and

lxb
2

= with lkm += . Such approach allows to use

smaller look-up tables for the reciprocal calculation.

The principle of the division algorithm is given by the

following formula

)(

111

baa

b

abax
R

+⋅
−=

+
== . (10)

In order to compute the denominator of the right-hand

term in (10) by the look-up table, m-bits would be required.

But by replacing b by a certain constant 1K only k-bits are

needed

)(

1ˆ

1Kaa

b

a
RR

+⋅
−=≅ . (11)

Moreover, we assume that],0[max1 bK ∈ , 12max −= lb . 1K

is a suitably chosen constant that minimizes the maximum

error of replacing
)(

1
baa + by

)(
1

1Kaa + . Now we shall

evaluate the error rε resulting from this simplification

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki PG, ISSN 2353-1290, Nr 51/2016 175

ba

Kb

Kaa
RRr

/1)(

1ˆ 1

1 +
−−

+⋅
=−=ε . (12)

It is evident that rε attains its maximum with respect

to a for minaa = and with respect to b for maxbb =

maxmin

1max

1minmin

max

/1)(

1

ba

Kb

Kaa m

r +
−−

+⋅
=ε . (13)

In order to estimate max
rε , we have to multiply max

Rε

by the maximum dividend maxy . We obtain

max
maxmax yRr ⋅= εε . (14)

First we shall review the simplified version of the

method. This version does not give the sufficiently small

reciprocal approximation error but it serves as an

introduction to the final version.

The reciprocal approximation error resulting from

using 1K instead of b is expressed as

))((

)(
),,(ˆ

1

1
1

Kabaa

Kbb
KbaRR

++⋅
−⋅==− ε . (15)

As 1K has to approximate b, it should belong to

],0[kb , where 12 −= k
kb is the end of the interval. It is

evident that),,(1Kbaε is maximum with respect to a when

minaa = and with respect to b when kbb = or for a certain

maxbb = . Using (15) and minaa = the maximum division

error for the maximum dividend maxx can be written as

max1min
max),,(xKbadiv ⋅= εε (16)

The extreme of (26) with respect to maxb is obtained as

)(1max Kaaab ++−= . (17)

Using maxb , we want to equalize the division error, at

the endpoint of the interval kb and at a certain internal point

maxb

),,(),,(1min1maxmin KbaKba kεε =− . (18)

The condition of equalization can be expressed as using

(18)

k

kk

ba

Kbb

ba

Kbb

+
−=

+
−−

min

1

maxmin

1maxmax)()(
. (19)

Inserting (17) into (19), we obtain the equation for 1K

that allows to determine such 1K that provides the

fulfillment of (17)

0
4

44
4244

1
2
min

4

min

3
2

12
min

3

min

2
2
12

min

2

min

=+−−













+−+














++

a

b

a

b
bKb

a

b

a

b
K

a

b

a

b kk
kk

kkkk . (20)

Example 2. Computation of max
rε for m=11, k=5 (binary

length of a) and l=6 (binary length of b). Then for

64min =a , 63max =b and 366.491 =K we have

4max 103.9
)366.4964(64

1

63/641

366.4963 −⋅=
+

⋅
+
−=Rε ……….

In order to reduce the reciprocal approximation error,

the term that approximates the error given by (12), can be

used as the correction

))((

)(

)(

111

21

1

1 KaKaa

bKb

Kaaaba ++
−−

+⋅
−≈

+
 (21)

To compute the third term in (21), by the table look-up

with the use of a only, b has been replaced by a second

constant 2K . After applying the correction as in (21), the

reciprocal approximation error has the following form

))()((

)()(
),,,(

21

21
21

KaKabaa

bKbKb
KKba

+++⋅
−⋅−⋅=ε . (22)

Generally, we may receive an equiripple error 1ε when

the following conditions are fulfilled

),,,(),,,(21min1211maxmin1 KKbaKKba kεε = , (23a)

),,,(),,,(21min1212maxmin1 KKbaKKba kεε =− , (23b)

where 1maxb and 2maxb are the locations of the extremes of

the error function. To solve these equations we have to

determine 1maxb and 2maxb as functions of 1K and 2K .

However, we shall apply here an simplified form that will

lead to the satisfactory solution by assuming that kbK =2 .

Computing the derivative of (22) we get

2maxmin

2max212max2max

1maxmin

1max21max11max)()()()(

ba

bKKbb

ba

bKbKb

+
−⋅−⋅=

+
−⋅−⋅ . (24)

We shall determine the optimum 1K using an iterative

procedure by minimizing the difference between the left and

right side of (24). Denoting the left side of (24) as)(1KLε

and the right side as)(1KRε we shall try to find],0[1 kbK ∈

that minimizes)()(11 KK RL εε − . This means that we have

to find an approximate solution of the 0)()(11 =− KK RL εε .

This equation was numerically solved using the bisection

method.

Next we shall calculate the values of extrema of 1ε .

The approximate location of extrema is determined using the

derivative of the nominator only. We have found that such

way of determining of these extrema is sufficient with

respect to the obtained maximum reciprocal error. The

derivative of the nominator has the following form

0)(23 2121
2 =++− KKbKKb . (25)

The solutions of (25) are equal to

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

176 Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki PG, ISSN 2353-1290, Nr 51/2016

3

)(
2
221

2
121

2max,1max

KKKKKK
b

+−±+
= , (26)

but we shall use the approximate solution using kbK =2

3

)(
2

21
2
11

2max,1max
kk bKKKbK

b
+−±+

≅ . (27)

Using (27) in (24) we will find approximate solution of

0)()(11 =− KK RL εε .

Example 3. The computation of Rε for the modified

reciprocal approximation method.

Regarding that 1ε attains its extrema for 1maxb , 2maxb

for minaa = and 959.271 =K , we obtain the following

value of)(1max
max bRε

4

2maxminmin1minmin

1max11max
1max

max

1071741.1

)09.12/641)(6364)(959.2764(64

)6309.12)(959.2709.12(

)/1)()((

))((
)(

−⋅=

+++
−−=

+++
−−=

babaKaa

bbKb
b

k

k
Rε

, (28)

and

4

2maxminmin1minmin

2max12max
2max

max

1071731.1

)54.48/641)(6364)(959.2764(64

)6354.48)(959.2754.48(

)/1)()((

))((
)(

−⋅=
+++

−−=

+++
−−=

babaKaa

bbKb
b

k

k
Rε

 .(29)

The maximum of max
Rε is attained for

7649641maxmin1max =+=+= bax and for

11349642maxmin2max =+=+= bax . As it results from the

principle of the alpha max and beta min algorithm the

allowable dividend y is smaller than x at least by 1. Thus we

have 751761max =−=y and 11211132max =−=y . Hence

we receive the maximum approximation error of xyr /= as

019.0112maxmax =⋅= Rr εε .

Having max
rε , we may determine the approximation

error βαε ,
max resulting from the using the approximate division

max

1max
,

max)max(riix εββε βα
+−⋅= ,]4,1[∈i . (30)

Since 2max1max xx = we receive

41.0019.0192732.0112,
max =⋅⋅=βαε . (31)

We can also find the maximum percentage error of the

magnitude introduced by the approximate division

%25.0%100
113112

41.0

222
2max

2
2max

,
max,

max, =
+

=
+

=
yx

perc

βα
βα εε . (32)

Concluding, we may remark that the used division

algorithm does not substantially increase the magnitude

approximation error (from 0.24% to 0.25%) resulting from

the number of used approximation regions.

5. RECIPROCAL DYNAMIC RANGES

 FOR HARDWARE REALIZATION

In the fixed-point hardware implementation of the

algorithm the limited binary length of reciprocal

representation introduces an additional magnitude

approximation error. We would like to determine the

relationship between binary lengths and an error value.

In this section we shall determine the binary lengths of

representations of terms on the right-hand side of (32). The

allowable reciprocal errors)(1max

max bRε and)(2max

max
bRε

have been determined for the acceptable rε as in (19).

The reciprocal error in (21) can be expressed as

321
)(1 RRRR bKbb εεεε −++= (33)

where
iR

ε , 3,2,1=i denote errors of the nominators of the

individual terms in (21). It is evident that Rε attains its

maximum for maxbb = . Hence we have

321
)(max1maxmax RRRR bKbb εεεε −++= . (34)

The lengths of binary representations of terms of (21)

depend on the dynamic ranges and on
iR

ε , 3,2,1=i . Rε

must fulfill the inequality

maxRR εε < , (35)

where
maxRε is a certain upper bound of the reciprocal error.

We may introduce certain error distribution for

individual terms in (34). For example, we may assign a

certain allowable error to terms in (34), for example, as:

2/
max1

RR
εε < ,)(/1)4/(maxmax2

bRR
⋅< εε and

))(/1()4/(max1maxmax3
bKbRR

−⋅< εε . Regarding the form of

the binary representation of each individual term in (21) we

have to consider its maximum and minimum values. The

maximum value is determined by the smallest value of each

of the denominators in (21) and the minimum value depends

on the allowable error. The intervals of representations of

individual terms can be determined as follows

1) for a/1 interval:

   




 −− 2/log maxmin2 2,2 Ra ε

 (36)

2) for)(/ 1max Kaab + interval:



























−







 +
−

max

max

max

1minmin
2 4

)(
log

2,2
bb

Kaa Rε

 (37)

3) for
))((

)(

2min1minmin

max1max

KaKaa

bKb

++
+

 interval:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki PG, ISSN 2353-1290, Nr 51/2016 177




























−
−









+
++

−
||4)(

))((
log

max1max

max

max1max

2min1minmin
2

2,2
bKbbKb

KaKaa Rε

 (38)

Example 4. Calculation of the minimum and maximum

ranges of exponents in (47) - (49).

Substituting 4
max 10717.1 −⋅=Rε , 959.271 =K ,

632 =K and 63min =a we have obtain:

for 1) we get)2...2(146 −− ,

for 2) we get)2...2(196 −− ,

for 3) we get)2...2(2310 −− .

6. FPGA HARDWARE REALIZATION

 OF MAGNITUDE CALCULATOR

In this section we shall present a hardware realization

of the magnitude calculator in the Xilinx FPGA

environment. The alpha max plus beta min algorithm with

four approximation regions has been chosen. For the

hardware implementation of the algorithm we have to

consider an additional error introduced by the limited

precision of algorithm coefficients, as we mentioned earlier.

This error may cause that the improper selection of r will

lead to the selection of),(βα coefficients pair belonging to

the neighboring interval instead of the right one. We remind

that the maximum approximation error of the algorithm is

0.24%.

Fig. 1. Hardware implementation of magnitude calculator for four

approximation regions

The first step of the hardware implementation of the

algorithm (Fig. 1) includes the determination of

),max(QPMax = and),min(QPMin = . For this purpose

subtraction of P-Q is performed using 12-bit two's

complement binary adder (BA1). The sign of the sum is used

to select Min and Max using two multiplexers MUX1 and

MUX2. MUX1 selects Max and MUX2 selects Min. Once

Max and Min are selected, the approximate reciprocal of

Max is calculated within the RECP block and multiplied by

Min using MULT4. The ranges of binary representation used

in RECP block are given in Fig. 2. The product represents

the approximate r. In the next step using r the adequate pair

of),(βα is selected (LT6, LT7) and this pair is used to

calculate the approximate magnitude (MULT6, MULT7 and

BA3).

Fig. 2. Binary vectors used within the RECP

The crucial issue in hardware implementation is the

computation of the approximate reciprocal of Max

subsequently used for the computation of r. For this purpose

the reciprocal determination algorithm from [4] was used.

As shown in Section 5, the main goal of the algorithm is to

decompose the binary representation of the divisor into two

segments that can be used as the addresses of look-up tables

utilized for computation of the reciprocal. In this way the

look-up tables are smaller and faster. The m-bit binary

representation of x is decomposed into one k-bit segment of

msb bits and one m-k-bit segment of lsb bits. Such

decomposition allows to compute the second term in (21)

using only k bits and not m bits. If m=11 six-bit and five-bit

look-up tables can be used in the RECP block. LT1 and LT2

tables store values of 1/a and)(/1 1Kaa + . The values

of))((/1 21 KaKaa ++ are stored in LT3 and for the bK −1

in LT4 and they are multiplied using the MULT3 multiplier.

The required multiplication by b is performed using the

MULT1 and MULT2. The product is subtracted by BA2 and

finally, the value of Min/Max is obtained at the output of

MULT4.

It should be mentioned that the dynamic ranges for the

reciprocal analyzed before, have a direct impact on the

stored words in LT1 - LT4 and binary lengths of MULT1,

MULT2, MULT3. It can be seen that the vectors

representing binary values of each factor are shifted to the

right by 6bits, 8bits and 10bits, respectively. The subtraction

algorithm realized by BA2 is illustrated in (Fig. 2).

According to the analysis performed earlier, it results that

the assumed accuracy can be achieved using 14-bit output

words in the RECP block.

7. ANALYSIS OF HARDWARE COMPLEXITY AND

TIME DELAY OF THE MAGNITUDE CALCULATOR

In Table 1 the synthesis results of implementation of

the magnitude calculator in the Virtex 6 FPGA

6vcx75tff484-2 device are shown. The magnitude

calculation requires three 4.48 ns clock cycles for three stage

pipelining, and about 13.44 ns without pipelining.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

178 Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki PG, ISSN 2353-1290, Nr 51/2016

Table 1. Hardware amount, delay and pipelining frequency of

the magnitude calculator architecture for Xilinx FPGA

Device utilization and

timing

Synthesis summary

Number of slice registers 224 out of 93120

Number of LUTs 118 out of 46560

Number of DSP48E1s 6 out of 288

Pipelining rate [ns] 4.48

Maximum pipelining

frequency [MHz]

223.082

Delay [ns] 13.44

8. COMPARISON AND DISCUSSION

Before we compare the new method with other

solutions some general remarks have to be made. The alpha

max plus beta min algorithm in its original version has the

maximum error equal to 3.98%, whereas the extended

version of the algorithm allows to reduce the error almost

freely. The original version requires only two multiplications

by a constant and one addition. This is advantageous for both

the ASIC and FPGA technology. For the smaller number

ranges, eg. 12-bit number range, the magnitude calculator

can be implemented using combinational circuits only. In

ASICs it allows to attain very high pipelining frequencies

limited only by the FA delay and power consumption. For

example, for 40 nm CMOS technology this delay is about 75

ps [7], hence there are no architectural obstacles to attain

gigahertz operating frequencies. The extended version of the

algorithm calls for one additional division. In order to avoid

the iterative realization, eg. using the digital recurrence or

Newton-Raphson method [8], a non-iterative multiplicative

division has been applied to reduce the delay and retain high

pipelining rate. Now we shall compare the results from

Table 1 with other solutions. In general, we may distinguish

two approaches to magnitude calculation. With the direct

approach the magnitude is computed for the given arguments

as one stage process, while with the indirect approach

initially the sum of squares of arguments is computed and

next square rooting is performed. The algorithm presented in

this work uses the former approach. A solution using the

CORDIC algorithm was presented by the authors in [8]. The

circuit uses five CORDIC iterations and requires 203 LUTs,

the delay is equal to 10.035 ns that corresponds to the

maximum pipelining frequency of about 100 MHz. The

delay is smaller than that for the new method but at the cost

of the maximum error equal to 2.48. This error could be

reduced but at the cost of additional CORDIC iterations that

would increase the delay.

For the purpose of comparison with indirect methods

we shall review selected square-rooting algorithms only

because the square-rooter and adder is the common part and

we shall assume that it is implemented with three Xilinx

DSP48E1. In dependence upon the Virtex 6 FPGA speed

grade the delay belongs to the interval [1.66, 2.22] ns.

Assuming speed grade -1 we have tDSP48E1=2.22 ns.

Therefore the total delay of the square rooter and adder is

equal to tsqradd=4.44 ns.

As the first example we shall shortly analyze square

rooting using the Xilinx CORDIC IP core [6]. For magnitude

calculation the real and imaginary parts have to be squared

and added. It can be easily verified by numerical simulation

of the CORDIC algorithm and 16-bit fixed-point arithmetic

that to achieve the accuracy of 1ulp 12 iterations are needed.

The Xilinx CORDIC core can operate with the maximum

clock frequency of 339 MHz, which gives a 2.94 ns clock

cycle. Assuming that one iteration requires 16-bit addition

and 1-bit shift and is performed in one clock cycle, we

obtain for 12 iterations the delay equal to

nsnsnsnstsqradd 72.3928.3544.494.212 =+=⋅+ .

The hardware amount of this core for square rooting is about

461 LUTs.
We shall also make a comparison with the CORDIC

square-root realization in Altera Cyclone V that belongs to

the similar FPGA class as the Xilinx Virtex 5. The operating

frequency of NCO CORDIC IP Core is equal to 260 MHz

and 838 ALMs [9] are needed. (ALM corresponds roughly

to Xilinx LUT). The delay is equal to 2N+2 clock cycles

where N is precision of magnitude in bits. For N=12 we

receive 28 clock cycles, that gives the delay of 130 ns.

In [8] the results obtained for floating-point square

rooting for numbers with 8-bit exponent and 23-bit mantissa

in Virtex 4 4vfx100 have been given. The number of

iterations was 25. The algorithm required 28 cycles for

LogiCore with clock frequency 353 MHz and hardware

amount of 464 slices (928 LUTs).

It can be concluded from the above that the new method

has decisively smaller delay than iterative methods.

Nevertheless, the hardware amount is comparable. Although

the number of LUTs is much smaller but three DSP48E1

have been used. The important feature of the new circuit is

also the feature, that the pipelining frequency can be

increased by inserting additional pipeline register layers

between the stages.

9. SUMMARY

The paper presents an implementation of the improved

version of alpha max plus beta min algorithm for non-

iterative calculation of the magnitude of complex numbers

presented in [1]. This algorithm allows to control the

magnitude approximation error but the total computation

error in hardware is determined by the error resulting from

the division algorithm and finite representations of internal

signals used in the hardware implementation. We analyze in

detail the error of division algorithm and the impact of finite

word-length signal representations on the assumed total

computation error. The error analysis is performed to

determine such binary length of operands at each stage of the

magnitude calculator, so that the assumed total error is not

exceeded. We presented Xilinx FPGA implementation with

the calculation delay about 14 ns. It is worthwhile to

mention that the delay of the original Xilinx CORDIC IP

core delay for magnitude calculation is about 35.28 ns.

10. REFERENCES

1. Smyk R., Czyżak M.: Improved magnitude estimation

of complex numbers using alpha max plus beta min

algorithm, this issue.

2. Czyzak, M.; Smyk, R.: FPGA realization of an

improved alpha max plus beta min algorithm. Poznan

University of Technology Academic Journals. Electrical

Engineering 2014, 80, pp. 151-160.

3. Filip, A.: Linear approximations to
22 yx + having

equiripple error characteristics. IEEE Transactions on

Audio and Electroacoustics 1973, 21, pp. 554–556.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki PG, ISSN 2353-1290, Nr 51/2016 179

4. Czyzak, M.: Improved residue noniterative division for

small numer ranges. International Scientific Conference

on Computer Science and Engineering, Košice - Stará

Lubovňa, Slovakia, September 20 - 22, pp. 178-185,

2010.

5. Xilinx Inc.: UG631 ISE Design Suite 14: Release Notes,
Installation, and Licensing, October 2013.

6. Xilinx Inc. LogiCORE IP CORDIC v4.0. Product

specification, 2011.

7. Zhang Y. et. al, Current-induced magnetic switching

for high-performance computing in Spintronics-based

computing, Eds. Zhao W., Prenat G., Springer, 2015.

8. De Dinechin F., Joldes M., Pasca B., Revy G.,

Multiplicative square root algorithms for FPGAs. 2010

International Conference on Field Programmable Logic

and Applications (FPL), 31 Aug.-2 Sept.,2010, pp.574-

577.

9. Altera, NCO IP Core User Guide, issued 2014.12.15.

IMPLEMENTACJA SPRZĘTOWA OBLICZANIA MODUŁU LICZBY ZESPOLONEJ

Z WYKORZYSTANIEM ULEPSZONEGO ALGORYTMU

ALPHA MAX PLUS BETA MIN

W artykule przedstawiono układową implementację ulepszonego algorytmu wyznaczania modułu liczby zespolonej.

Wersja ta wymaga realizacji dzielenia sprzętowego. Zaproponowano wykorzystanie własnej nieiteracyjnej metody dzielenia.

Wykonano szczegółową analizę algorytmu dzielenia pod kątem wyznaczenia wpływu skończonej długości reprezentacji

binarnych sygnału wejściowego i sygnałów wewnętrznych układu na całkowity błąd dzielenia. Oszacowano również błąd

całkowity obliczania modułu liczby zespolonej wynikający z wykorzystania nieiteracyjnej metody dzielenia. Ostatecznie

wyprowadzono zależności pozwalające na dobór długości binarnej reprezentacji współczynników algorytmu dzielenia, przy

której nie zostanie przekroczony maksymalny błąd obliczania modułu wynikający z właściwości numerycznych. Finalnie

przedstawiono realizację rozwiązania układowego dedykowanego dla FPGA wraz z wynikiem syntezy w środowisku Xilinx.

Słowa kluczowe: algorytm alfa max beta min, moduł liczby zespolonej, FPGA.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

