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Abstract. The paper presents modeling of performance and power con-
sumption when running parallel applications on modern cluster-based
systems. The model includes basic so-called blocks representing either
computations or communication. The latter includes both point-to-point
and collective communication. Real measurements were performed using
MPI applications and routines run on three different clusters with both
Infiniband and Gigabit Ethernet interconnects. Regression allowed to
obtain specific coefficients for particular systems, all modeled with the
same formulas. The model has been incorporated into the MERPSYS
environment for modeling parallel applications and simulation of execu-
tion on large-scale cluster and volunteer based systems. Using specific
application and system models, MERPSYS allows to predict application
execution time, reliability and power consumption of resources used dur-
ing computations. Consequently, the proposed models for computational
and communication blocks are of utmost importance for the environ-
ment.

Keywords: Performance model · Energy consumption · Cluster com-
puting · MPI

1 Introduction

Modern parallel systems have increased in sizes considerably in recent years.
The most powerful cluster on the TOP500 list – Tianhe-2 features over
3 million cores, offers over 33 PFlop/s performance but at over 17 MWatts of
power consumption1. It should be noted that growth in performance of such par-
allel systems stems from incorporation of more and more computational cores
into the system. At the same time, such large clusters, due to a large number of
components, are prone to failures. This may effectively impact execution times
of parallel applications due to necessary checkpoints and restarts in order to
continue from the last consistent application state. For instance, for Sequoia
the reported failure rate reaches 1.25 per day [1]. Consequently, it is of utmost
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importance for developers to be able to assess application running times and
speed-ups taking into account not only the design and bottlenecks in the appli-
cation but also potential failures of such large scale cluster systems. On one
hand, if we assume a given input data size for an application then speed-up
will be dependent on the ratio of computations to communication, synchroniza-
tion and specific optimization techniques such as overlapping communication
and computations, piggybacking etc. On the other hand, hardware parameters
such as CPU, GPU performance as well as latency and bandwidth of an inter-
connect will also impact the speed-up. The aforementioned failure possibilities
will further limit performance because if a failure occurs then the application
will need to be restarted either from scratch or from the last saved checkpoint.
Consequently, a question should be asked what would be the optimal number of
CPUs in order to minimize the application running time given this constraints.
Furthermore, power-aware metrics are considered nowadays apart from perfor-
mance only. For instance, one of considered optimization goals is minimization of
application running time with a constraint on the total power consumption used
by computing devices [2]. Consequently, a good model for parallel applications
in a cluster based environment is still crucial for optimization, especially if it
addresses power-aware aspects along with performance. Our main contribution
is to provide a model related to the cluster performance, power consumption and
reliability estimations. We designed the set of formulas working exactly for our
simulation tool, we tested them and tuned for specific real environments.

2 Background and Related Work

A cluster model, or more generally, a hardware model needs to be introduced in
every simulator of running an application in a parallel environment.

GSSIM [3] provides a configurable solution, where it is possible to use the
default mode, where computation times are simply calculated as a linear function
of the processor clock, and communication times are analytically solved accord-
ing to the used network devices, their latencies and bandwidths. The power
consumption is based on the three schemes: constant where a device always con-
sumes the same power, the resource based, usually using values for idle and full
utilization of the resource and the application related where the exact values need
to be provided by the user. The model considered in this work is more focused on
the cluster environment, thus it concerns such operations like disk data transfers
or HyperThreading out-of-the box, without additional user configuration.

There are two main analytical models of the communication behavior in the
network of computation nodes, the one proposed by Hockney in [4] and LogP [5].
The former assumes the time of the message passing between nodes equals L +
m/B, where L is a latency of the network, B is a network bandwidth and m
is a message size. The latter assumes the message delivery time equals L + 2o,
where L is latency of the network, o is an overhead and an additional parameter
describing the modeled system: P – the number of nodes communicating each
other. However, it also assumes that the next message cannot be sent during the
gap time, denoted by g, thus the network can carry messages �L/g� at the time.
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While the gap parameter in the LogP model reflects the network contention,
it is suited for short messages only. Therefore, many variants were proposed.
The LogGP model [6] introduces an additional parameter: G – gap per byte,
thus the time of sending m bytes between two nodes can be presented as o +
(m − 1)G + o. The PLogP model [7] introduces additional dependency of the
gap and overhead parameters on the message size, and additionally distinguishes
overhead for sending and receiving the message: g(m), os(m) and or(m).

The HLoGP model [8] provides support for heterogeneous environment
introducing the parameter matrices instead of scalar model parameters, e.g.
L = {L11, . . . , LMM}, where M is a number of the nodes (which all can be
different from each other) and an additional vector reflecting the differences
between computational power of the nodes, i.e. P = {P1, . . . , PM}. Similarly the
computational power of the processor/cores is also considered in MLogP model
[9] where multicore processor architecture is taken into account. Finally LognP
models [10] enable the hierarchical performance analysis for layered systems,
including the impact of the memory and middleware on distributed communi-
cation.

3 Simulation Environment for Parallel Applications
Running on Cluster-Based Systems

Within project “Modeling efficiency, reliability and power consumption of multi-
level parallel HPC systems using CPUs and GPUs” sponsored by and covered by
funds from the National Science Center in Poland we created an environment for
simulation of parallel applications run on large-scale cluster, grid and volunteer
based systems. For an application run for a particular input data size on a given
system, the environment returns the following:

1. Application execution time.
2. Success/failure of the application – potential hardware failures have become

a concern in large scale parallel systems [1] because of the number of compo-
nents.

3. Energy consumed during execution of the application thanks to considering
power consumption of devices such as CPUs, GPUs and network intercon-
nects.

The distributed architecture of the system comprises the following compo-
nents:

1. A client-side system and application editor as well as a simulation panel:
(a) System model editor (Fig. 1). A user creates a model of the system

by selecting predefined computational components such as CPUs/GPUs
which are interconnected using predefined network types such as WANs,
LANs or buses within each node. The system model can be defined at
multiple levels starting at the top from WAN through LAN up to the
node/machine level. For each particular computational or network type
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Fig. 1. System model editor – an exemplary system

Fig. 2. Sample results

component the user selects one hardware component with specification
stored in a database. This includes single, double floating point perfor-
mance for CPUs/GPUs, power consumption etc. The user assigns labels
to particular computational components. Specifically, if a CPU or a GPU
is assigned a label e.g. “master” with cardinality 12 this means that
up to 12 processes or threads marked “master” in the application can be
run there. It is the scheduler described next that will decide how many
processes or threads with such a label will be launched on such a compu-
tational component. An exemplary system modeling an environment with
Intel Xeon E5-1620 CPUs for master and i7 2600k for slave processes is
shown in Fig. 1.

(b) Application editor. A user writes code of a parallel application using a
special Java type meta-language which uses a generalization of message
passing paradigms such as MPI. The application includes codes of vari-
ous processes/threads each marked with a distinct label such as “master”,
“slaveX”, “slaveY” etc. The code consists of computational or commu-
nication blocks and can contain any basic Java constructs such as for,
while loops, conditional instructions etc. Computational blocks take as
input data size, a function that determines the number of operations vs
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the input data size, optional software stack and optimizations. Commu-
nication blocks include point-to-point, barrier, broadcast, scatter, gather
similar to MPI.

(c) Simulation panel (Fig. 2). The panel allows definition of the number of
processes or threads with given labels and optionally a number of variables
for which values would be available from within the application code. The
panel allows starting a simulation and display of results. Figure 2 shows
exemplary results for running a parallel application in the MERPSYS
environment.

2. System server that acts as a proxy between users and simulators. It launches
and manages several simulations on a cluster in parallel. Upon termination
of a simulation, the client application displays results to the user.

3. Scheduler – an application that decides where the required number of
processes or threads should be launched considering slots available in the
system model.

4. Simulator – an application that simulates execution of the aforementioned
application on a large scale system. For each distinct label defined within
the application, the simulator starts a separate thread that simulates a given
number of processes/threads of this type. Proper scaling is used for both com-
putations and communication using the given number of processes/threads.
This allows simulation of thousands of processes/threads running the same
code using one simulation thread. The simulator offers two advantages over
running a real application: it allows consideration of application and system
sizes for which a real application could not be run due to resource limitations
(such as the limited RAM size), simulation time for an application can be
much shorter than the running time of a real application – this is possible
because of encapsulation of computations within computational blocks.

5. Hardware database which stores information about various hardware compo-
nents such as specific CPUs, GPUs, interconnects within nodes (such as PCI)
and among nodes (LANs, WANs etc.).

Consequently, it is important for the simulator to have detailed formulas for
CPUs, GPUs and interconnects for correct prediction of execution times and
energy consumption of particular blocks of code, either representing computa-
tions or communication among processes or threads of a parallel application.
Additionally, a rough estimate on successful execution of an application can be
derived that uses the number of the nodes involved in computations.

4 Model Formulas

Our model is based on the statistical approach. The measurements realized dur-
ing the experiments reflecting each simulated block were manually compared
to the commonly used formulas (e.g. in [11] for the group communication) and
the closest approximation was chosen. In general we used the expert knowledge
which reflects the internals of the MPI implementation and the cluster design.
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We used the hardware specific implementation (e.g. Infiniband for MVAPICH)
thus using of the already proposed models [11] directly could be misleading. For
regression we used two different error measurements i.e.: (i) mean percentage
error (MPE) in cases where the differences for small absolute value were impor-
tant (e.g. sending of short messages) in the model, and (ii) a traditional mean
squared error for others.

Table 1 presents the formulas of the proposed model. Their parameters are
split into two groups:

1. Input parameters that need to be provided for the application model, i.e.: the
number of instructions to be executed: h, the number of the active threads
executed on a particular node: pth, input data size: d and the number of the
nodes involved in computations: P .

2. Parameters related to a specific environment, constant during the execution
of an application on the modeled cluster, and dependent on the cluster hard-
ware, software (e.g. the operating system and/or the used message library
implementation) and their configuration, e.g. the number of cores in the CPU.
Their values were provided directly (like the mentioned number of cores) or
by the regression (for less obvious ones). Table 3 contains a complete list of
the parameters.

Table 1. Model formulas

Modeled block Execution time

Computation block (Ox) tox =

⎧
⎪⎨

⎪⎩

Tminh if pth ≤ Plow

Tlowh if pth ∈ (Plow, Phi〉
(Thi + Khipth)h if pth > Phi

Communication peer-to-peer (Cp2p) tp2p = Tp2p + Kp2p�d/Dtu�Dtu

Communication broadcast (Cbcast) tbcast = Tbcast + Kbcast�d/Dtu�Dtulog(P )

Communication scatter (Cscat) tscat = Tscat + Kscat�d/Dtu�Dtu
log(P )

P

Communication gather (Cgath) tgath = Tgath + Kgath�d/Dtu�Dtu
log(P )

P

Communication all-to-all (Ca2a) ta2a = Ta2a + Ka2a�d/Dtu�DtuP

Communication barrier (Cbar) tbar = Tbar + Kbarlog(P )

Read block from a network disk (Rdisk) trdisk = Trdisk + Krdisk�d/Dtu�Dtu

Write block to a network disk (Wdisk) twdisk = Twdisk + Kwdisk�d/Dtu�Dtu

Modeled block Power consumption

Any number of blocks on a single node pw =

⎧
⎪⎨

⎪⎩

PWlow + KWlow × pth if pth ≤ Plow

PWhi + KWhi × pth if pth ∈ (Plow, Phi〉
PWmax if pth > Phi

Modeled block Probability of the correct execution

Any number of blocks on a set of nodes s(Δt, P ) = e−λΔtP

A computation block Ox is a basic block which represents data processing
in the cluster and grid environment. We assume the most typical arithmetical
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or comparison operations performed on data. Such a block can be performed
sequentially or in parallel using different cores of the nodes processors.

We assumed that the time of parallel computation of a single instruction
is constant (Tmin) as long as the number of threads is lower than the num-
ber of cores, thus in this case the total time depends only of the number of
executed instructions: tox = Tminh. We assume a similar constant time (Tlow)
for HyperThreading however, in this case this time is longer: Tlow > Tmin, thus
tox = Tlowh. Finally, for the number of threads exceeding the number of (virtual)
cores, we assumed the time of the single instruction increases linearly with the
number of the threads: tox = (Thi + Khipth)h. Figure 3a presents the regression
results with a comparison to the real measurements for an exemplary computa-
tion block of 11 million instructions executed by a single thread.

We distinguish a number of communication blocks, including direct peer-to-
peer and group operations. The time for the former was assumed to be linear
to the size of the message, and for the latter we relied mainly on the analyti-
cal models (e.g. provided in [11]). For both types of formulas we introduced an
adjustment related to the (maximum) data transfer unit. Figures 4 and 5 present
the regression results in comparison to the real measurements for peer-to-peer,
barrier and broadcast blocks. Similarly, blocks related to the network disk I/O
operations were modeled, and appropriate formulas were proposed. Due to their
characteristics, we assumed the same time complexity as for peer-to-peer com-
munication.

During the experiments, we observed the electrical power load being strongly
dependent on the number of the active threads rather than on the type of oper-
ation (a specific computational block). Thus we proposed a model, in which the
power consumed at the moment (expressed in Watts), depends on the number
of used processor cores, which are directly involved in processing. For regression,
we assumed segmented and linear increase of power consumption. However, we
introduced a distinction between the power consumed by active threads assigned
to the real and logical (HyperThreading) cores. Obviously, after passing a cer-
tain threshold additional, active threads do not introduce additional increase in
power consumption. Figure 3b presents the power regression results in compari-
son to the real measurements.

5 Model Parameter Regression Results

The model parameters were derived for three different cluster environments:
Galera+ (all parameters including power), Galera (performance parameters
only) clusters, located in the Academic Computer Centre – TASK, and a KASK
cluster (performance parameters only) located at the Department of Computer
Architecture, Faculty of Electronics, Telecommunications and Informatics. All
these machines are located at Gdańsk University of Technology. The clusters
work under a Linux operating system and the measurements were performed for
the MVAPICH v1.8 MPI implementation.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Fig. 3. Computation block regressions vs real measurements for Galera+: (a) execution
time, (b) power consumption

Fig. 4. Execution time regressions versus real measurements for Galera+: (a) peer-to-
peer, (b) barrier

Fig. 5. Broadcast execution time regression for Galera+: (a) 3D view (b) mapping to
2D versus real measurements

The Galera+ cluster consists of 192 computation nodes. Every node is
equipped with two Intel Xeon 2.27 GHz multicore processor units, with 6 physi-
cal and 12 logical (HyperThreading) cores each, 16 GB RAM, and network inter-
face cards. The cluster uses two interconnection networks: (i) Infiniband QDR
(40 Gbps) and (ii) GB Ethernet, supported by respective network switches. Addi-
tionally there is a 500 TB disk array exposed to the nodes using a Glustre remote
file system. The Galera cluster consists of 672 computation nodes. Every node is
equipped with two Intel Xeon 2.33 GHz multicore processor units, with 4 cores
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each, 8-32 GB RAM, and network interface cards. The cluster uses two intercon-
nection networks: (i) Infiniband DDR (20 Gbps) and (ii) GB Ethernet, supported
by respective network switches. Additionally the 500 TB disk array is exposed
to the nodes using a Lustre remote file system.

Table 2. Pearson coefficient squared (R2) calculated for the regression formulas versus
the real measurements

Formula R2 Galera+ R2 Galera R2 KASK

tox 0.9993 0.9999 0.9999

tp2p 0.9996 0.9998 0.9996

tbcast 0.9902 0.9688 0.9102

tscat 0.9643 0.9176 0.9668

tgath 0.9620 0.9374 0.9823

ta2a 0.9296 0.7858 0.8384

tbar 0.7324 0.9223 0.8527

trdisk 0.9999 0.9971 0.9976

twdisk 0.9988 0.9999 0.9999

pw 0.9062 — —

The KASK cluster consists of 10 computation nodes. Every node is equipped
with two Intel Xeon 2.8 GHz multicore processor units, with 2 physical and
4 logical (HyperThreading) computation cores each, 4 GB RAM, and net-
work interface cards. The cluster uses two interconnection networks: (i) Infini-
band (10 Gbps) and (ii) GB Ethernet, supported by the corresponding network
switches. Additionally there is a 4 TB disk array exposed to the nodes using
the NFS file system. The regression was performed numerically using the gath-
ered power and time measurements. The final results for three different clusters
are presented in Table 3. Figures 3, 4 and 5 present the charts with comparison
of some regression results to the real measurements and Table 2 provides the
evaluation with the Pearson coefficient squared (R2) for all estimated formulas.

6 Summary and Future Works

In the paper, we presented modeling of parallel processing in a cluster envi-
ronment that includes equations representing execution times of computational
and communication blocks, power consumption of such blocks as well as a sim-
ple estimate on reliability of computations. Furthermore, coefficients for these
computational and communication equations were found for three clusters and
power consumption and reliability indicated for Galera+ cluster located at Aca-
demic Computer Center, Gdańsk, Poland. These equations constitute an integral
part of an environment that allows simulation of parallel applications running on
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Table 3. Model instance parameters for Galera+, Galera and KASK clusters

Plow

Phi

Tmin μs

Tlow μs

Thi μs

Khi μs

Dtu

Tp2p μs

Kp2p μs

Tbcast μs

Kbcast μs

Tscat μs

Kscat μs

Tgath μs

Kgath μs

Ta2a μs

Ka2a μs

Tbar μs

Kbar μs

Trdisk μs

Krdisk μs

Twdisk μs

Kwdisk μs

PWlow

KWlow

PWhi

KWhi

PWmax

λ

large scale systems and prediction of execution time, potential failures and energy
consumed during a run. The environment with its basic components such as a
system editor, an application editor and a simulation panel with sample results
were presented. The system editor and consequently the simulator use the pre-
sented equations for simulation of runs of modeled parallel applications on the
three aforementioned clusters. This in turn allows estimation of execution times,
power consumption and reliability for various applications and configurations
including the number of nodes run on these clusters.
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