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The Earth observation satellite imaging systems have known limitations, especially 

regarding their spatial and temporal resolution. Therefore, approaches which aim to combine 
data retrieved from sensors of higher temporal and lower spatial resolution with the data 
characterized by lower temporal but higher spatial resolution are of high interest. This allows 
for joint utilization of the advantages of  both these types of sensors. As there are several 
ways to achieve this goal, in this paper two approaches, direct and inverse, of downscaling 
the land surface temperature (LST) derived from low resolution imagery acquired by the 
Advanced Very High Resolution Radiometer (AVHRR) were evaluated. The applied 
downscaling methods utilize biophysical properties of the surface sensed using short wave 
infrared and thermal band. The presented algorithm evaluation was performed on the basis of 
a specific test case: the coastal zone area of the Gulf of Gdańsk, Poland. In this context, the 
objective presented in the study was to compare two methods of downscaling for a specific 
test case in order to evaluate how the proposed approaches cope with the specific conditions 
of the coastal zone area. 
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1. Introduction 

Remote satellite Earth Observation (EO) systems are capable of providing valuable 
information related to environmental monitoring. In particular, observations acquired from 
visible, Shortwave Infrared (SWIR) and Thermal Infrared (TIR) electromagnetic band sensors 
are of high interest as they allow one to monitor and explore several phenomena taking place 
in the atmosphere or on the Earth's surface.  

Most important limitations regarding EO observations are related to spatial and 
temporal resolution of data. The spatial resolution generally refers to the way the observation 
data is stored in a grid. In the digital form of observation, each pixel is considered to represent 
observation of a particular area. The size of a single pixel is dependent on the EO system 
design, and determines the resolution of the image. The second term, temporal resolution, 
specifies the visiting frequency of a satellite sensor over a specific location providing 
information on the time period between two successive acquisitions from the same area. 

In general, higher spatial resolution of the sensor causes swath observation to be 
narrower, and thus exceeds the revisit time, and vice versa. Therefore, none of the available 
space-borne observation systems, allow  frequent imaging at high spatial resolutions. Since 
the spatial and temporal resolution of imaging systems, e.g. in the thermal infrared band, are 
negatively correlated, research on combining several observations in order to virtually 
improve both spatial and temporal imaging resolution, is of high interest. 

Generally, the process of combining data and observations characterized by different 
spatial and temporal resolution is known as downscaling or sub-pixel mapping [1][2]. The 
goal of these methodologies is to retrieve datasets that are a combination of high spatial 
resolution imagery, with datasets characterized by lower spatial resolution, but being more 
frequently registered. The appropriate combination of both sources enables one to generate a 
new product, because the imagery is more frequently delivered, and has higher spatial 
resolution. In consequence, this enables the potential use of downscaled products in 
microclimate studies, human activities monitoring, urban heat island effects observations [3], 
urban and peri-urban areas canopy characterization or urban climate energy budget estimation 
[4].  

In the paper, the evaluation of two approaches: direct and inverse, to the downscaling 
procedure was presented. In order to present the evaluation results, the authors of the paper 
prepared a specific test case for the investigated downscaling methods. Direct and inverse 
methods of downscaling were tested for satellite acquisitions of the coastal zone area for the 
13th of September,  2013. Since the method of downscaling refers to the biophysical 
properties of the imaged surface, the purpose of the research was to evaluate the performance 
of the presented approaches, and compare them in terms of Root Mean Squared Error 
(RMSE), correlation coefficient (R) and visual comparison to time co-incident high resolution 
Landsat 8 TIRS LST, which was treated as a validation dataset. 

 

2. Theory 

Downscaling is the process of increasing the spatial resolution of a set of spatial 
information (e.g., 2- or 3-dimensional). In the case of satellite acquisition, downscaling relies 
on the observational data spatial resolution increase obtained by intelligent merging of at least 
two datasets [5][6]. This methodology can be described as follows: let us assume two input 
data sources - such that both sources represent acquisition over the same area, and that the 
contribution of each surface cover component of low-resolution thermal pixels can be 
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estimated as the weighted sum for all subareas corresponding to pixels in finer resolution 
contained by the coarse resolution pixel area. It can be expressed as: 

 

𝐿𝐿𝐿𝐿𝐿𝐿1000 = �𝐿𝐿𝐿𝐿𝐿𝐿100
(𝑛𝑛)

𝑁𝑁

𝑛𝑛=1

𝑠𝑠100
(𝑛𝑛)

𝑆𝑆
 (1) 

 
where 

𝑆𝑆 = �𝑠𝑠100
(𝑛𝑛)

𝑁𝑁

𝑛𝑛=1

 (2) 

 
where: 𝐿𝐿𝐿𝐿𝐿𝐿1000 - is the land surface temperature of the pixel in coarse (~1000𝑚𝑚 𝑥𝑥 1000𝑚𝑚) 
resolution, 𝐿𝐿𝐿𝐿𝐿𝐿100

(𝑛𝑛) - is the LST value of the n-th pixel in a high resolution (~100𝑚𝑚 𝑥𝑥 100𝑚𝑚)  
image belonging to the mentioned high pixel resolution area, 𝑠𝑠100

(𝑛𝑛)- is the area of the given 
pixel in high resolution, S - is the area of a single pixel in coarse resolution, N - is the number 
of pixels in high resolution imagery that are contained in the corresponding pixel of a low 
resolution image. 

In general, N depends on the ratio of data sources spatial resolution taken under 
consideration, and may also depend on the number of high resolution pixels being excluded 
from the analysis for a given low resolution pixel due to cloud presence and other limitations. 
The graphical overview of this approach is presented in Fig. 1. 

 

 
 

Fig. 1. Diagram representing the relation between spatial distribution of a measured quantity in high 
resolution and low resolution. 

 
The dependency mentioned above describes the relation between high and low scale 

spatial datasets. However, according to (1), the transformation of pixel values from high to 
low scale results in the loss of information, so the reverse transformation is obviously 
ambiguous. Therefore; additional, high scaled information about the characteristics of a 
specific area, that influences the pixel values LST100 and LST1000, i.e. some independently 
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measured quasi-static quantity, usually derived from satellite imagery or an auxiliary 
database, must be provided as well. This can be achieved by assigning a representative 
spectral emissivity value to each surface cover type, or by using dedicated models for 
estimating the relation between spectral response function and LST. In that case, the formula 
(3) below, proposed in [7], is used: which assumes a dependency between effective emissivity 
ε and land surface temperature. 

At this point, there are two ways to proceed with the problem of finding the best high 
resolution estimate for a given low-resolution input dataset: 

1. Direct method (DM), that a priori assumes the dependence between effective 
emissivity and land surface temperature. It takes into account the quasi-linear 
dependence between surface effective emissivity 𝜀𝜀 and LST expressed as [7]: 
 

𝐿𝐿𝐿𝐿𝐿𝐿100 = 𝐿𝐿𝐿𝐿𝐿𝐿1000∙ε100
ε100 →1000

,  (3) 

where ε100 is high resolution effective emissivity and ε100 →1000 is average effective 
emissivity for low resolution pixels.  
Effective emissivity computation was based on a high resolution Normalized Difference 
Vegetation Index (NDVI) over the respective region. The maximum NDVI (NDVImax) and 
the minimum NDVI (NDVImin) values for the study area were determined, which were 
further used for computing the fractional vegetation cover [8][9]: 
 

FVC = (
NDVI−  NDVImin

NDVImax − NDVImin
)2 (4) 

and the effective emissivity ε was calculated as: 

ε = 0.98(1− FVC) + 0.93 FVC. (5) 
 

 

  

2. Inverse method (IM) that aims to find the min-error solution for the aforementioned 
dependence (1) between high resolution and low resolution pixel values for the whole 
imagery.  

In the inverse approach, it is assumed that there exists some dependence between 
effective emissivity and LST expressed as: 

LST100 =  f(ε100), (6) 

where f(⋅) need not  be linear (as it is assumed in the direct method). Combining (1) and (3) 
yields: 

( )∑
=

ε=
N

1n

n
10000l S

sfLST  (7) 

for a given low scale pixel. The form of f(⋅) is generally unknown for a given terrain, but 
assuming that it is stable for the entire scene, and applying (7) to each low scale pixel, we 
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may express the problem as a system of linear equations. For this purpose, let us calculate the 
histogram [h1, h2, ..., hK] of εeff high (where hk, k = 1, ..., K is the percentage of high scale 
pixels whose ε value belongs to a given range) for each low scale pixel, using always the 
same ε minimum/maximum values and the same number of bars K. Then, if we express f(⋅) as 
a vector of values (weights) [w1, w2, ..., wK] corresponding to the central values of εeff high 
ranges used in calculating the histogram, and assuming that the single pixel area sn is 
constant, we may write (7) as: 

∑
=

⋅=
K

1k
k

)m(
k

)m(
1000 whLST , (8) 

where m is the number of a “coarse” pixel in a scene (m = 1, ..., M). When iterating through 
all M pixels of low resolution imagery, we obtain the system of M equations (6) presented in 
matrix form: 

𝐋𝐋𝐋𝐋𝐋𝐋𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏  =  𝐇𝐇 ⋅ 𝐰𝐰, (9) 

where 𝐋𝐋𝐋𝐋𝐋𝐋𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏, is the column vector, H is a matrix and w is the column vector to be found. 
The solution to this problem is the following estimate vector 𝒘𝒘� : 

 
𝒘𝒘� = 𝒙𝒙𝟎𝟎 +  (𝑯𝑯𝑇𝑇𝑯𝑯 + 𝚪𝚪)−1(𝑯𝑯𝑇𝑇(𝑳𝑳𝑳𝑳𝑳𝑳𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 − 𝑯𝑯𝒙𝒙𝟎𝟎)) (10) 

where 𝒙𝒙𝟎𝟎 is the expected solution, calculated from the direct method (3). We used the simple 
form of Tikhonov regularization Γ = λI, where I is the identity matrix and the λ value 
(regularization parameter) was found using the near-optimal parameter calculation method 
proposed by [10]. 

3. Experiment setup 
In order to verify and evaluate the proposed algorithms of downscaling, we have 

prepared the following experiment. We have created the composite 100m (high resolution) 
dataset Landsat 8 OLI 2 scenes registered on 2013-08-05 at 09:45:37 UTC (scene center time) 
and on 2014-07-23 at 09:43:29 UTC (scene center time) and we have combined it with Corine 
Land Cover database (100m resolution) in order to retrieve the effective emissivity (ε) 
composite product. In the experiment, this quasi-static high resolution dataset was used as 
input data together with temporal low resolution (~1000 𝑚𝑚) MetopB/AVHRR/3 LST, which 
can be generally registered several times per day.  

In order to evaluate results obtained using the investigated approaches, we used Landsat 
8 TIRS LST product registered on 2013-08-05 at 09:45:37 UTC (scene center time). Then we 
compared the output of the downscaling algorithms, i.e. the downscaled LST, with Landsat 8 
TIRS LST using visual comparison, cross plots, root mean squared error, and Pearson 
correlation coefficient of datasets. An overview diagram showing the processing and 
validation strategy of the proposed approach is presented in Fig. 2. 

Data acquisition in all presented cases was made under clear sky conditions. For 
calculating LST we applied a split window technique using two thermal bands according to 
the following formula: 

LST =  Ti  +  c1 · �Ti  −  Tj� +   c2 · �Ti  −  Tj�
2

+  c0 + (c3 + c4W)(1 −  ε�) + (c5 + c6W)∆ε 
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where W is the water vapor content retrieved from an external data source, Ti and Tj are 
thermal bands for TIRS and AVHRR/3 respectively, 𝜀𝜀 ̅is surface average emissivity and ∆ε is 
surface emissivity difference for channels i and j, and 𝑐𝑐0 − 𝑐𝑐6 values are the split window 
coefficients determined from algorithm calibration [11], as presented in Table. 1.  

The proposed method was tested for the case study of the coastal zone of the Gulf of 
Gdańsk, Poland, Southern Baltic area. The study area was extracted as a part of the land 
situated in the coastal zone, i.e. no further than 5 km from the coastline, which is presented in 
Fig. 2.  

 
 
 

 
 

Fig. 2. Overall diagram of data processing flow and verification. 
 
 
Tab. 1. LST estimation algorithm parameters for MetopB/AVHRR/3 and Landsat 8 TIRS. 

 

Platform/ 

sensor 
λi-λj c0 [K] c1[-] 

c2 

[K-1] 
c3 [K] 

c4 
[Kcm2 g-1] 

c5 

[K] 

c6 

[Kcm2  

g-1] 
METOP B/ 
AVHRR3 

10.82-
11.97 -0.045 1.733 0.307 44.3 0.61 -150 18.7 

Landsat 8/ 
TIRS 

10.8-
12 -0.268 1.378 0.183 54.3 -2.238 -129.2 16.4 

 

Inverse method
(IM)

Down-scaled 
simlutaed LST 

Direct method
(DM)

Verification /
RMSE/ 

Correlation

Landsat 8 / TIRS LST 
2013-08-05 at 

09:45:37.6712053Z

Down-scaled 
simlutaed LST 

Effective emissivity
Landsat 8 

Composite Image 

Resolution: 100m x 100m 

Resolution: 1100m x 1100m 

Landsat 8 / OLI
Fractional Vegetation 

Cover
2013-08-05 at 

09:45:37.6712053Z
Resolution: 100m x 100m 

Landsat 8 / OLI
Fractional Vegetation 
Cover 2014-07-23 at  
09:43:29.5269223Z 

Resolution: 100m x 100m 
Resolution: 100m x 100m 

Resolution: 100m x 100m 

Resolution: 100m x 100m 

Corine Land Cover 

Resolution: 100m x 100m 

MetopBAVHRR/3
 LST

2013-08-05 at
9:10:26Z
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a) b) 

Fig. 2. Analyzed area - 5km coastal zone of the Gulf of Gdańsk. Left picture (a) shows low 
resolution (~1000𝑚𝑚) input dataset to be downscaled - MetopB/AVHRR/3 LST. Right picture (b) 

shows proxy validation dataset - (~100𝑚𝑚) Landsat 8 OLI LST. 

4. Results 
In this section we present the results obtained by two methods downscaling the analyzed 

area, namely DM and IM, using MetOpB/AVHRR/3 1000 m LST as an input dataset. The 
output of the algorithms is the simulated downscaled 100m LST product.  

Fig. 3 presents the map visualizations of the obtained DM and IM LST downscaling 
results (Fig. 3d and f) along with the scatter plots of the downscaled LST values Vs reference 
values from 100m Landsat 8 OLI LST (Fig. 3c and e). For comparison, the map of the 
original low scale MetOpB/AVHRR/3 1000m LST (Fig. 3a) as well as the map of the 
reference high scale Landsat 8 OLI 100m LST (Fig. 3b) are also presented. 

As it can be observed in scatter plots (presented on left side of Fig. 3), the correlation 
between the high resolution proxy validation dataset and the downscaled product, is visible. 
However, it can be seen that since DM is not optimized (it a priori assumes the linear 
character of the dependence between ε and LST), it underestimates (particularly for higher 
temperature pixels) the downscaled LST value. Note that this is not the case when using the 
inverse method (IM).   

The deeper analysis of spatial distribution for the obtained LST in the investigated area 
shows that the results obtained by the IM algorithm better represent thermal characteristics for 
the area, and are visually closer to the original Landsat 8 LST than the product obtained using 
DM. Specifically, it can be observed that the influence of local surface high resolution 
characteristics is reflected in IM rather than in local observations in LST retrieved from 
AVHRR. What is more, as in DM the LST1000 term is directly used in the formula and 
strongly influences the obtained LST100 value, it results in the appearance of coarse resolution 
artifacts in the downscaled product, which effect does not occur in the IM result case. 

Table. 2 presents analytical results obtained by the evaluated approaches (IM and DM 
rows in a table), and original AVHRR/3 data resampled using a nearest neighbor technique 
(presented in the third row). Second column of the table represents Pearson correlation 
coefficient (R), the third represents RMSE with respect to reference LST Landsat 8/OLI LST 
dataset. The last column shows average BIAS between reference dataset and the result of 
downscaling products, in order to verify if the methods retain radiometric properties of the 
results. Results presented below, show that the IM method yields results closest to Landsat 
8/OLI LST validation dataset, having overall lowest RMSE and the highest correlation 

Gdańsk 

Gdynia 
Hel 

38 
℃ 

22
℃ 

Gdańsk 

Gdynia 
Hel 
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coefficient among the presented approaches. It is generally consistent with conclusions which 
may be made from visual analysis of the results presented in Fig. 3. For the considered test 
case, IM yields 23% RMSE reduction in comparison to DM, and correlation increases from 
0.7438 to 0.8486.  When comparing IM to nearest neighbor resampling, the inverse technique 
approach yields 27% RMSE reduction and an 18% correlation increase (from 0.6987 to 
0.8486).  

 

 
 

Fig. 3. Scatter plots and map visualizations of the results obtained by DM and IM LST 
downscaling for the investigated area: a) low scale MetOpB/AVHRR/3 1000m LST, b) high scale 

Landsat 8 OLI 100m LST used as reference, c) scatterplot of Landsat 8 OLI LST vs. DM LST 
downscaling results, d) map visualization of DM LST downscaling results, e) scatterplot of Landsat 8 
OLI LST vs. IM LST downscaling results, f) map visualization of IM LST downscaling results. The 

red line in the scatter plots represents 1:1 ratio. 

e) f) 

a) b) 

c) d) 
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Tab. 2. Analytical results of evaluated IM and DM approaches. 

Downsampling 
method 

Correlation 
coefficient R  

with respect to 
Landsat 8 OLI LST 

RMSE [°C]  
with respect to 

Landsat 8 OLI LST 

BIAS[°C]  
with respect to 
Landsat 8 OLI 

LST 
IM 0.8486 2.2970 0.5637 
DM 0.7438 2.9934 1.0318 

Nearest neighbor 0.6987 3.1361 1.0318 
 

5. Conclusions 
In the paper, the comparison of direct and inverse methods of downscaling AVHRR 

LST was presented. The study was conducted on the basis of a prepared experiment for the 
coastal zone area, where we used time co-incident 100m Landsat 8 TIRS LST as a validation 
dataset. Results of evaluated approaches show that the method based on inverse problem 
technique yields better results, in comparison to the direct approach. The reason for that, in 
the analyzed case, is that surface biophysical properties like soil and air humidity, heat 
capacity, surface attributes etc. are spatially diverse which causes non-linearity and deviation 
in the vegetation index – land surface temperature (VI-LST) dependence within the analyzed 
area. This is particularly observable in the coastal zone area, where proximity of the sea 
results in the arising of specific VI-LST conditions. In this context, the optimization is 
particularly effective as it finds minimum-error of a linear model that connects low resolution 
and high resolution datasets.  

Although the inverse problem approach yields much better results in the presented case, 
it should be pointed out that this approach is much more sensitive to distortions resulting from 
presence of clouds and aerosols, atmospheric effects etc. This is due to the fact that IM aims 
to minimize the global error and estimate an optimal weights vector. In this context, the 
presence of LST values disturbed by inappropriate atmospheric correction can perturb the 
entire process of optimization very strongly. In this sense, the direct methods are more 
resistant to those types of effects. 
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