Magnetism and charge density waves in $RNiC_2$ ($R = Ce$, Pr , Nd)

Kamil K. Kolincio,[∗] Marta Roman, Michał J. Winiarski, Judyta Strychalska - Nowak, and Tomasz Klimczuk[†] 2

³ Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

We have compared the magnetic, transport, galvanomagnetic and specific heat properties of $Cenic₂$, $PrNic₂$ and $NdNic₂$ to study the interplay between charge density waves and magnetism in these compounds. The negative magnetoresistance in $NdNiC₂$ is discussed in terms of the partial destruction of charge density waves and an irreversible phase transition stabilized by the field induced ferromagnetic transformation is reported. For $PrNiC_2$ we demonstrate that the magnetic field initially weakens the CDW state, due to the Zeeman splitting of conduction bands. However, the Fermi surface nesting is enhanced at a temperature related to the magnetic anomaly.

I. INTRODUCTION

⁵ The interaction between charge density waves ⁶ (CDW) and different types of orderings such as superconductivity¹⁻³, spin density waves⁴⁻⁶ and ⁸ magnetism⁷ has been a long standing area of interest. ⁹ Magnetic order or applied magnetic field have been ¹⁰ found to impact the CDW state through changing the ¹¹ geometry of the Fermi surface (FS). The effect can be ¹² destructive due to the disturbance of the FS nesting ¹³ caused by the magnetic field-induced splitting of the ¹⁴ conduction bands or modification of the electronic ¹⁵ structure due to a magnetic transition⁸. Alternatively, ¹⁶ a constructive effect has been observed in a group of ¹⁷ materials, in which this FS transformation leads to ¹⁸ the enhancement of the nesting conditions or when the ¹⁹ nesting vector has the ability to adapt to the evolution ²⁰ of the Fermi surface⁹⁻¹⁵. Recently, much attention of ²¹ the researchers exploring the coupling between CDW, ²² superconductivity and magnetic order has been devoted 23 to the two families of ternary compounds: $M_5Ir_4Si_{10}$, 24 (where $M = Y$, Dy, Ho, Er, Tm, Yb or Lu $16-24$ 25 and RNiC₂, (where R = La, Ce, Pr, Nd, Sm, Gd or $(26 \text{ Tb})^{25,26}$. Most of the members of the latter family ²⁷ exhibit the Peierls transitions towards the charge density 28 wave state²⁷. The relevance of a Peierls instability 29 has been confirmed for $R = Gd$, Tb, Nd, Pr and Sm, ω while the LaNiC₂ and CeNiC₂ compounds do not show $_{31}$ any anomalies that could be attributed to CDW²⁸⁻³². 32 Instead, LaNiC₂ is an unconventional noncentrosym- 74 tem (PPMS) allowing for the application of a magnetic 33 metric superconductor with $T_c = 2.7 \text{ K}^{33-35}$. Next to τ_5 field as large as 9 T. Thin Pt wires $(\phi = 37 \text{ }\mu\text{m})$ serv-³⁴ the CDW, the members of the $RNiC_2$ family show a π ing as electrical contacts for transport and Hall measure- 35 wide range of magnetic orderings originating from the 77 ments were spark-welded to the polished sample surface. ³⁶ RKKY interaction between local magnetic moments ⁷⁸ A standard four-probe contact configuration was used to 37 and conduction electrons^{36,37}. The ground state of τ_9 measure resistivity. A magnetic field was applied per-38 RNiC₂ depends on the rare-earth atom marked in the so pendicularly to the current direction. The Hall voltage 39 above formula by R: CeNiC₂, NdNiC₂, GdNiC₂ and $\overline{}$ at was collected in reversal directions of magnetic field in 40 TbNiC₂ show the antiferromagnetic character^{34,38-42}, $_{41}$ SmNiC₂ is a ferromagnet, while the PrNiC₂ compound $_{83}$ tance voltage due to misalignment of electrical contacts. α_2 has been identified as a van Vleck paramagnet⁴³. This α_4 The specific heat measurements were performed using ⁴³ rich variety of the types of magnetic ordering shown by ⁸⁵ the dual slope method on flat polished samples. Magne- 44 the RNiC₂ family members motivated us to explore the $*$ so tization measurements were carried out using the ACMS ⁴⁵ interplay of charge density waves and various magnetic ⁸⁷ susceptometry option of the PPMS system. Pieces of the ⁴⁶ ground states. Here, we compare the physical properties ⁸⁸ samples were fixed in standard polyethylene straw hold-⁴⁷ of three isostructural, yet highly dissimilar compounds: ⁸⁹ ers.

48 NdNi C_2 , PrNi C_2 and CeNi C_2 . The first compound, 49 NdNiC₂ shows the Peierls instability with $T_P = 121$ K 50 and antiferromagnetic ordering with $T_N = 17$ K. The $_{51}$ second, PrNiC₂ undergoes the CDW transition at $T_P =$ ⁵² 89 K and instead of long range magnetic ordering, shows ⁵³ a magnetic anomaly at $T^* = 8$ K. The last compound, $_{54}$ CeNiC₂ becomes an antiferromagnet at $T_N = 20$ K and ⁵⁵ does not exhibit the CDW transition.

⁵⁶ II. EXPERIMENTAL DETAILS

 The polycrystalline samples of RNiC₂ (where R = Ce, Pr, and Nd) were synthesized by arc-melting the stoichio- metric amounts of pure elements: Ni (4N), C (5N) and ϵ_0 Ce (3N), Pr (3N), Nd (3N) in a high purity argon atmo-61 sphere. Small excess of Ce, Pr, Nd ($\approx 2\%$) and C ($\approx 5\%$) was used to compensate the loss during arc-melting. To obtain good homogeneity of samples, the specimens were turned over and remelted four times in a water-cooled copper hearth. A zirconium button was used as an oxy- gen getter. The buttons obtained from the arc-melting process were wrapped in tantalum foil, placed in evac- ϵ ⁸ uated quartz tubes, annealed at 900 $\rm ^{o}C$ for 12 days and cooled down to the room temperature by quenching in cold water. Overall mass loss after the melting and an-⁷¹ nealing processes were negligible ($\approx 1\%$).

⁷² The low temperature experiments were performed with ⁷³ a Quantum Design physical properties measurements sys-⁸² order to remove the parasitic longitudinal magnetoresis-

III. RESULTS AND DISCUSSION

⁹¹ The phase composition and crystallographic structure ⁹² of the samples were checked by powder X-ray diffrac-⁹³ tion (pXRD) at room temperature. The pXRD analysis 94 shows that all observed peaks for $NdNiC_2$ and $PrNiC_2$ are $\frac{1}{95}$ successfully indexed in the orthorhombic CeNiC₂-type ⁹⁶ structure⁴² with a space group Amm2 ($\#$ 38), which con-⁹⁷ firms the phase purity of the obtained samples. Only for \mathcal{P}_{98} the CeNiC₂ sample, additional reflections corresponding ⁹⁹ to a small amount of the secondary phase⁴⁴ CeC_2 are ob-¹⁰⁰ served. The lattice parameters were determined from the ¹⁰¹ LeBail profile refinements of the pXRD patterns carried ¹⁰² out using FULLPROF software⁴⁵. The obtained values ¹⁰³ of the lattice constants, shown in Table I are in good $_{104}$ agreement with those reported in the literature^{39,43,46,47}. 105

TABLE I. Lattice constants, unit cell volume and the parameters of the LeBail refinements for $CeNiC₂$, $PrNiC₂$ and NdNiC2, at room temperature.

	CeNiC ₂	PrNiC ₂	NdNiC ₂
a(A)	3.8753(2)	3.8239(5)	3.7834(1)
b(A)	4.5477(2)	4.5428(8)	4.5361(1)
c(A)	6.1601(3)	6.1448(1)	6.1285(1)
$V(\AA^3)$	108.565(8)	106.746(3)	105.178(3)
R_p	12.3	7.51	8.35
R_{wp}	16.5	10.1	10.8
R_{exp}	11.49	7.54	7.7
χ^2	2.05	1.81	1.96

106 107

¹⁰⁸ The temperature dependence of the magnetic suscep-109 tibility (χ) measured at 1 T applied magnetic field is ¹¹⁰ presented in Figure 1. All three compounds show para-111 magnetic behavior at high temperatures. The $\chi(T)$ data ¹¹² were fitted using the modified Curie-Weiss expression:

$$
\chi(T) = \frac{C}{T - \Theta_{CW}} + \chi_0 \tag{1}
$$

113 where C is the Curie constant, Θ_{CW} is the Curie-Weiss $_{114}$ temperature, and χ_0 is the temperature-independent sus- ceptibility resulting from both sample (Pauli and Van Vleck paramagnetism, Landau diamagnetism) and sam- ple holder (small diamagnetic contribution of sample straw assembly). Having estimated the C parameter and ¹¹⁹ assuming that the magnetic moment originates from R^{3+} ions only, one can calculate the effective magnetic mo-ment using the relation shown in Equation 2:

$$
\mu_{eff} = \sqrt{\frac{3Ck_B}{\mu_B^2 N_A}}
$$
 (2)

 $_{123}$ magneton, and N_A is Avogadro's number. The result- $_{131}$ gesting the weakness or absence of magnetic interactions $_{124}$ ing effective magnetic moments of CeNiC₂, PrNiC₂ and $_{132}$ down to 2 K.

FIG. 1. Magnetic susceptibility of $CeNiC₂$ (a), $PrNiC₂$ (b), and NdNiC₂ (c) at applied magnetic field $\mu_0H = 1$ T (open circles). Red lines show fits using the modified Curie-Weiss expression (Eq. 1). Insets show inverse susceptibilities displaying linear temperature dependence in agreement with the Curie-Weiss law (Eq. 1). Blue ticks mark the used fitting ranges. The effective magnetic moments extracted from fits agree with the values expected for free trivalent R ions. Lowtemperature part of susceptibility for $PrNiC_2$ is presented in Fig. 2

.

where k_B is the Boltzmann constant, μ_B is the Bohr 130 PrNiC₂, the absolute value of Θ_{CW} is close to 0 sug- NdNiC₂ are consistent with the values expected for free ¹²⁶ R^{3+} ions⁴⁸. The negative sign of Θ_{CW} obtained for the Ce- and Nd-bearing compounds (-26 K and -5.9 K, re- spectively) indicate an effectively antiferromagnetic cou-pling between the magnetic moments. In the case of

FIG. 2. Panel a) Magnetization vs. applied magnetic field $(M(H))$ measured for CeNiC₂ at 2 and 5 K (below the Néel temperature $T_N = 19$ K) showing a hysteretic behavior probably due to a field-induced magnetic transition. The inset presents the magnetization at 10, 20, and 40 K. While the magnetization at $T \geq 40$ K (above the AFM transition) is a linear function of applied field, in the vicinity (20 K) and below the T_N an upturn is seen arround 3 T, suggesting the field-induced magnetic transition suppressing the AFM order. Panel b) presents $M(H)$ curves for PrNiC₂ showing linear character down to 40 K. Below that temperature the curves start to saturate in high magnetic fields. At the lowest temperatures (2, 5, and 10 K; see the inset) the deviation from linearity is clear above 1-2 T. Straight lines are least-squares linear fits to the low-field (below 1 T) magnetization data. Gray shading in the inset marks the fitting range used. Panel c) shows the low-temperature $M(H)$ data for NdNiC₂. At 20 K (above the $T_N = 17$ K) the curve is linear up to 9 T while below this temperature an upturn is observed above approx. 4 T. In the temperatures lower than T_N the magnetization below approx. 4 T is visibly suppressed due to AFM ordering of the magnetic moments. At 4 T a magnetic order-order transition results in rapid increase in magnetization. The inset shows magnetization around the field-induced magnetic transition at 5 K showing no sign of hysteresis. Panel d) presents magnetization of $N\text{d}NiC_2$ between 20 and 100 K, showing a linear character up to 9 T. Straight lines are least-squares linear fits to the low field data.

¹³⁷ ments is the dominant part of magnetic susceptibility ¹⁵⁴ ity. ¹³⁸ above 35 K. The Van Vleck paramagnetic contribution 139 reported by Onodera et al.⁴³ is in our case well modeled ¹⁴⁰ by the temperature-independent term χ_0 .

 $_{142}$ magnetic susceptibility of NdNiC₂ drops rapidly. A sim- $_{159}$ lower temperatures. Below the second transition temper-¹⁴³ ilar drop, yet much less pronounced, is seen also in ¹⁶⁰ ature $(T_t = 7 \text{ K})$ hysteresis is observed in $M(H)$. Even ¹⁴⁴ CeNiC₂ below $T_N = 19$ K. The susceptibility of PrNiC₂ ¹⁶¹ at 9 T applied magnetic field, the magnetization reaches ¹⁴⁵ shows no clear sign of a magnetic transition above 2 K, $_{146}$ in agreement with previous reports^{37,43}, however a small ¹⁴⁷ kink in the curve is seen at $T^* \approx 8$ K (see Fig. 3), ¹⁶⁴ $g = \frac{4}{5}$ is the Lande g-factor, and $J = 4$ is the total an-¹⁴⁸ consistent with the decrease in magnetization along the $_{165}$ gular momentum)⁴⁸. The magnetization at 2 K and 9 $_{149}$ a crystallographic axis seen at this temperature by On- $_{166}$ T for CeNiC₂ is however approximately half of the ob-

133 It is worth noting that the measured susceptibility of $\overline{150}$ odera et al.⁴³). The underlying cause for this magnetiza- $_{134}$ PrNiC₂ is well reproduced by the modified Curie-Weiss $_{151}$ tion anomaly is not clear, but may suggest some type of 135 equation, yielding reasonable values of C, Θ_{CW} , and χ_0 152 electronic or crystal structure transition, resulting in the ¹³⁶ and suggesting that the contribution of Pr^{3+} local mo- ¹⁵³ decrease of Pauli or Van Vleck paramagnetic susceptibil-

141 Upon crossing the N'eel temperature $T_N = 17$ K, the 158 with an upturn developing above approx. 4 T in the 155 Magnetization vs. applied field $(M(H))$ for CeNiC₂, 156 PrNiC₂, and NdNiC₂ is presented in Figure 2. For $_{157}$ CeNiC₂ (Fig. 2a) the magnetization is linear above T_N , ¹⁶² only $0.27\mu_B$ which is ca. 13% of the expected saturato tion magnetization for Ce^{3+} ion $gJ = 2.14 \mu_B$ (where

FIG. 3. a) Low-temperature dc magnetic susceptibility of PrNiC² measured at 1 T applied field showing a slight upturn arround 7 K, below the magnetic anomaly temperature T^* (see text). The differential of the dc susceptibility (blue line) shows a minimum arround 4 K. b) Inverse magnetic susceptiblity of $PrNiC₂$ corrected for the temperature independent contributions χ_0 . Red line shows the Curie-Weiss fit from Fig. 1 b). Dashed lines are a guide for the eye.

¹⁶⁷ served saturation moment for a pure Ce metal which is ¹⁶⁸ only $0.6 \mu_B{}^{48}$.

¹⁶⁹ For PrNiC₂, $M(H)$ is roughly linear up to 9 T applied field at temperatures above 40 K (see Fig. 2b), below which the curves start to slightly deviate from linearity. At 10 K and below (Inset of Fig. 2b) the deviation is more pronounced and the curves start to saturate. At 2 K and 9 T applied field the $M(H)$ of PrNiC₂ reach approx. 1.5 μ B, which is half of the expected saturation ¹⁷⁶ magnetization for Pr^{3+} ion $gJ = 3.20 \mu_B^{48}$.

 In case of NdNiC₂, the magnetization curves are linear $_{178}$ down to 20 K (Fig. 2c and d). Below the T_N the $(M(H))$ is strongly suppressed, but above 4 T a sudden upturn is observed, resulting from field-induced magnetic order- order transition that reduces the AFM compensation of local moments. Similar transitions have been previously ¹⁸³ observed in GdNiC₂⁴⁹. Above the transition the $M(H)$ curves start to saturate, reaching $1.6\mu_B$ in 9 T at 2 K, about one half the saturation magnetization for Gd ion ¹⁸⁶ $(gJ = 3.27 \mu_B^{48})$. The magnetization loop shows no trace of hysteresis at the AFM-FM transition as it is presented in the inset of Fig. 2c.

¹⁸⁹ The real part of the ac magnetic susceptibility of 190 CeNiC_2 and NdNiC_2 shows a drop at the Néel tempera-191 ture T_N of 19 and 17 K, respectively (see Fig. 4a,c), in ¹⁹² agreement with previous reports⁴³. Below T_N both com- 193 pounds undergo further magnetic transitions. In CeNiC_2 ¹⁹⁴ a sudden drop of susceptibility is seen at $T_t = 7$ K fol-¹⁹⁵ lowed by a pronounced upturn. The change in magnetic $_{201}$ surements. In NdNiC₂ a small feature is seen around 4 K $_{207}$ in which a quasi-2D magnetic order is observed below 7

FIG. 4. Real part of ac magnetic susceptibility of a) CeNiC_2 , b) $PrNiC₂$, c) $NdNiC₂$ measured in a constant field of 5 Oe with 3 Oe, 1 kHz excitations. Blue arrows on panel a indicate the transition to an AFM state at $T_N = 19$ K and orderorder transition at approx. 7 K. Inset of panel b presents the comparison of real and imaginary parts of the ac susceptibility (blue and black points, respectively) and the derivative of the real part (red line). The value of derivative is negative and decreases with decreasing temperature. In panel c the $T_N =$ 17 K is defined as a position of the drop of susceptibility at the AFM transition. Inset shows a small jump around 4 K that is attributed to magnetic order-order transition.

¹⁹⁶ order below 10 K was previously observed by magnetiza-²⁰² (see the inset of Fig. 4c) that was reported by Onodera ¹⁹⁷ tion, specific heat and NMR measurements^{43,46}. An ad-₂₀₃ et al.⁴³. The ac susceptibility of PrNiC₂ shows no clear ¹⁹⁸ ditional small upturn around 29 K results from the pres-²⁰⁴ sign of magnetic transition, however the slightly saturat-¹⁹⁹ ence of a minor quantity of the antiferromagnetic CeC₂ ²⁰⁵ ing dependency of χ' and its derivative $d\chi'/dT$ resembles ²⁰⁰ impurity phase⁴⁴ ($T_N = 30$ K), observed in XRD mea- 206 the results obtained for the $Pb_2Sr_2PrCu_3O_8$ compound

²⁰⁸ K as evidenced by neutron diffraction study⁵⁰. In the aforementioned case the ac susceptibility show a satura- tion below the ordering temperature rather than a pro- nounced drop while the differential exhibit a minimum at the ordering temperature. In our case there is no clear minimum of the differential curve, yet it would be nec- essary to perform a neutron diffraction measurement in order to confirm or deny the presence of long-range mag-216 netic order below the T^* .

217 In contrast with $CeNiC₂$ and $NdNiC₂$, $PrNiC₂$ does ²¹⁸ not reveal any clear magnetic transition. Since the three ²¹⁹ compounds are chemically similar, the discrepancy arises ²²⁰ likely from the difference in the detailed structure of 4f $_{221}$ energy levels. The ground state of a free Pr^{3+} ion is 222 ninefold degenerate with total angular momentum $J =$ ₂₂₃ 4. The crystalline electric field (CEF) acting on the Pr^{3+} ²²⁴ removes the degeneracy (either fully or partially), with ²²⁵ the nature of the effect dependent on the point symmetry ²²⁶ of the ion crystallographic position. In the orthorhombic 227 PrNiC₂ the 2a site occupied by a Pr atom has the point $_{228}$ symmetry group $mm2$. For such relatively low symmetry ²²⁹ one would expect a complete uplifting of the ground state ²³⁰ degeneracy, yielding a nonmagnetic configuration with 9 $_{231}$ separated singlet states similarly as in $PrNi₂Al₅^{51}$. Note ²³² however that in the case of exchange interaction energy ²³³ exceeding the first CEF excitation, the magnetic order ²³⁴ may appear due to the intermixing of higher energy states $_{235}$ into a ground state with higher degeneracy⁵². Such sit- 236 uation occurs in the orthorhombic PrN_1Ge_2 compound $_{237}$ crystallizing in the CeNiSi₂-type structure (related to ²³⁸ CeNiC₂) in which the Pr^{3+} ion position has the same 239 point symmetry as in $PrNiC₂$, yet the material reveals ²⁴⁰ ferromagnetic (FM) ordering at $T_C = 13 \text{ K}^{52,53}$.

²⁴¹ Figure 5a, b and c, shows the thermal dependencies ²⁴² of electrical resistivity (ρ_{xx}) measured without and with ²⁴³ applied magnetic field (9 T) , for CeNiC₂, PrNiC₂ and $_{244}$ NdNiC₂ respectively. At high temperatures, all the com-²⁴⁵ pounds exhibit typical metallic behavior with resistivity ²⁴⁶ deceasing with temperature lowering. Upon cooling, ρ_{xx} $_{247}$ of both $PrNiC_2$ and $NdNiC_2$ show the anomalies pro-²⁴⁸ nounced by a minimum followed by a hump. This metal-²⁴⁹ metal transition is a typical signature of the charge den-²⁵⁰ sity wave state with incomplete Fermi surface nesting, $_{251}$ characteristic for quasi-2D materials⁵⁴. The temperature ²⁵² of this anomaly corresponds to the Peierls temperature ²⁵³ ($T_P = 121$ K for NdNiC₂ and $T_P = 89$ K for PrNiC₂) $_{254}$ established by X-ray diffuse scattering²⁸. In contrast ²⁵⁵ to that, no CDW-like anomaly is observed in the third 256 compound, $CeNiC₂$. At the magnetic crossover temper-²⁵⁷ atures, all three curves exhibit a decrease in resistivity, ²⁵⁸ shown closer in the insets of Figure 5. This downturn is $_{259}$ visibly sharper for the antiferromagnetic ground states of $_{271}$ bly small. In CeNiC₂, this behavior is present down to $_{260}$ NdNiC₂ and CeNiC₂ than in the case of PrNiC₂, where ²⁶¹ instead of a long range of magnetic ordering, one observes $_{262}$ a small magnetic anomaly at T^* .

²⁶⁴ have been reported beforehand²⁷, the influence of mag-₂₇₆ sistance with magnetic field at $T \to T_N$. In PrNiC₂ the ²⁶⁵ netic field on transport properties, up to now, has been ²⁷⁷ onset of the negative magnetoresistance can be observed

FIG. 5. Resistivity of a) $CeNiC₂$, b) $PrNiC₂$, c) $NdNiC₂$, measured without (black color) and with (red color) applied magnetic field of 9 T. Arrows indicate characteristic temperatures: T_P - Peierls temperature for NdNiC₂ and PrNiC₂, T_N Néel temperature for CeNiC_2 and NdNiC_2 , and T^* - magnetic anomaly temperature in PrNiC2. Insets: Expanded view of the vicinity of the magnetic ordering (anomaly) temperature.

263 Although the anomalies in the zero field resistivity 275 waves; in NdNiC₂ one observes a notable decrease in re- $_{266}$ studied solely for the Nd-bearing compound^{28,55}. Elec-²⁶⁷ trical resistivity measured in the presence of a magnetic ²⁶⁸ field of $\mu_0 H = 9$ T is shown as a red line in Figure 5, a b ²⁶⁹ and c. The influence of magnetic field on ρ_{xx} in the high ²⁷⁰ temperature metallic state of each compound is negligi- $_{272}$ the vicinity of T_N , where the magnetic field weakly mod-²⁷³ ifies the resistivity. This is in contrast to the features ²⁷⁴ seen in the two compounds exhibiting the charge density

²⁷⁸ at $T \approx 60$ K, much closer to T_P than in NdNiC₂. To $_{279}$ investigate further the impact of μ_0H on transport prop-²⁸⁰ erties of studied compounds we have performed the field ²⁸¹ sweeps at constant temperatures.

 The magnetic field dependence of magnetoresistance ²⁸³ (MR = $\frac{\rho(H)-\rho_0}{\rho_0}$, where ρ_0 is the zero field resistivity) of ²⁸⁴ CeNiC₂ is depicted in Figure 6a. At $T > T_N$, MR is weak and negative (resistivity decreases by a maximum of 3%). Below this temperature, the magnetoresistance changes its sign and magnitude. This is a typical picture of the modification of the scattering rate in the vicinity ²⁸⁹ of the magnetic ordering temperature^{56–58}; above T_N the reduction of resistance can be attributed to the field in- duced ordering of the local magnetic moments, resulting in the quenching of the spin fluctuations and effectively a decrease of the related scattering mechanism. On the $_{294}$ other side of the transition, below T_N , the magnetic field induces a partial reorientation of the local spins and per- turbs the antiferromagnetic order, which results in the increase of the scattering rate and, consequently, of the electrical resistance.

 Figure 6b shows the magnetic field dependence of mag- netoresistance of PrNiC2. One can notice that, in the charge density wave state, MR is dominated by the neg- ative component which rises as temperature decreases down to T^* . Below this temperature limit, the nega- tive MR decreases and finally at $T = 2$ K a positive term can be observed at low magnetic field. This positive MR component can originate from an onset of another magnetic-like transition at lower temperatures or from the light carriers related to the small Fermi surface pock- ets that can be opened in the FS due to imperfect nest- ing. A complementary experiment, such as ARPES spec- troscopy, neutron diffraction or magnetotransport mea- surements performed at temperatures below 1.9 K and higher field would be required to clarify this point. Fig- ure 6c shows the magnetic field dependence of resistivity of NdNiC₂. Due to the rich variety of positive and neg- ative MR components seen in this compound, we find it 317 more clear to use the $\rho_{xx}(H)$ instead of MR(H) for discus- sion of the magnetotransport properties in NdNiC₂. At 30 K, one observes an onset of the negative magnetoresis- tance term, which becomes stronger as temperature de- creases. Below T_N , the resistivity firstly rises with magnetic field and after reaching the maximum, the ρ_{xx} de- creases again. The position of the resistivity maximum at various temperatures below T_N corresponds to the mag- netic field induced ferromagnetic transition according to the H-T phase diagram of NdNiC₂ constructed for a sin- $_{327}$ gle crystal⁴³. Below 14 K, one observes an additional kink (marked in Fig. 6 by arrows) on the decreasing side of resistance. This can be attributed to the intermedi- ate magnetic phase separating the AFM and FM orders ³³⁶ of the charge density wave as seen in the isostructural, 331 at this temperature range. In addition, one can notice 337 albeit ferromagnetic compound, SmNiC₂ in which the that at the lowest temperatures the resistivity saturates ³³⁸ relevance of the CDW suppression has been confirmed at high magnetic fields. The negative magnetoresistance ³³⁹ by the X-ray diffuse scattering experiment performed in ³³⁴ in NdNiC₂ has been attributed^{28,55} both to the suppres- ³⁴⁰ magnetic field^{59,60}.

FIG. 6. Magnetotransport properties of $RN₁C₂$. All the measurements have been performed at constant temperature. a) Magnetoresistance in $CeNiC₂$ as a function of magnetic field, b) Magnetic field dependence of magnetoresistance in $PrNiC_2$, c) Resistivity of $NdNiC₂$ as a function of magnetic field. For better clarity, for this compound we show the ρ_{xx} instead of MR. Arrows indicate the kinks attributed to a metamagnetic phase separating the FM and AFM orders.

³³⁵ sion of spin disorder scattering and to the destruction ³⁴¹ An interesting observation is the irreversible behavior

 of the electrical resistivity at low temperatures. In order ⁴⁰¹ duction of the pairing interactions and degradation of to prove that this effect is not an artifact caused by unsta-⁴⁰² nesting properties. This term has been found to origi- ble electrical contacts and is intrinsic to the sample, we ⁴⁰³ nate both from orbital effects and from local spins pro- have repeated the measurement at lower temperatures. ⁴⁰⁴ ducing stronger magnetic moments. For magnetic fields 346 Firstly the sample was warmed up to 40 K, far above the 405 $\mu_B H \ll \Delta_{CDW}$, the Zeeman magnetoresistance term is ³⁴⁷ magnetic ordering temperature $(T_N = 17 \text{ K})$. Next, we 406 expressed⁸ by Equation 3: have cooled the sample with zero applied field, and stabi- lized the temperature before activating the magnet. The magnetic field was swept initially to 2 T, to avoid cross- ing the AFM-FM transition. Then, the magnetic field was swept and reached -9 T (9 T applied in the adverse direction). Afterwards, we performed the final sweep and continuously reversed the direction of the magnetic field to 9 T. The whole procedure was repeated for each scan in order to remove any magnetic memory from the sam-⁴¹⁰ ing, since this temperature interval corresponds to the ple. In Figure 7 we show the results of the field sweeps ⁴¹¹ onset of the field induced magnetic ordering. This can at the selected temperatures. The resistivity measured ⁴¹² lead either to the previously suggested CDW suppression, 360 at $T = 14$ K (Figure 7a) is reversible with $\mu_0 H$. At T 413 stronger than predicted by Equation 3 or to the reduc- $_{361}$ = 10 K (Figure 7b) one can notice a small irreverisibil- $_{414}$ tion of the spin scattering, which also results in negative 362 ity of ρ_{xx} , which becomes more pronounced at $T = 8$ 415 magnetoresistance as in CeNiC₂. The comparison of the 363 K, as depicted in Figure 7c. When the magnetic field strength of the negative magnetoresistance in NdNiC₂ ³⁶⁴ is increased to 2 T and then swept to 0, the resistivity ⁴¹⁷ and CeNiC₂ in the vicinity of T_N can also be a useful $_{365}$ returns to the zero-field cooled value of ρ_0 . In these con- $_{418}$ guide. In the former compound, showing the Peierls in- ditions, the sample remains in the AFM state. However, ⁴¹⁹ stability, MR reaches -40 % which is an order of magni- the application of a magnetic field exceeding the limit of ⁴²⁰ tude larger than in the latter one, in which the CDW is 4 T, at which the FM order is induced in the sample, ⁴²¹ absent. This suggests that, the negative magnetoresis-369 prevents the resistance from returning to the original ρ_0 . 422 tance in NdNiC₂ originates, at least partially, from the Further magnetic field sweeps do not induce any irre-⁴²³ suppression of the CDW state. $_{371}$ versible transitions and the resistivity returns to the new $_{424}$ The negative MR in PrNiC₂ reaches a maximum of 372 value of ρ_0^* when the field is reduced back to 0. Figure 7d 425 12%, which although is visibly weaker than in NdNiC₂, compares the result of a field sweep of the sample cooled 426 still exceeds the value found in CeNiC₂. This, similar to $_{374}$ to 2 K in ZFC condition and the ρ_{xx} of the same sam- $_{427}$ the case of NdNiC₂, suggests that the decrease of resis- ple, which previously experienced the transformation to ⁴²⁸ tance in magnetic field originates from the suppression of the FM state at $T = 5$ K (inset). The irreversible be-429 the CDW. To verify this hypothesis, we have scaled the $_{377}$ havior is clearly visible in the former case, while in the $_{430}$ magnetoresistance in $PrNiC₂$ with Equation 3, as shown $_{378}$ latter one the resistivity returns to the initial value. This 431 in Figure 8 b. At $T > 20$ K the PrNiC₂ can be qual- shows that the resistance of NdNiC₂ depends not only on 432 itatively described by the Zeeman term; the MR plots temperature, applied magnetic field or the type of mag-⁴³³ fall into a single straight line. At lower temperatures, 381 netic ordering present in the sample at these conditions, in the vicinity of T_M the negative magnetoresistance is but also on the magnetic history of the sample and this ⁴³⁵ weakened and diverges from this scalling law (as shown metastable effect is clearly associated with the AFM-FM ⁴³⁶ in the inset of Figure 8b). The curve obtained for T transition. Previous reports on the magnetoresistance of $_{385}$ NdNiC₂^{28,55} have not mentioned the irreversible phase transition, probably because this weak crossover could be easily overlooked, since once the sample experiences the high magnetic field at temperature below 12 K it re- mains in the metastable state and the irreversibility is no longer observable until the sample is reheated and cooled down again. One plausible scenario to explain this irre- versible effect is the magnetoplastic lattice deformation induced by the ferromagnetic transition. Note that even a small lattice transformation and a consequent Fermi surface modification can substantially impact the nest- ing conditions and this can lead to the quasi-permanent suppression of CDW.

 sistance in CDW systems to originate from the Zeeman ⁴⁵² effectively than in PrNiC2, showing no clear long range ω splitting of the conduction bands⁶¹ which results in re- ω ₅₃ magnetic ordering.

$$
MR = \frac{\rho(H) - \rho_0}{\rho_0} = -\frac{1}{2} \left(\frac{\mu_B H}{k_B T}\right)^2 + 0 \left(\frac{\mu_B H}{k_B T}\right)^4 \quad (3)
$$

 The Figure 8a shows the magnetoresistance of NdNiC₂ ⁴⁰⁸ above T_N as a function of $\frac{1}{2} \left(\frac{\mu_B H}{k_B T} \right)^2$. The plots do not converge into a single straight line. This is not surpris-

 The BCS approach predicts the negative magnetore-⁴⁵¹ moments amplifies the internal magnetic field much more $437 = 10$ K is a boundary of the relevance of the Equation ⁴³⁸ 3. At $\frac{1}{2} \left(\frac{\mu_B H}{k_B T} \right)^2 \approx 0.02$, which corresponds to $\mu_B H =$ 6 T at this temperature, the magnetoresistance plot di- verges from the Zeeman scaling and starts decreasing. We find that, to apply Equation 3 one has to use the prefactor of approximately 1.4. In other CDW materi- als this coefficient is usually smaller than unity. The key ⁴⁴⁴ examples are $\rm Li_{0.9}Mo_6O_{17}^{62}$ or organic compounds such ⁴⁴⁵ as $(Per)_2Pt(mnt)_2^{63-66}$ in which the existence of weakly magnetic chains ramps this magnetoresistance prefactor ⁴⁴⁷ in comparison with $(Per)_2Au(mnt)_2^{67,68}$ showing a non- magnetic character. On the other hand, the value we 449 found is significantly lower than the factor of ≈ 30 found ⁴⁵⁰ in $GdNiC₂⁴⁹$, where the presence of strong local magnetic

FIG. 7. Resistivity of NdNiC² measured at selected temperatures. After each field sweep data collection at constant temperature, the sample was warmed up to 40 K in zero magnetic field to remove the magnetic memory of the material. Arrows and numbers show the direction of field sweeps. a) $T = 14$ K, b) $T = 10$ K, c) $T = 8$ K, d) $T = 2$ K. Inset: Resistivity at $T = 2$ K of the same sample of NdNiC₂, however previously subjected to the magnetic field of 9 T at $T = 5$ K.

 Due to polycrystalline nature of our samples, we are ⁴⁸⁰ has been attributed to the destruction of CDW and a unable to perform the X-ray diffuse scattering experi-⁴⁸¹ concomitant release of previously condensed carriers. Al- ment to follow the intensity and position of the satellite ⁴⁸² though the CDW suppression by magnetic field appears reflections at various temperature and magnetic field. In-⁴⁸³ to be quite a possible scenario, this mechanism itself is 458 stead, to investigate the suppression of the charge den-484 not sufficient to explain the features observed as $T \to T_N$, ⁴⁵⁹ sity waves state by magnetic field, we have conducted ⁴⁸⁵ especially considering that the low temperature $|\rho_{xy}|$ is ϵ_{460} the Hall effect measurements, which can be used as a di- ϵ_{486} lower than the value found for $T > T_P$. This could lead rect probe for electronic carrier concentration. Figure 9a ⁴⁸⁷ to a misguiding suggestion that the carrier concentra- μ_{462} shows the thermal dependence of Hall resistivity (ρ_{xy}) μ_{88} tion below T_N exceeds the high temperature normal state in NdNiC2. The sign of the measured Hall resistance $\frac{464}{10}$ is negative, opposite to the results reported recently⁵⁵. 465 To clarify this point, we have repeated the measurement α_{91} ponents of the Hall resistance⁷²: with a reference sample of Cu foil, which shows a nega- tive Hall signal in the same contact geometry. This con-468 firms the relevance of the negative sign of ρ_{xy} in NdNiC₂. At $T > T_P$, the Hall signal is almost independent of temperature. At the Peierls temperature one observes α_{471} a downturn of $\rho_{xy}(T)$ (and increase of $|\rho_{xy}|$), which is a typical signature of the opening of the CDW bandgap $_{473}$ and condensation of electronic carriers^{69,70}. Upon fur- $_{495}$ Hall coefficient associated with side jump and skew scat- ther cooling, the Hall resistivity decreases until it reaches ⁴⁹⁶ tering. To obtain the more clear evidence of the par- α_{475} a minimum followed by a prominent increase of ρ_{xy} (and 497 tial CDW destruction in NdNiC₂, we complement the $_{476}$ decrease of $|\rho_{xy}|$, which grows even higher than for tem- $_{498}$ previous Hall effect study⁵⁵ of this compound in re-peratures above T_P .

 This increase of ρ_{xy} in proximity of the magnetic or-⁴⁷⁹ dering temperature observed in $\text{SmNiC}_2{}^{71}$ and $\text{NdNiC}_2{}^{55}$ value. To avoid the oversimplification, in a material ex-hibiting magnetic ordering, one has to consider two com-

$$
\rho_{xy} = R_0 \mu_0 H + 4\pi R_S M \tag{4}
$$

The R_0 in Equation 4 is the ordinary Hall coefficient which, in a single band model, is inversely proportional to the carrier concentration. R_S denotes the anomalous gard to the anomalous component of the Hall signal. We also present the results of the same experiment for CeNiC₂ and PrNiC₂ which similarly to magnetoresis-tance in these two compounds have not been reported

FIG. 8. Scaling of magnetoresistance in $PrNiC_2$ wit Equation 3. Inset: Expanded view the MR scaling for $T \geq 10$ K

 $_{503}$ previously. The separation of normal and anomalous ρ_{xy} components is not straightforward unless the magnetic moment saturates with magnetic field which then reduces $\frac{1}{506}$ the latter one to a constant⁷³⁻⁷⁶. Here, no signs of sat- uration of $M(T)$ up to an applied field of 14 T for any 508 of the studied compounds have been found⁷⁷, which pre- cludes the possibility of the direct extraction of electronic ϵ_{510} concentration from ρ_{xy} . Nevertheless we can propose an alternative road to follow the number of carriers con- densed into the charge density wave state. The idea is ϵ_{513} to compare the field dependencies of ρ_{xy} and M with a special regard for the temperature region, in which mag- netization follows the linear field dependency. In this condition the anomalous component contribution is also linear with field and, for a single band metal, any depar- $_{518}$ ture from the the linearity of ρ_{xy} indicates the change of R_0 which is a measure of electronic concentration.

FIG. 9. a) Hall resistivity of NdNiC₂, divided by magnetic field, measured at various magnetic fields. Arrows indicate the Peierls and Néel temperatures T_P and T_N respectively. b) Hall resistivity of $NdNiC₂$ as a function of magnetic field. The plots have been shifted horizontally to improve data reading.

 $_{520}$ Figure 9b shows the magnetic field dependence of the $_{541}$ some similarities to the case of NdNiC₂. A significant ϵ_{21} Hall resisitivity of NdNiC₂ measured at various temper- ϵ_{42} downturn of ρ_{xy} below T_P concomitant with an increase 522 atures. At $T \geq 60$ K one cannot find any departure from 543 of resistivity (Figure 5c) due to the condensation of the ϵ_{23} linearity for the $\rho_{xy}(H)$. A small nonlinearity can be seen ϵ_{44} electronic carriers is observed at T_P . Upon further cool- 524 at 40 K. Upon further cooling, the deviation from linear 545 ing, the Hall resistivity continues to decrease and does $\frac{1}{2}$ variation for $\rho_{xy}(T)$ becomes more pronounced. Com- $\frac{1}{2}$ saturate at $\frac{T_P}{2}$, where the electronic gap is 526 paring this result with magnetization data for NdNiC₂ 527 (Fig. 2d), which shows linear $M(H)$ dependence at $T \geq$ ⁵²⁸ 20 K one can deduce that, in this temperature range, ϵ_{529} the non-linearity of $\rho_{xy}(H)$ can be safely attributed to ⁵³⁰ the increase in electronic concentration. This indicates ⁵³¹ that, the release of previously CDW condensed carriers ⁵³² is, next to the anomalous Hall component, responsible ϵ_{533} for the increase of ρ_{xy} as temperature is lowered to the 534 vicinity of T_N . Here we emphasize that, since we were \mathfrak{so} unable to observe the saturation of $M(H)$ we are unable ⁵³⁶ to separate the normal and anomalous components of the 537 Hall resistivity for $T \leq 20$ K, where both ρ_{xy} and M are 539 non-linear functions of μ_0H . The thermal dependence of $_{540}$ Hall resistance of PrNiC₂ depicted in Figure 10a exhibits

FIG. 10. a) Hall resistivity of $PrN(C_2, \text{ divided by magnetic})$ field, black points show the data collected from the temperature sweep at constant magnetic field of 9 T. Red, blue and green points show the data collected from the field sweeps at constant temperature. Arrows indicate the Peierls and magnetic transition temperatures T_P and T^* respectively. Solid lines are the guide for the eye. b) Hall resistivity of $PrNiC₂$ as a function of magnetic field. The plots have been shifted horizontally to improve data reading. Dashed lines show the low field linear dependencies of $\rho_{xy}(H)$ expanded to the high field regime.

⁵⁴⁷ expected to be fully open. This behavior is consistent ⁵⁴⁸ with the non-BCS thermal dependence of the satellite $_{549}$ reflections intensity²⁸ suggesting that the nesting vector 550 adjusts to the FS evolution. In contrast to $NdNiC₂$, no ϵ_{551} significant upturn of ρ_{xy} is observed as T approaches the 552 magnetic ordering temperature. Contrarily, below T^* the ⁵⁵³ Hall resistivity starts to decrease again. This observa-⁵⁵⁴ tion is in agreement with the behavior of the intensity 555 of the CDW satellite reflections²⁸, which show a sud- ϵ_{556} den increase upon crossing T^* . Below $T \approx 60$ K, corre-⁵⁵⁷ sponding to the onset of negative magnetoresistance, the ϵ_{558} $\rho_{xx}(T)$ curves obtained at different magnetic fields do ⁵⁵⁹ not converge. The application of stronger magnetic field ϵ_{560} drives the thermal dependence of ρ_{xy} towards more pos- ϵ_{68} studied the thermal and magnetic field dependencies of ⁵⁶¹ itive values, in comparison to the data obtained at lower ⁶¹⁹ specific heat (C_p) . Previously the $C_p(T, H)$ has been

 H. Similar to NdNiC₂, this can be attributed to the pos- itive anomalous Hall component growing as the magneti- zation increases or to the partial suppression of the CDW and increase of the electronic concentration. It shall be noted that, the strength of the ρ_{xy} downturn below T^* 566 is sufficient to overcome the anomalous term driving the Hall resistivity towards more positive values. Note that, $\frac{569}{2}$ the strength of the anomalous Hall signal in PrNiC₂ is expected to parallel the scale of $NdNiC₂$, since the val- ues of magnetization of both compounds are comparable. To explore this effect further, we have conducted $\rho_{x}(\hat{H})$ measurements for PrNiC2. As shown in Figure 10b, the non-linearity of the Hall resistivity plotted versus μ_0H can be observed in this compound as well. The devia- tion from linearity, initially barely observable for $T = 50$ K becomes stronger at lower temperatures. Here, however, we cannot follow the same analysis as for the case of NdNiC₂, due to the fact that for temperatures lower than 60 K the magnetization does not follow a linear relation- ϵ_{581} ship with μ_0H . Therefore, the two normal and anoma- lous ingredients of the Hall resistivity in $PrNiC₂$ cannot be unambiguously separated. Nevertheless, the down-⁵⁸⁴ turn of ρ_{xy} at T^* strongly suggests the enhancement of the CDW state, although the magnetoresistance above $586 T^*$ shows some signatures of the partial suppression of the Peierls instability. This can be explained in terms of the lattice transformation accompanying the magnetic anomaly modifying the Fermi surface, which triggers the nesting of another FS part when the CDW vector ad- justs to band structure evolution. One cannot however exclude an alternative scenario, in which the enhance- ment of the Fermi surface nesting can be seen as a driving force for the magnetic anomaly. Since the magnetic prop- erties are related to the free electron density via RKKY interactions, it is not unreasonable to expect the conden- sation of the electronic carriers at T^* to modify of the magnetic character of PrNiC2. The high resolution X- ray and neutron diffraction experiment performed with a single crystal of $PrNiC₂$ will be required to clarify this ⁶⁰¹ point.

 ϵ_{002} The thermal dependence of Hall resistivity in CeNiC₂, shown in Figure 11a shows no signatures of electronic condensation. This is in agreement with transport prop- erties in which no anomalies similar to those found in NdNiC₂ and PrNiC₂ are observed and confirms the ab- sence of the Peierls instability in CeNiC₂. From the clear ω correlation between the thermal dependence of ρ_{xy} and magnetization (see Figure 11b), one can conclude, that the anomalous component is the dominant ingredient of the Hall effect in this compound, while the normal Hall coefficient is expected to remain temperature indepen-613 dent. The observation of the increase of ρ_{xy} as $T \to T_N$ in CeNiC₂, where the absence of the CDW has been em- phasized, implies that the anomalous Hall component is 616 essential to describe the ρ_{xy} in NdNiC₂ and PrNiC₂.

To explore the observed transitions further, we have

FIG. 11. Hall resistivity in $CeNiC₂$ as a function of temperature (a) compared with magnetization (b) of the same compound

FIG. 12. Specific heat of $NdNiC₂$ as a function of magnetic field measured at a) $T = 12$ K, b) $T = 10$ K, and c) $T = 8$ K. Arrows and numbers show the direction of the magnetic field sweeps. At each temperature step the sample was first heated to 40 K, well above the magnetic transition temperature $T_N = 17$ K, held for a few minutes and then cooled to the target temperature with no applied magnetic field. After stabilizing the temperature, the magnetic field was first increased to 9 T, then decreased to -9 T and swept to 0 T. At 8 K an irreversible behavior is clearly seen - during the first field sweep the specific heat below 4.5 T is higher than for the second sweep from $+9$ to -9 T, indicating the formation of a field-induced metastable phase, which is also observed in transport measurements.

 625 The largest one is seen at about 19 K and is almost un- 678 nificant change in magnetic order.

 affected by the applied magnetic fields up to 9 T. The second anomaly is less pronounced and the temperature of its occurrence varies with the applied magnetic field from 11 K in 0 T to 9.5 K in 9 T. The existence of the fea- tures anomalies are in agreement with magnetization and transport results. Another anomaly, previously reported by Motoya et al.⁴⁶, seen at 2 K is magnetic field depen- dent. A minor jump around 30 K is likely connected with ϵ ³⁴ the CeC₂ impurity phase⁴⁴, as suggested from magnetic susceptibility data.

 ϵ_{36} The broad hump seen in PrNiC₂ (Fig. 13 c and d) is a Schottky anomaly originating from multiple energy lev- ϵ ₆₃₈ els of the Pr³⁺ ion subject to the CEF splitting. Due to the complicated energy level structure the specific heat data could not be reliably fitted in order to extract the level splitting energies. The anomaly is slightly shifted towards higher temperature by applied magnetic field as seen in Figure 13 c and d, which is caused by the Zeeman $_{644}$ effect, as seen in many f-electron systems (see eg.^{78–80}). No clear anomaly is seen around T^* corresponding both to the drop in the Hall resistivity and the upturn of sus- ceptibility. This may suggest that the alleged transition involves predominantly the change of electronic structure with little effect on crystal and spin order, which should result in the appearance of an anomaly in specific heat. Note that in the $Pb_2Sr_2PrCu_3O_8$ compound mentioned before the specific heat anomaly at the transition tem- perature is weak⁸¹. If such weak anomaly would arise in F_N FrNiC₂ at the T^* it could be hard to observe on top of the large Schottky hump.

 The results of the specific heat measurements for 657 NdNiC_2 are shown in Fig. 13 e and f. For this com- pound the specific heat shows a lambda-like anomaly at T_N , which is weakly affected by the applied magnetic field up to about 3.0-3.5 T above which a metamagnetic transition occurs. Above 7 T we can observe the third anomaly which is probably related to the occurrence of the transitional phase between AFM and FM.

 successfully used to construct the phase diagram for ⁶⁷³ seen in the inset of Figure 2. This could be explained ϵ_{21} GdNiC₂⁴⁹. Figure 13 shows a specific heat map (a) and ϵ_{74} by the insufficient resolution of magnetization measure- ϵ_{22} the heat capacity of the polycrystalline CeNiC₂ (b) plot- ϵ_{55} ments performed with the ACMS option. However it is ted as a function of temperature, under various magnetic σ_6 also possible that the field-induced transition involves a fields. In the results we can observe a few anomalies. ϵ_{77} change of electronic and crystal structures without a sig- The magnetic field dependence of the specific heat of NdNiC₂ measured at 12 K, 10 K and 8 K is presented 666 in Fig. 12. At 8 K the C_p vs. H shows an irreversible behavior as seen in Figure 12c. The observation of the irreversibility in both specific heat and electrical resis- tivity measurements confirms the presence of a magnetic field-induced metastable state, not reported in previous studies. Interestingly, the same transition does not re-sult in the appearance of hysteresis in magnetization, as

FIG. 13. Panels a) and b) present the specific heat of CeNiC₂ as a function of temperature and magnetic field. The anomaly seen at $T_N = 19$ K does not significantly shift with applied magnetic fields up to 9 T, while the anomalies around 10 and 2 K are suppressed by increasing μ_0H . Panels c) and d) show the specific heat of PrNiC₂, revealing that the broad hump, attributed to the Schottky anomaly resulting from splitting of the f orbital energy levels is gradually shifted towards higher temperatures by application of a magnetic field due to the Zeeman effect. Panels e) and f) present the specific heat of NdNiC2. The anomaly at 17 K remains almost unaffected by magnetic fields up to approx. 3 T above which a field-induced magnetic transition takes place, as evidenced by magnetization and transport measurements. At higher fields the specific heat curves develop a complicated structure indicating that the magnetic phase diagram is complex, as previously reported for GdNiC₂⁴⁹.

⁶⁷⁹ IV. CONCLUSIONS

 In order to explore the interaction between charge den- sity waves and magnetism in the $RNiC₂$ family, we have compared the physical properties of three isostructural ϵ_{83} compounds: NdNiC₂, showing both the Peierls instabil- ity, $PrNiC₂$ with the CDW and a magnetic anomaly, and CeNiC₂, showing antiferromagnetic ordering, and the ab- sence of the CDW transition. The weak magnetoresis- ϵ_{687} tance in CeNiC₂ is found to originate by the spin fluc-

 tuations accompanying the magnetic transition. Neither transport or Hall effect measurements reveal any signa- tures of the Peierls instability. Study of the magnetore- sistance and the galvanomagnetic properties of $NdNiC₂$ confirms the partial suppression of charge density waves by magnetic ordering and a further destruction of the Peierls instability at the crossover from the antiferro- magnetic to ferromagnetic order. We have also found that this magnetic transformation drives a metastable lattice transformation that can be observed via the mag-

 netoresistance and the specific heat measurements. The ⁷¹³ magnetic anomaly, and by the modification of the mag-⁶⁹⁹ interplay between magnetism and charge density waves π ⁴ netic ordering via the RKKY interactions influenced by in PrNiC₂ shows more complex character. Although 715 change of the electronic concentration. Further analysis τ_{10} the magnetoresistance data suggest that, the application τ_{16} of this effect can be realized by high resolution diffraction τ_{102} of magnetic field partially suppresses CDW by Zeeman τ_{17} experiments on a single crystal. splitting of the electronic bands, the expansion of the ⁷⁰⁴ nested region of the Fermi surface at $T^* \approx 8$ K can be observed by a significant downturn of the Hall resistivity, strong enough to overcome the positive Hall signal origi- nating from the anomalous component. This effect seems ⁷⁰⁸ to be related to the magnetic anomaly⁴³ observed at the same temperature, however the underlying mechanism ⁷²⁰ from National Science Centre (Poland), grant number: $_{710}$ remains unclear. Tentatively, the interaction between the $_{721}$ UMO-2015/19/B/ST3/03127. We also thank to E. Car- CDW and magnetic properties of this compound can be ⁷²² nicom, K. Rogacki, Z. Sobczak, K. G´ornicka and H. described either by the lattice transformation due to the ⁷²³ Marciniak for useful advice and fruitful discussions.

- ∗ kkolincio@mif.pg.gda.pl
- † tomasz.klimczuk@pg.edu.pl
- $_{726}$ ¹ J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen,
- J. Larsen, J. Mesot, R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmermann, E. M. Forgan, and
- S. M. Hayden, Nature Physics 8, 871 (2012).
- E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin,
- E. Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z. Xu, S. Ono, G. Gu, M. Le Tacon, and A. Yazdani, Science 343, 393 (2014).
- J. Chang, E. Blackburn, O. Ivashko, A. T. Holmes, N. B. Christensen, M. H¨ucker, R. Liang, D. A. Bonn, W. N. 736 Hardy, U. Rütt, M. v. Zimmermann, E. M. Forgan, and S. M. Hayden, Nature Communications 7, 11494 (2016).
- E. Fawcett, Rev. Mod. Phys. 60, 209 (1988).
- $_{739}$ ⁵ V. L. R. Jacques, C. Laulhé, N. Moisan, S. Ravy, and D. Le Bolloc'h, Phys. Rev. Lett. 117, 156401 (2016).
- $_{741}$ ^b C. Y. Young and J. B. Sokoloff, Journal of Physics F: Metal Physics 4, 1304 (1974).
- C. A. Balseiro, P. Schlottmann, and F. Yndurain, Phys. Rev. B 21, 5267 (1980).
- T. Tiedje, J. F. Carolan, A. J. Berlinsky, and L. Weiler, Canadian Journal of Physics 53, 1593 (1975).
- J. Brooks, D. Graf, E. Choi, M. Almeida, J. Dias, R. Hen- riques, and M. Matos, Current Applied Physics 6, 913 (2006).
- J.-F. Wang, M. Yang, L. Li, M. Sasaki, A. Ohnishi, M. Ki- taura, K.-S. Kim, and H.-J. Kim, Phys. Rev. B 89, 035137 (2014).
- D. Andres, M. V. Kartsovnik, W. Biberacher, K. Neumaier, I. Sheikin, H. M¨uller, and N. D. Kushch, Low Temperature Physics 37, 762 (2011), http://dx.doi.org/10.1063/1.3670031.
- 757¹² D. Zanchi, A. Bjeliš, and G. Montambaux, Phys. Rev. B 53, 1240 (1996).
- $_{759}$ ¹³ D. Graf, E. S. Choi, J. S. Brooks, M. Matos, R. T. Hen- riques, and M. Almeida, Phys. Rev. Lett. 93, 076406 (2004).
- ¹⁴ L. E. Winter, J. S. Brooks, P. Schlottmann, M. Almeida, S. Benjamin, and C. Bourbonnais, EPL (Europhysics Let-ters) 103, 37008 (2013).
- K. Murata, Y. Fukumoto, K. Yokogawa, W. Kang, R. Takaoka, R. Tada, H. Hirayama, J. S. Brooks, D. Graf,

V. ACKNOWLEDGMENTS

Authors gratefully acknowledge the financial support

- H. Yoshino, T. Sasaki, and R. Kato, Physica B: Condensed 768 Matter 460, 241 (2015), special Issue on Electronic Crys-tals (ECRYS-2014).
- P. C. Lalngilneia, A. Thamizhavel, S. Ramakrishnan, and D. Pal, Journal of Physics: Conference Series 592, 012094 $772 \t(2015)$.
- ¹⁷ S. van Smaalen, M. Shaz, L. Palatinus, P. Daniels, F. Galli, G. J. Nieuwenhuys, and J. A. Mydosh, Phys. Rev. B 69, 014103 (2004).
- F. Galli, S. Ramakrishnan, T. Taniguchi, G. J. Nieuwen-777 huys, J. A. Mydosh, S. Geupel, J. Lüdecke, and S. van Smaalen, Phys. Rev. Lett. 85, 158 (2000).
- F. Galli, R. Feyerherm, R. W. A. Hendrikx, E. Dudzik, G. J. Nieuwenhuys, S. Ramakrishnan, S. D. Brown, S. van Smaalen, and J. A. Mydosh, Journal of Physics: Con-densed Matter 14, 5067 (2002).
- 20 Z. Hossain, M. Schmidt, W. Schnelle, H. S. Jeevan, C. Geibel, S. Ramakrishnan, J. A. Mydosh, and Y. Grin, $\frac{785}{22}$ Phys. Rev. B 71, 060406 (2005)
- M. Leroux, P. Rodière, and C. Opagiste, Journal of Su-perconductivity and Novel Magnetism 26, 1669 (2013).
- ²² Y. Singh, D. Pal, and S. Ramakrishnan, Phys. Rev. B 70, 064403 (2004).
- N. S. Sangeetha, A. Thamizhavel, C. V. Tomy, S. Basu, A. M. Awasthi, S. Ramakrishnan, and D. Pal, Phys. Rev. B 86, 024524 (2012).
- $_{793}$ ²⁴ Y. K. Kuo, K. M. Sivakumar, T. H. Su, and C. S. Lue, Phys. Rev. B 74, 045115 (2006).
- J. N. Kim, C. Lee, and J.-H. Shim, New Journal of Physics 15, 123018 (2013).
- G. Prathiba, I. Kim, S. Shin, J. Strychalska, T. Klimczuk, ⁷⁹⁸ and T. Park, Scientific Reports **6**, 26530 (2016).
- M. Murase, A. Tobo, H. Onodera, Y. Hirano, T. Hosaka, S. Shimomura, and N. Wakabayashi, Journal of the Phys-ical Society of Japan 73, 2790 (2004).
- 802^{28} N. Yamamoto, R. Kondo, H. Maeda, and Y. Nogami, Journal of the Physical Society of Japan 82, 123701 (2013).
- ²⁹ J. Laverock, T. D. Haynes, C. Utfeld, and S. B. Dugdale, 805 Phys. Rev. B **80**, 125111 (2009).
- D. Ahmad, B. H. Min, G. I. Min, S.-I. Kimura, J. Seo, and 807 Y. S. Kwon, Physica Status Solidi (B) 252, 2662 (2015).
- S. Shimomura, C. Hayashi, N. Hanasaki, K. Ohnuma,
- Y. Kobayashi, H. Nakao, M. Mizumaki, and H. Onodera,

- 810 Physical Review B **93**, 165108 (2016).
- 811³² A. Wölfel, L. Li, S. Shimomura, H. Onodera, and S. van 875 Smaalen, Physical Review B 82, 054120 (2010).
-
- W. Lee, H. Zeng, Y. Yao, and Y. Chen, Physica C: Su-814 perconductivity **266**, 138 (1996).
- 815³⁴ V. K. Pecharsky, L. L. Miller, and K. A. Gschneidner, Phys. Rev. B 58, 497 (1998).
- 817³⁵ B. Wiendlocha, R. Szczęśniak, A. P. Durajski, and
- 818 M. Muras, Physical Review B , 134517 (2016).
- W. Schäfer, W. Kockelmann, G. Will, J. Yakinthos, and P. Kotsanidis, Journal of Alloys and Compounds 250, 565 $821 \t(1997)$.
- ³⁷ P. Kotsanidis, J. Yakinthos, and E. Gamari-Seale, Journal of the Less Common Metals 152, 287 (1989).
- ³⁸ A. Bhattacharyya, D. T. Adroja, A. M. Strydom, A. D.
- Hillier, J. W. Taylor, A. Thamizhavel, S. K. Dhar, W. A.
- 826 Kockelmann, and B. D. Rainford, Phys. Rev. B 90, 054405 $_{827}$ $(2014).$
- 828³⁹ J. Yakinthos, P. Kotsanidis, W. Schäfer, and G. Will, Journal of Magnetism and Magnetic Materials 89, 299 (1990).
- 831⁴⁰ N. Hanasaki, K. Mikami, S. Torigoe, Y. Nogami, S. Shi- momura, M. Kosaka, and H. Onodera, Journal of Physics: 833 Conference Series **320**, 012072 (2011).
- N. Uchida, H. Onodera, M. Ohashi, Y. Yamaguchi,
- N. Sato, and S. Funahashi, Journal of Magnetism and Magnetic Materials 145, L16 (1995).
- 837⁴² S. Matsuo, H. Onodera, M. Kosaka, H. Kobayashi, M. Ohashi, H. Yamauchi, and Y. Yamaguchi, Journal of 839 Magnetism and Magnetic Materials 161, 255 (1996).
- H. Onodera, Y. Koshikawa, M. Kosaka, M. Ohashi, H. Ya- mauchi, and Y. Yamaguchi, Journal of Magnetism and Magnetic Materials 182, 161 (1998).
- T. Sakai, G.-y. Adachi, and J. Shiokawa, Materials Re-search Bulletin 15, 1001 (1980).
- ⁴⁵ J. Rodríguez-Carvajal, Physica B: Condensed Matter 192, 55 (1993).
- K. Motoya, K. Nakaguchi, N. Kayama, K. Inari, J. Akimitsu, K. Izawa, and T. Fujita, Journal of the Physical Society of Japan 66, 1124 (1997), 850 http://journals.jps.jp/doi/pdf/10.1143/JPSJ.66.1124.
- W. Schäfer, G. Will, J. Yakinthos, and P. Kotsanidis, Journal of Alloys and Compounds 180, 251 (1992).
- ⁴⁸ J. Jensen and A. R. Mackintosh, *Rare earth magnetism:* structures and excitations (Clarendon Press, 1991).
- 855⁴⁹ K. K. Kolincio, K. Górnicka, M. J. Winiarski, J. Strychalska-Nowak, and T. Klimczuk, Phys. Rev. B **94**, 195149 (2016).
- W. T. Hsieh, W.-H. Li, K. C. Lee, J. W. Lynn, J. H. Shieh, 859 and H. C. Ku, Journal of Applied Physics 76, 7124 (1994).
- S. Akamaru, Y. Isikawa, J. Sakurai, K. Maezawa, and H. Harima, Journal of the Physical Society of Japan 70, 2049 (2001) .
- ⁵² J. L. Snyman and A. M. Strydom, Journal of Applied 864 Physics 113, 17E135 (2013).
- 865 ⁵³ A. Gil, A. Szytuła, Z. Tomkowicz, K. Wojciechowski, and A. Zygmunt, Journal of Magnetism and Magnetic Materi-als 129, 271 (1994).
- 868⁵⁴ K. Kolincio, O. Pérez, S. Hébert, P. Fertey, and A. Pau-869 trat, Phys. Rev. B **93**, 235126 (2016).
- 870 ⁵⁵ H. Lei, K. Wang, and C. Petrovic, Journal of Physics: Condensed Matter 29, 075602 (2017).
- ⁵⁶ K. Usami, Journal of the Physical Society of Japan 45, 466 (1978), http://dx.doi.org/10.1143/JPSJ.45.466.
- 874 ⁵⁷ C. Mazumdar, A. K. Nigam, R. Nagarajan, L. C. Gupta, G. Chandra, B. D. Padalia, C. Godart, and R. Vija- yaraghaven, Journal of Applied Physics 81, 5781 (1997), http://dx.doi.org/10.1063/1.364666.
- 878⁵⁸ H. YAMADA and S. TAKADA, Progress of theoretical physics 48, 1828 (1972).
- S. Shimomura, C. Hayashi, G. Asaka, N. Wakabayashi, M. Mizumaki, and H. Onodera, Physical Review Letters **102**, 076404 (2009).
- N. Hanasaki, Y. Nogami, M. Kakinuma, S. Shimomura, M. Kosaka, and H. Onodera, Physical Review B 85, 885 092402 (2012).
- W. Dieterich and P. Fulde, Zeitschrift für Physik A Hadrons and nuclei 265, 239 (1973).
- ⁶² X. Xu, A. F. Bangura, J. G. Analytis, J. D. Fletcher, M. M. J. French, N. Shannon, J. He, S. Zhang, D. Man-890 drus, R. Jin, and N. E. Hussey, Phys. Rev. Lett. 102, 206602 (2009).
- D. Graf, J. S. Brooks, E. S. Choi, S. Uji, J. C. Dias, M. Almeida, and M. Matos, Phys. Rev. B 69, 125113 $\frac{1}{894}$ (2004).
 $\frac{64}{M}$ M Mat
- M. Matos, G. Bonfait, R. T. Henriques, and M. Almeida, 896 Phys. Rev. B 54, 15307 (1996).
- 897⁶⁵ G. Bonfait, M. J. Matos, R. T. Henriques, and M. Almeida, Physica B: Condensed Matter 211, 297 (1995).
- 900 ⁶⁶ G. Bonfait, E. B. Lopes, M. J. Matos, R. T. Henriques, and M. Almeida, Solid State Communications 80, 391 (1991).
- D. Graf, E. Choi, J. Brooks, J. Dias, R. Henriques, M. Almeida, M. Matos, and D. Rickel, Synthetic Metals 153, 361 (2005).
- K. Monchi, M. Poirier, C. Bourbonnais, M. Matos, and R. Henriques, Synthetic Metals 103, 2228 (1999).
- $_{907}$ ⁶⁹ E. Wang, M. Greenblatt, I. E.-I. Rachidi, E. Canadell, M.- H. Whangbo, and S. Vadlamannati, Phys. Rev. B 39, $909 \quad 12969 \quad (1989)$.
- 910⁷⁰ C. Schlenker, J. Dumas, C. Escribe-filippini, H. Guyot, J. Marcus, and G. Fourcaudot, Philosophical Magazine Part B 52, 643 (1985), http://dx.doi.org/10.1080/13642818508240627.
- $_{914}$ ⁷¹ J. H. Kim, J.-S. Rhyee, and Y. S. Kwon, Phys. Rev. B 86, 235101 (2012).
- ⁷² L. Berger and G. Bergmann, "The Hall Effect of Ferro-917 magnets," in The Hall Effect and Its Applications, edited by C. L. Chien and C. R. Westgate (Springer US, Boston, 919 MA, 1980) pp. $55-76$.
- ⁷³ J. S. Higgins, S. R. Shinde, S. B. Ogale, T. Venkatesan, and R. L. Greene, Phys. Rev. B 69, 073201 (2004).
- ⁷⁴ Q. Xu, L. Hartmann, H. Schmidt, H. Hochmuth, M. Lorenz, R. Schmidt-Grund, C. Sturm, D. Spemann, and M. Grundmann, Phys. Rev. B 73, 205342 (2006).
- A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, H. Ohno, and
- H. Munekata, Phys. Rev. B 59, 5826 (1999).
- ⁷⁶ Y. Shiomi, Y. Onose, and Y. Tokura, Phys. Rev. B **79**, 100404 (2009).
- 929 ⁷⁷ K. Rogacki, Private communication.
930 ⁷⁸ M. J. Winjarski and T. Klimczuk.
- M. J. Winiarski and T. Klimczuk, Journal of Solid State 931 Chemistry 245, 10 (2017).
- M. Tachibana, Y. Kohama, T. Atake, and E. Takayama- Muromachi, Journal of Applied Physics 101, 09D502 (2007), http://dx.doi.org/10.1063/1.2667992.
- 935⁸⁰ T. Mori, T. Takimoto, A. Leithe-Jasper, R. Cardoso-Gil, W. Schnelle, G. Auffermann, H. Rosner, and Y. Grin, 937 Physical Review B **79**, 104418 (2009).
- 938 ⁸¹ S. Y. Wu, Y. C. Chang, K. C. Lee, and W.-H. Li, Journal
- 939 of Applied Physics 83, 7318 (1998).