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Abstract—In this paper, a closed-form expression for the time-
domain dyadic Green’s function of a discrete plane wave (DPW)
propagating in a 3-D finite-difference time-domain (FDTD) grid
is derived. In order to verify our findings, the time-domain
implementation of the DPW-injection technique is developed with
the use of the derived expression for 3-D total-field/scattered-
field (TFSF) FDTD simulations. This implementation requires
computations of the time-domain Green’s function of DPW
with the use of multiple-precision arithmetic. Then, excitations
at the TFSF interface can be computed as a time-domain
convolution of a source function with the Green’s function of
DPW. The developed time-domain implementation of the DPW-
injection technique demonstrates the leakage error across the
TFSF interface around the numerical noise level that verifies the
correctness of the derivation.

Index Terms—Finite-difference time-domain (FDTD) methods.

I. INTRODUCTION

PLANE-WAVE sources are required for calculations of
the radar cross section (RCS) in the total-field/scattered-

field (TFSF) formulation of the finite-difference time-domain
(FDTD) method. Typical software implementations of TFSF
FDTD involve a 1-D auxiliary incident field array that provides
the plane wave excitation at the Huygens surface surrounding
the scatterer (i.e., the TFSF interface). Due to the field leakage
across the TFSF interface into the scattered-field region, this
classical technique [1] has limited accuracy. Therefore, the
topic of the plane wave injection in FDTD simulations has
been investigated intensively for many years [2]–[7].

In [2]–[3], an analytic field propagator (AFP) technique
is presented that solves numerically the FDTD dispersion
relationship for the wavenumber k(ω) and calculates the 1-
D frequency-domain discrete Green’s function (DGF) of the
plane wave in the grid (e−jk(ω)·r). Then, this DGF is employed
for calculation of frequency-domain excitations at the TFSF
interface. Finally, the time-domain excitations are computed
for each point at the TFSF interface with the use of the
inverse Fourier transform. The AFP technique has been later
optimized by Tan et al. in order to reduce the consumption
of memory [4]. This optimization takes the advantage of the
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inherent 1-D nature of plane waves and a consistent set of
projection operators defined for rational angles of the plane
wave propagation in the FDTD grid [5], [6]. Although this
method allows one to obtain the leakage error at the machine
precision level, still searching for roots of the FDTD dispersion
relationship at the complex plane is required.

In [7], a technique is proposed for generation of discrete
plane waves (DPWs) that are perfectly matched to the 3-
D FDTD grid. This formulation is derived with the use of
the 1-D properties of DPW and optimized projection of 3-D
FDTD operators to the 1-D domain. This technique represents
the state-of-the-art in the area of the plane wave injection in
FDTD, because it is simultaneously efficient and accurate.

Despite development of techniques of perfect injection of
DPW into the FDTD grid, time-domain DGF [8]–[11] has not
yet been derived for DPW propagating in the 3-D FDTD grid
to the best of our knowledge. It is well-known that the Green’s
function for a plane wave propagating in the p-direction in the
continuous domain is respectively represented by e−jτω and
δ(t − τ) in frequency and time domain (τ = p · r/c denotes
the retardation time, c denotes the speed of light, δ(t) denotes
the Dirac’s delta function). In the discrete domain, e−jk(ω)·r

(where k(ω) is obtained from the solution of the dispersion
relationship) is frequency-domain DGF as demonstrated in [2],
[3]. However, the formula for time-domain DGF of DPW in
the 3-D FDTD grid has remained unknown. Therefore, we
have investigated the plane wave propagation in the 3-D FDTD
grid using methodology based on the multidimensional Z–
transform [12]. The closed-form expression for time-domain
dyadic DGF of DPW in the 3-D grid is derived in this paper.
Its purpose is to extend the earlier reported 2-D results [13]
towards the 3-D grid. We present a comprehensive report
on the derivation of DGF of DPW in the 3-D FDTD grid
along with an evaluation of the leakage error across the
TFSF interface. For the sake of this evaluation, the 3-D AFP
technique is implemented in the time domain allowing us to
compute excitations at the TFSF interface as a convolution
of a source function with derived DGF. Results obtained
demonstrate that the perfect injection of DPW can be achieved
with the use of the derived DGF expression. Presented theoret-
ical results facilitate investigations in the area of the discrete
electromagnetic field theory and increase knowledge about
TFSF FDTD simulations of scattering problems. This paper
provides the development of the results shown in the earlier
publications on the propagation of DPW in the FDTD grid
[7], [13].
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II. TIME-DOMAIN GREEN’S FUNCTION OF DPW IN 3-D
FDTD GRID

Let us consider 3-D FDTD update equations for electric (E)
and magnetic (H) fields in an infinite free space
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In (1a)–(1f), ∆t is the time-step size, ∆u is the discretization-
step size along the u-direction (u = x, y, z), n is the time
index, and i, j, k are the spatial indices in the grid. J denotes
soft-source excitation of the grid. Let us consider DPW in the
3-D FDTD grid propagating in the direction specified by p =

(px, py, pz) = (sin θ cosφ, sin θ sinφ, cos θ) [7]. The planar
wavefront equation is given by

r = pxi∆x+ pyj∆y + pzk∆z. (2)

Denoting ∆ru = pu∆u (where u = x, y, z), (2) can be written
as

r = i∆rx + j∆ry + k∆rz. (3)

Let us project (1a)–(1f) on this 1-D grid as presented in [7]
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According to [6], DPW can propagate in directions from a
countably infinite set of discretized angles. These angles are
related by integer numbers mx,my,mz

∆r =
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mx

=
∆ry
my

=
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mz

(5)

where ∆r denotes the spacing in the associated 1-D grid in
r–domain (r = ir∆r). The numbers mx,my,mz count the
number of gridcells in the x, y, z directions, respectively [4].
Hence, from (3) one obtains

ir = mxi+myj +mzk. (6)

Finally, every cell (i, j, k) in the main grid is associated with
the index ir in the auxiliary 1-D grid. Hence, (4a)–(4f) can be
written as
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Let us denote ∇upfq =
fq+p−fq−p

∆u . Then, (7a)–(7f) can be
written as
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2 .
Equations (8a)–(8f) are represented with the use of the 2-D
Z–transform [14]
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Each integral is evaluated over a closed contour that must
lie completely within the region of convergence of F and
must encircle the origin counterclockwise in the plane of the
respective variable [14]. If the above-mentioned conditions are
fulfilled, (8a)–(8f) can be written in the Z–transform domain
as

(Ω
1
2 − Ω−

1
2 )E = AH− ∆t

ε0
J (11)

(Ω
1
2 − Ω−

1
2 )H = −AE. (12)

In (11)–(12)

E =

ExEy
Ez

 H = η

Hx

Hy

Hz

 J =

JxJy
Jz

 (13)

A =

 0 −szDmz
2

syDmy
2

szDmz
2

0 −sxDmx
2

−syDmy
2

sxDmx
2

0

 (14)

where su = c∆t/∆u is the Courant number along the u-
direction (u = x, y, z), c and η are respectively the speed of
light and the intrinsic impedance in free space, and DpF =
Z{Fnp − Fn−p} = (Xp −X−p)F . Substituting (11) into (12)
and vice versa, the wave equations are obtained[(
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where I denotes the identity matrix and the wave operator[(
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page). The Green’s function of DPW is defined as the inverse
of the wave operator in (15)–(16)
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Therefore, the solution of the wave equations (15)–(16) can
be written in the Z–transform domain as
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The inverse of the wave-operator matrix (17) is calculated with
the use of the symbolic mathematics software [15] under the
assumption that the inverse matrix exists
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for the region of convergence defined as∣∣ξ2 + ζ2 + η2
∣∣ < ∣∣ω2

∣∣ . (24)

Then, expanding the power of the sum with the use of the
multinomial theorem, one obtains

Gxy = −
∞∑
m=0

ω−2(m+2)

×
∑

α+β+γ=m

(
m

α, β, γ

)
ξ2αζ2β+1η2γ . (25)

Hence, this component of the Green’s function can be calcu-
lated in the time domain based on (10) as

Gxy
n
ir = − 1

(2πj)2

∞∑
m=0

∮
γΩ

Ωn−1dΩ

(Ω− 2 + Ω−1)
m+2

×
∑

α+β+γ=m

(
m

α, β, γ

)
s2α+1
x s2β+1

y s2γ
z

×
∮
γX

(
X

mx
2 −X−

mx
2

)2α+1(
X

my
2 −X−

my
2

)2β+1

×
(
X

mz
2 −X−

mz
2

)2γ

Xir−1dX. (26)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


0018-926X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2017.2700019, IEEE
Transactions on Antennas and Propagation

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

The integral in Ω-domain is calculated with the use of the
Cauchy integral formula for derivatives

1

2πj

∮
γΩ

Ωn−1dΩ

(Ω− 2 + Ω−1)
m+2 =


(
m+ n+ 1

2m+ 3

)
, n ≥ m+ 2

0, otherwise
. (27)

The contour γΩ is in the region of convergence of (10) which
encloses Ω = 0 and Ω = 1. The integral in X-domain can
be calculated with the use of the binomial theorem and the
Cauchy integral formula as follows:

1

2πj

∮
γX

(
X

mx
2 −X−

mx
2

)2α+1(
X

my
2 −X−

my
2

)2β+1

×
(
X

mz
2 −X−

mz
2

)2γ

Xir−1dX

=
2α+1∑
p=0

2β+1∑
q=0

2γ∑
r=0

(−1)p+q+r
(

2α+ 1

p

)(
2β + 1

q

)(
2γ

r

)
× 1

2πj

∮
γX

Xmx(α−p+ 1
2 )+my(β−q+ 1

2 )+mz(γ−r)+ir−1dX

=
2α+1∑
p=0

2β+1∑
q=0

2γ∑
r=0

(−1)p+q+r
(

2α+ 1

p

)(
2β + 1

q

)(
2γ

r

)
×δir,mx(p−α− 1

2 )+my(q−β− 1
2 )+mz(r−γ)

=
2α+1∑
p=0

2β+1∑
q=0

2γ∑
r=0

ir=mx(p−α− 1
2 )+my(q−β− 1

2 )+mz(r−γ)

(−1)p+q+r

×
(

2α+ 1

p

)(
2β + 1

q

)(
2γ

r

)
.

(28)

The contour γX is such that condition (24) is satisfied. In (28),
δa,b denotes the Kronecker delta function. Hence, one obtains

Gxy
n
ir =

n−2∑
m=0

(
m+ n+ 1

2m+ 3

)
×

∑
α+β+γ=m

(
m

α, β, γ

)
s2α+1
x s2β+1

y s2γ
z

×
2α+1∑
p=0

2β+1∑
q=0

2γ∑
r=0

ir=mx(p−α− 1
2 )+my(q−β− 1

2 )+mz(r−γ)

(−1)p+q+r+1

×
(

2α+ 1

p

)(
2β + 1

q

)(
2γ

r

)
. (29)

Analogously, it can be derived that

Gxz
n
ir =

n−2∑
m=0

(
m+ n+ 1

2m+ 3

)
×

∑
α+β+γ=m

(
m

α, β, γ

)
s2α+1
x s2β

y s
2γ+1
z

×
2α+1∑
p=0

2β∑
q=0

2γ+1∑
r=0

ir=mx(p−α− 1
2 )+my(q−β)+mz(r−γ− 1

2 )

(−1)p+q+r+1

×
(

2α+ 1

p

)(
2β

q

)(
2γ + 1

r

)
. (30)

Then, let us consider Gzz component in the Z–transform
domain

Gzz = Fzz −Kzz (31)

where

Fzz =
ξ2

ω2 (ξ2 + ζ2 + η2 − ω2)
(32)

Kzz =
1

ξ2 + ζ2 + η2 − ω2
. (33)

We thus obtain in the time domain

Gzz
n
ir = Fzz

n
ir −Kzz

n
ir . (34)

Fzz
n
ir

component is derived analogously as Gxy nir component
above

Fzz
n
ir =

n−2∑
m=0

(
m+ n+ 1

2m+ 3

)
×

∑
α+β+γ=m

(
m

α, β, γ

)
s2α+2
x s2β

y s
2γ
z

×
2α+2∑
p=0

2β∑
q=0

2γ∑
r=0

ir=mx(p−α−1)+my(q−β)+mz(r−γ)

(−1)p+q+r+1

×
(

2α+ 2

p

)(
2β

q

)(
2γ

r

)
. (35)

Kzz
n
ir

component can be expanded as

Kzz = − 1

ω2

∞∑
m=0

(
ξ2 + ζ2 + η2

ω2

)m
(36)

for the region of convergence defined in (24). Expanding the
power of the sum with the use of the multinomial theorem in
the next step, one obtains

Kzz = −
∞∑
m=0

ω−2(m+1)

×
∑

α+β+γ=m

(
m

α, β, γ

)
ξ2αζ2βη2γ . (37)
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Hence, one obtains in the time domain

Kzz
n
ir = − 1

(2πj)2

∞∑
m=0

∮
γΩ

Ωn−1dΩ

(Ω− 2 + Ω−1)
m+1

×
∑

α+β+γ=m

(
m

α, β, γ

)
s2α
x s2β

y s
2γ
z

×
∮
γX

(
X

mx
2 −X−

mx
2

)2α(
X

my
2 −X−

my
2

)2β

×
(
X

mz
2 −X−

mz
2

)2γ

Xir−1dX. (38)

Again, the integral in Ω-domain is calculated with the use of
the Cauchy integral formula for derivatives

1

2πj

∮
γΩ

Ωn−1dΩ

(Ω− 2 + Ω−1)
m+1 =


(
m+ n

2m+ 1

)
, n ≥ m+ 1

0, otherwise
(39)

where the contour γΩ is in the region of convergence of (10)
which encloses Ω = 0 and Ω = 1. The integral in X-domain
can be calculated as presented above. Hence, one obtains

Kzz
n
ir =

n−1∑
m=0

(
m+ n

2m+ 1

)
×

∑
α+β+γ=m

(
m

α, β, γ

)
s2α
x s2β

y s
2γ
z

×
2α∑
p=0

2β∑
q=0

2γ∑
r=0

ir=mx(p−α)+my(q−β)+mz(r−γ)

(−1)p+q+r+1

×
(

2α

p

)(
2β

q

)(
2γ

r

)
. (40)

The other components of dyadic DGF of DPW can be ob-
tained by a suitable rotation of the subscripts x, y, z and the
corresponding summation indices α, β, γ.

Finally, the electromagnetic field of DPW can be calculated
in the time domain as

H
n+ 1

2
ir

=
∆t

ε0

n∑
n′=0

∑
i′r

Gn−n′
ir−i′r

×(c∆t)

 0 −∇zmz
2

∇ymy
2

∇zmz
2

0 −∇xmx
2

−∇ymy
2

∇xmx
2

0

J
n′+ 1

2

i′r
(41)

Enir = −∆t

ε0

n−1∑
n′=0

∑
i′r

Gn−n′
ir−i′r

(
J
n′+ 1

2

i′r
− J

n′− 1
2

i′r

)
(42)

where

E n
ir =

Ex n
ir

Ey
n
ir

Ez
n
ir

 H n
ir = η

Hx
n
ir

Hy
n
ir

Hz
n
ir

 J n
ir =

Jx n
ir

Jy
n
ir

Jz
n
ir

 .
(43)

The components of the Green’s function

G n
ir =

Gxx n
ir

Gxy
n
ir

Gxz
n
ir

Gyx
n
ir

Gyy
n
ir

Gyz
n
ir

Gzx
n
ir

Gzy
n
ir

Gzz
n
ir

 (44)

are derived as presented above. In (41)–(42), the operators are
applied to the excitation J instead of the kernel G. Since
the DGF equations are cumbersome for computations, the
computational overhead can be reduced in this way. Formally,
(41)–(42) can still be written in the standard form as follows:

H
n+ 1

2
ir

=
∆t

ε0

n∑
n′=0

∑
i′r

Ghj
n−n′
ir−i′r

(c∆tJ
n′+ 1

2

i′r
) (45)

Enir = −∆t

ε0

n−1∑
n′=0

∑
i′r

Gej
n−n′
ir−i′r

J
n′+ 1

2

i′r
(46)

where

Ghj
n
ir =∇

z
mz
2
Gxy

n
ir
∇xmx

2
Gxz

n
ir
∇ymy

2

Gxx
n
ir

∇zmz
2
Gyy

n
ir
∇xmx

2
Gyz

n
ir
∇ymy

2

Gyx
n
ir

∇zmz
2
Gzy

n
ir
∇xmx

2
Gzz

n
ir
∇ymy

2

Gzx
n
ir



−

∇
y
my
2

Gxz
n
ir
∇zmz

2
Gxx

n
ir
∇xmx

2
Gxy

n
ir

∇ymy
2

Gyz
n
ir
∇zmz

2
Gyx

n
ir
∇xmx

2
Gyy

n
ir

∇ymy
2

Gzz
n
ir
∇zmz

2
Gzx

n
ir
∇xmx

2
Gzy

n
ir

 (47)

Gej
n
ir = G n

ir −G n−1
ir

. (48)

However, in the presented numerical results, (41)–(42) are
employed in order to save computational runtime. As seen,
the components of dyadic DGF for DPW (29), (30), (35), (40)
are similar to expressions for FDTD-compatible DGF [12].
Although both DGFs are based on combinatorial expressions,
DGF of DPW contains decision functions which filter out
inadmissible combinatorics in those expressions.

III. NUMERICAL RESULTS

The method is implemented in C programming language
and tested on a machine with Intel i7-3770 3.4 GHz processor
and Nvidia Gtx 660 graphics processing unit. Derived DGF
of DPW involves binomial coefficients whose values may
be large integers for high upper indices, whereas powers
of the Courant numbers may be very small real numbers.
Therefore, numerical difficulties can be expected if derived
DGF is implemented in a common programming language
with fixed-precision arithmetic. The implementation of DGF
in software requires the application of multiple-precision arith-
metic (MPA) [16], whose digits of precision are only limited
by the size of the available memory in a computing system.
In our work, multiple precision integers and rationals (MPIR)
[17] and CUDA multiple precision arithmetic (CUMP) [18]
libraries are employed. Although DGF computations require
MPA, final results of the DGF generation are cast to double
precision. However, other computations (e.g., the convolutions
(41)–(42)) are implemented in double precision.
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Fig. 1. (a) Hz component of the plane wave field computed with the use
of the developed method and the reference method. Both waveforms overlap.
(b) Relative error between both methods. Discontinuity of the line means that
both methods computed exactly the same result in double precision.

The spatial-step size is taken as ∆x = ∆y = ∆z = 1 mm
and the Courant numbers are taken as sx = sy = sz = 1/

√
3

for the results presented here. Numerical tests are executed
to validate the correctness of the DGF derivation. The relative
error between waveforms generated with the use of the derived
expression (fn) and the reference method (fnref ) is defined as
follows:

Error = 20 log10

∣∣∣fn − fnref ∣∣∣
max

∣∣∣fnref ∣∣∣ (dB). (49)

In the first test, Hz component of the plane wave field is
computed for the excitation with the use of the Kronecker delta
(−∆t

ε0
J
n+ 1

2
ir

= δir,isδn,0îx). Fig. 1a presents the comparison
between results computed with the use of the developed
method (41)–(42) and those obtained from the FDTD-DPW
method [7] formulated by (7a)–(7f) (reference method). The
direction of the wave propagation is set to φ = 78.7◦,
θ = 68.6◦ and ψ = 11.3◦ (mx = 1, my = 5, mz = 2).
The observation point is placed 32 cells away from the source.
Fig. 1b presents the error between both methods. The error is
around the numerical noise level. It validates the correctness
of the DGF derivation.

Fig. 2a presents the comparison between the convolution
(42) of the Gaussian-modulated harmonic signal (frequency
range 5–25 GHz) with DGF, and the reference result obtained
from the direct update of the FDTD-DPW grid. The direction
of the wave propagation is set to φ = 68.2◦, θ = 60.9◦ and
ψ = 21.8◦ (mx = 2, my = 5, mz = 3). The observation point
is also placed 32 cells away from the source in the FDTD-
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Fig. 2. (a) Convolution of the Gaussian-modulated harmonic signal with DGF
(developed method) against waveform obtained with the use of the direct
update of the FDTD-DPW grid (reference method). Both waveforms overlap.
(b) Relative error between both methods. Discontinuity of the line means that
both methods computed exactly the same result in double precision.

DPW grid. Fig. 2b presents the error between both methods.
The correctness of the convolution computations is validated
by the error around the numerical noise level.

Finally, the AFP technique is implemented in the time
domain for the plane wave injection in 3-D TFSF FDTD
simulations. The incident field at the TFSF interface is com-
puted with the use of the time-domain formulation (41)–
(42). The developed code is optimized taking advantage of
the inherent 1-D nature of the plane wave as in the opti-
mized AFP implementation [4]. In the test of the developed
time-domain AFP technique, the total-field region is of size
21 × 21 × 21 cells, whereas the FDTD domain is of size
680× 680× 680 cells. The direction of the wave propagation
is set to φ = 63.4◦, θ = 36.7◦ and ψ = 26.6◦ (mx = 1,
my = 2, mz = 3). The harmonic signal of frequency 30 GHz
is employed as a soft source. Usually, several boundary points
(m = max(|mx| , |my| , |mz|)) are hard-sourced in order to
initiate the wave propagating along a source grid [5], [7]. In
the reported investigations, m points are soft-sourced by the
same signal, which does not affect the match between the
main grid and results of the DGF-based computations (41)–
(42). However, the application of a soft source for the plane
wave injection in the developed method makes the shape of
the propagating wave different to the one obtained from hard
sourcing of the FDTD-DPW grid (as implemented in [7]).

In Fig. 3, Ez field in the total-field region of the domain
without a scatterer is presented for n = 130 time steps. The
computational domain is cut in the centre plane k = 340.
There are no visible reflections in the scattered-field region,
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Fig. 3. Ez field in the 3-D TFSF FDTD domain with the plane wave
propagating from lower-left to upper-right corner (φ = 63.4◦, θ = 36.7◦,
ψ = 26.6◦, mx = 1, my = 2, mz = 3) at time n = 130 steps.

thus the presented AFP implementation is validated.
In Fig. 4, Ez-field waveforms measured in the corners of

the TFSF interface in the FDTD domain are presented. The
positions of the measurement points Q1–Q4 are determined
in the coordinate system shown in Fig. 3. As seen, the fields
measured in the scattered-field region are almost 16 orders of
magnitude lower than the amplitude of the plane wave in the
total-field region.

The computational efficiency of DPW implemented with
the use of (41)–(42) is much lower than the original DPW
implementation based on the update of 6 auxiliary 1-D grids
[7]. It stems from the requirement of MPA in computations of
DGF. Therefore, the presented benchmarking simulations are
executed for small total-field domains of size 21×21×21 cells.
However, the presented implementation of DPW does not
require the termination of auxiliary 1-D grids by an absorbing
boundary condition (cf. [7]). The convolution formulation of
DPW obtained in the time domain is based on a kernel which is
not an elementary function. Hence, the presented convolution
formulation of DPW does not provide significant advantages
in comparison with the DGF formulation in the frequency
domain [2], [3], [4].

IV. CONCLUSION

The closed-form expression for the time-domain Green’s
function of DPW propagating in the 3-D FDTD grid is
derived. It is verified that this expression allows to perfectly
inject DPW at the TFSF interface. Due to the computational
overhead, the derived DPW formulation has limited appli-
cability in FDTD simulations. The developed methodology
based on the multidimensional Z–transform can be useful for
derivations of integral DPW representations in other finite-
difference schemes. The results obtained facilitate theoretical
investigations in the area of the FDTD method.
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Fig. 4. Electric field measured in (a)–(b) total-field and (c)–(d) scattered-field
regions of the TFSF FDTD domain. Simulation parameters are the same as
for the results in Fig. 3.
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