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Abstract

Using the Mountain Pass Theorem, we establish the existence of periodic solution
for Euler-Lagrange equation. Lagrangian consists of kinetic part (an anisotropic
G-function), potential partK−W and a forcing term. We consider two situations:
G satisfying ∆2 ∩ ∇2 at infinity and globally. We give conditions on the growth
of the potential near zero for both situations.
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1. Introduction

We consider the second order system{
d
dtLv(t, u(t), u̇(t)) = Lx(t, u(t), u̇(t)) for a.e. t ∈ (−T, T )

u(−T ) = u(T )
(ELT)

where L : [−T, T ]× RN × RN → R is given by

L(t, x, v) = G(v) + V (t, x) + 〈f(t), x〉.

We assume that G is a differentiable G-function (in the sense of Trudinger [1])
and V satisfies suitable growth conditions. If G(v) = 1

p |v|
p then the equation

(ELT) reduces to p-laplacian. More general case is G(v) = φ(|v|), where φ is
convex and nonnegative. In the above cases, G depends on norm |v| and its
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growth is the same in all directions (isotropic). In this paper we consider the
situation when the growth of G is different in different directions (anisotropic)
e.g. G(x, y) = |x|p + |y|q.

Existence of periodic solutions for the problem (ELT) was investigated in
many papers, e.g.: [2] (anisotropic case), [3] (isotropic case), [4] ((p, q)-laplacian),
[5, 6] (p-laplacian), [7] (laplacian) and many others.

This paper is motivated by [8, 9, 10], where the existence of homoclinic so-
lution of d

dtLv(t, u(t), u̇(t)) = Lx(t, u(t), u̇(t)) is investigated (see also [11, 12]).
In all these papers an intermediate step is to show, using the Mountain Pass
Theorem, that corresponding periodic problem has a solution.

We want to adapt methods from [8] to anisotropic Orlicz-Sobolev space set-
ting. It turns out, that the mountain pass geometry of action functional is
strongly depended on Simonenko indices pG and qG (see section 2). To show
that the action functional satisfies the Palais-Smale condition we need index q∞G .
Similar observation can be found in [13, 14, 15, 16] where the existence of solu-
tions to elliptic systems via the Mountain Pass Theorem is considered. In [14]
authors deal with an anisotropic problem. The isotropic case is considered in
[13, 15, 16].

We assume that:

(A1) G : RN → [0,∞) is a continuously differentiable G-function (i.e. G is con-
vex, even, G(0) = 0 and G(x)/|x| → ∞, as |x| → ∞) satisfying ∆2 and ∇2

condition,

(A2) V (t, x) = K(t, x)−W (t, x), where K,W ∈ C1([−T, T ]× RN ,R),

(A3) there exist a ∈ L1([−T, T ],R), b > 1 and ρ0 > 0 such that

V (t, x) ≥ bG(x)− a(t) for |x| ≤ ρ0, t ∈ [−T, T ],

(A4) there exist b1 > 0 and p > 1 satisfying | · |p ≺ G, such that

lim inf
|x|→∞

K(t, x)

|x|p
≥ b1 uniformly in t ∈ [−T, T ]

and

lim inf
|x|→∞

W (t, x)

max{K(t, x), G(x)}
> 3 uniformly in t ∈ [−T, T ],

(A5) there exist ν ∈ R, µ > q∞G + ν and κ ∈ L1([−T, T ], [0,∞)) such that

〈Vx(t, x), x〉 ≤ (q∞G +ν)K(t, x)−µW (t, x)+κ(t) for (t, x) ∈ [−T, T ]× RN ,

(A6)
∫ T
−T V (t, 0) dt = 0,
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(A7) f ∈ LG
∗
([−T, T ],RN ).

Assumptions (A3), (A4) and (A5) are essential for the Mountain Pass Theo-
rem. We need (A3) to show that there exists α > 0 such that functional

J (u) =

∫ T

−T
G(u̇) + V (t, u) + 〈f, u〉 dt (J )

is greater than α on the boundary of some ball (see lemma 3.4). To do this we
need to control behavior of V near zero.

Condition (A4) allows us to control the growth of V at infinity. The first
condition, together with (A5), is used to show that the Palais-Smale condition
is satisfied. The latter condition is used to show that functional J is negative
far from zero. Assumption (A5) is a modification of the well known Ambrosetti-
Rabinowitz condition.

Let us denote by C∞,W1 LG an embedding constant for W1 LG ↪→ L∞ and
define

ρ :=
ρ0

C∞,W1 LG
. (ρ)

Now we can formulate our main theorems.

Theorem 1.1. Let L : [−T, T ]×RN ×RN → R satisfies (A1)–(A7). Assume that
G satisfies ∆2 and ∇2 globally, and∫ T

−T
G∗(f(t)) + a(t) dt < min{1, b− 1}

{
(ρ/2)qG , ρ ≤ 2

(ρ/2)pG ρ > 2
(1)

Then (ELT) possesses a periodic solution.

The assumption that G satisfies ∆2 and ∇2 globally can be relaxed if we
assume that ρ ≥ 2. In this case we need a stronger assumption on f and a.

Theorem 1.2. Let L : [−T, T ]×RN ×RN → R satisfies (A1)–(A7). Assume that
ρ ≥ 2 and ∫ T

−T
G∗(f(t)) + a(t) dt < min{1, b− 1}(ρ/2) (2)

Then (ELT) possesses a periodic solution.

Theorem 1.1 generalizes Lemma 3.1 from [8]. Actually, assumption (1) has
the same form as (H5) in [8], since in p-laplacian case pG = qG = q∞G = p.
Note that p-laplacian satisfies ∆2 and ∇2 globally. To the best of the authors
knowledge there is no analogue of Theorem 1.2 in the literature.

Now we give two examples of potentials suitable for our setting.
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Example 1.3. Consider the functions

G(x, y) = x2 + (x− y)4, K(t, x, y) = (2 + sin t)G(x, y) + |x2 + y2|2 cos2 t

W (t, x, y) =
|x2 + y2|5/2(et

2(x2+y2−1) − 1)

t2 + 1
+ sin t.

G is differentiable G-function satisfying ∆2 and ∇2 globally. Here V = K −W
satisfies (A2)-(A6), where pG = 2, q∞G = qG = 4, µ = 5, a(t) = sin t, b = 2,
κ(t) ≥ 5 sin t. On the other hand K does not satisfy assumption (H1) and W
does not satisfy assumption (H2) from [8].

The next example shows that our results generalize Lemma 7 from [9].

Example 1.4. Set
V (t, x) = c(t)G(x)− λd(t)F (x),

where F is convex function satisfying ∆2 globally, G ≺≺ F , the functions c(t),
d(t) are continuously differentiable, even on R, 0 < c ≤ c(t) ≤ C, 0 < d ≤ d(t) ≤
D, tc′(t) > 0 for t 6= 0 and tc′(t) < 0 for t 6= 0. Then V satisfies conditions
(A2)-(A7).

Theorems 1.1 and 1.2 assert the existence of periodic solutions for

d

dt
∇G(u̇)− c(t)∇G(u) + λd(t)∇F (u) = f(t),

u(−T ) = u(T ) = 0

which is a generalization of the problem (2) from [9].

2. Some facts about G-functions and Orlicz-Sobolev spaces

Assume that G : RN → [0,∞) satisfies assumption (A1). We say that

• G satisfies the ∆2 condition if

∃K1>2 ∃M1≥0 ∀|x|≥M1
G(2x) ≤ K1G(x), (∆2)

• G satisfies the ∇2 condition if

∃K2>1 ∃M2≥0 ∀|x|≥M2
G(x) ≤ 1

2K2
G(K2x). (∇2)

• G satisfies ∆2 (resp. ∇2) globally if M1 = 0 (resp. M2 = 0).
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Functions G1(x) = |x|p, G2(x) = |x|p1 + |x|p2 satisfy ∆2 and ∇2 globally. If
G does not satisfy ∆2 globally, then it could decrease very fast near zero. For
example,

G(x) =

{
|x|2e−1/|x| x 6= 0

0 x = 0

satisfies ∆2 but does not satisfy ∆2 globally. For more details about ∆2 condition
in case of N-function we refer the reader to [17].

Since G is differentiable and convex,

G(x)−G(x− y) ≤ 〈∇G(x), y〉 ≤ G(x+ y)−G(x) for all x, y ∈ RN . (3)

A function G∗(y) = supx∈RN {〈x, y〉−G(x)} is called the Fenchel conjugate of
G. As an immediate consequence of the definition we have the Fenchel inequality:

∀x,y∈RN 〈x, y〉 ≤ G(x) +G∗(y).

Now we briefly recall the notion of anisotropic Orlicz space. For more details
we refer the reader to [18] and [19]. The Orlicz space associated with G is defined
to be

LG = {u : [−T, T ]→ RN :

∫ T

−T
G(u) dt <∞}.

The space LG equipped with the Luxemburg norm

‖u‖LG = inf

{
λ > 0:

∫ T

−T
G
(u
λ

)
dt ≤ 1

}
is a reflexive Banach space. We have the Hölder inequality∫

I
〈u, v〉 dt ≤ 2‖u‖LG‖v‖LG∗ for every u ∈ LG and v ∈ LG

∗
.

Let us denote by
W1 LG :=

{
u ∈ LG : u̇ ∈ LG

}
an anisotropic Orlicz-Sobolev space of vector valued functions with norm

‖u‖W1 LG = ‖u‖LG + ‖u̇‖LG .

We introduce the following subset of W1 LG

W1
T LG :=

{
u ∈W1 LG : u(−T ) = u(T )

}
.

We will also consider an equivalent norm given by

‖u‖1,W1 LG = inf

{
λ > 0:

∫ T

−T
G
(u
λ

)
+G

(
u̇

λ

)
dt ≤ 1

}
.

The following proposition will be crucial to Lemma 3.4.
5
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Proposition 2.1.

1

2
‖u‖W1 LG ≤ ‖u‖1,W1 LG ≤ 2‖u‖W1 LG

The proof for isotropic case can be found in [20, Proposition 9, p.177]. It
remains the same for anisotropic case.

Functional RG(u) :=
∫ T
−T G(u) dt is called modular.

Proposition 2.2. [21, Proposition 2.7] RG(u) is coercive on LG in the following
sense:

lim
‖u‖

LG
→∞

RG(u)

‖u‖LG
=∞.

Define the Simonenko indices for G-function

pG = inf
|x|>0

〈x,∇G(x)〉
G(x)

, qG = sup
|x|>0

〈x,∇G(x)〉
G(x)

, q∞G = lim sup
|x|→∞

〈x,∇G(x)〉
G(x)

.

It is obvious that pG ≤ q∞G ≤ qG. Moreover, if G satisfies ∆2 and ∇2 globally,
then 1 < pG and qG <∞. The following results is crucial to Lemma 3.4.

Proposition 2.3. Let G satisfies ∆2 and ∇2 globally.

1. If ‖u‖LG ≤ 1, then ‖u‖qG
LG
≤ RG(u).

2. If ‖u‖LG > 1, then ‖u‖pG
LG
≤ RG(u).

The proof can be found in appendix. More information about indices for
isotropic case can be found in [22], [23] and [13]. For relations between Luxemburg
norm and modular for anisotropic spaces we refer the reader to [19, Examples
3.8 and 3.9].

For, respectively, continuous and compact embeddings we will use the symbols
↪→ and ↪→↪→.

Let G1 and G2 be G-functions. Define

G1 ≺ G2 ⇐⇒ ∃M≥0 ∃K>0 ∀|x|≥M G1(x) ≤ G2(K x). (4)

The relation ≺ allows to compare growth rate of functions G1 and G2.
It is well known that if G1 ≺ G2, then LG2 ↪→ LG1 . Let u ∈ W1 LG,

AG : RN → [0,∞) be the greatest convex radial minorant of G (see [2]). Then

‖u‖L∞ ≤ C∞,W1 LG‖u‖W1 LG ,

where C∞,W1 LG = A−1
G

(
1

2T

)
max{1, 2T}.

The following proposition will be used in the proof of Lemma 3.2.
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Proposition 2.4. (cf. [8]) For any 1 < p ≤ q <∞, such that | · |p ≺ G(·) ≺ | · |q,∫ T

−T
|u|p dt ≥ Cp−q∞,W1 LG

C−qG,q‖u‖
p−q
W1 LG

‖u‖q
LG

for u ∈W1 LG \{0}, where CG,q is an embedding constant from Lq ↪→ LG.

Proof. Let u ∈W1 LG \{0}. Since G ≺ | · |q,∫ T

−T
|u|q dt = ‖u‖qLq ≥ C

−q
G,q‖u‖

q

LG
.

From Hölder’s inequality and embedding W1 LG ↪→ L∞ we obtain∫ T

−T
|u|q dt =

∫ T

−T
|u|p|u|q−p, dt ≤

≤ ‖u‖q−pL∞

∫ T

−T
|u|p dt ≤ (C∞,W1 LG‖u‖W1 LG)q−p

∫ T

−T
|u|p dt.

3. Proof of the main results

Let J : W1
T LG → R be given by

J (u) =

∫ T

−T
G(u̇) +K(t, u)−W (t, u) + 〈f, u〉 dt. (J )

From (A1), (A2) and [19, Thm. 5.5] we have J ∈ C1 and

J ′(u)ϕ =

∫ T

−T
〈∇G(u̇), ϕ̇〉 dt+

∫ T

−T
〈Vx(t, u) + f(t), ϕ〉 dt. (J ′)

It is standard to prove that critical points of J are solutions of (ELT).
Our proof is based on the well-known Mountain Pass Theorem (see [24]).

Theorem 3.1. Let X be a real Banach space and I ∈ C1(X,R) satisfies the
following conditions:

1. I(0) = 0,

2. I satisfies Palais-Smale condition,

3. there exist ρ > 0, e ∈ X such that ‖e‖X > ρ and I(e) < 0,
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4. there exists α > 0 such that I|∂Bρ(0) ≥ α.

Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where Γ = {g ∈ C([0, 1], X); g(0) = 0, g(1) = e}.

We divide the proof into sequence of lemmas.

Lemma 3.2. J satisfies the Palais-Smale condition, i.e. every sequence {un} ⊂
W1

T LG such that {J (un)} is bounded and J ′(un) → 0 as n → ∞ contains a
convergent subsequence.

Proof. From (A5) and (J ′) we get∫ T

−T
µW (t, u)− (q∞G + ν)K(t, u) dt ≤

≤ −J ′(u)u+

∫ T

−T
〈∇G(u̇), u̇〉 dt+

∫ T

−T
〈f(t), u〉+ κ(t) dt. (5)

From the definition of the functional we obtain

µ

∫ T

−T
G(u̇) dt+ (µ− q∞G − ν)

∫ T

−T
K(t, u) dt =

= µJ (u) +

∫ T

−T
µW (t, u)− (q∞G + ν)K(t, u) dt− µ

∫ T

−T
〈f(t), u〉 dt.

Applying (5), the Hölder inequality and (A7) we have

µ

∫ T

−T
G(u̇) dt+ (µ− q∞G − ν)

∫ T

−T
K(t, u) dt ≤

≤ µJ (u)− J ′(u)u+

∫ T

−T
〈∇G(u̇), u̇〉 dt+ Cκ + (1− µ)Cf‖u‖W1 LG , (6)

where Cκ =
∫ T
−T κ(t) dt and Cf = 2‖f‖LG∗ . By the definition of q∞G , there exists

M > 0 such that

〈x,∇G(x)〉 ≤ (q∞G + ν)G(x), for |x| > M.

Hence∫ T

−T
〈∇G(u̇), u̇〉 dt =

∫
{|u̇|>M}

〈∇G(u̇), u̇〉 dt+

∫
{|u̇|≤M}

〈∇G(u̇), u̇〉 dt ≤

≤ (q∞G + ν)

∫
{|u̇|>M}

G(u̇) dt+ C∇G ≤ (q∞G + ν)

∫ T

−T
G(u̇) dt+ C∇G, (7)
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where C∇G = max|x|≤M 2T M ∇G(x). Applying (7) we can rewrite (6) as

(µ− q∞G − ν)

∫ T

−T
G(u̇) +K(t, u) dt ≤

≤ µJ (u)− J ′(u)u+ Cκ + (1− µ)Cf‖u‖W1 LG + C∇G. (8)

From (A4), given any 0 < ε1 < b1, there exists δ1 ≥ 0 such that

K(t, x) ≥ (b1 − ε1)|x|p − δ1, for x ∈ RN and t ∈ [−T, T ].

By Proposition 2.4 we obtain∫ T

−T
K(t, u) dt ≥

∫ T

−T
(b1 − ε1)|u|p dt− 2Tδ1 ≥

≥ (b1 − ε1)Cp−q∞,W1 LG
C−qG,q

‖u‖q
LG

‖u‖q−p
W1 LG

− 2Tδ1, (9)

for any q such that G ≺ | · |q. Finally, applying (9) to (8) we obtain

(µ− q∞G − ν)

(∫ T

−T
G(u̇) dt+ (b1 − ε1)Cp−q∞,W1 LG

C−qG,q
‖u‖q

LG

‖u‖q−p
W1 LG

)
+

− (µ− 1)Cf‖u‖W1 LG + J ′(u)u ≤ µJ (u) + Cκ + C∇G + Cδ1 , (10)

where Cδ1 = 2Tδ1(µ− q∞G − ν).
Let {un} ⊂W1

T LG will be a Palais-Smale sequence for J . There exist CJ ,
CJ ′ > 0 such that

J (un) ≤ CJ , J ′(un)un ≥ −CJ ′‖un‖W1 LG

Without loss of generality we can assume, that ‖un‖W1 LG > 0. Substituting un
into (10) we obtain

‖un‖W1 LG

(
RG(u̇n)

‖un‖W1 LG
+
‖un‖qLG
‖un‖1+q−p

W1 LG

− C ′
)
≤ C ′′, (11)

where C ′, C ′′ > 0 are suitable constants independent of n.
We show that {un} is bounded. On the contrary, suppose that there exists a

subsequence of un (still denoted un) such that ‖un‖W1 LG →∞. Consider three
cases.

9

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1. Let ‖un‖LG → ∞ and ‖u̇n‖LG → ∞ (again, w.l.o.g. ‖u̇n‖LG > 0). From
Proposition 2.2 we have that

RG(u̇n)

‖un‖W1 LG
+
‖un‖qLG
‖un‖1+q−p

W1 LG

=

=
RG(u̇n)

‖u̇n‖LG
‖u̇n‖LG
‖un‖W1 LG

+

(
‖un‖LG
‖un‖W1 LG

)1+q−p
‖un‖p−1

LG
→∞.

2. Let ‖u̇n‖LG →∞ and ‖un‖LG is bounded. Then

RG(u̇n)

‖un‖W1 LG
=

RG(u̇n)

‖un‖LG + ‖u̇n‖LG
=

RG(u̇n)
‖u̇n‖LG

‖un‖LG
‖u̇n‖LG

+ 1
→∞ as ‖u̇n‖LG →∞.

3. Let ‖un‖LG →∞ and ‖u̇n‖LG is bounded. Since p > 1, we have

RG(u̇n)

‖un‖W1 LG
+
‖un‖qLG
‖un‖1+q−p

W1 LG

≥
‖un‖qLG

(‖un‖LG + ‖u̇n‖LG)1+q−p →∞.

Therefore, in view of (11), {un} is bounded in W1
T LG.

It follows from reflexivity of W1
T LG and embeddings W1

T LG ↪→↪→ LG,
W1

T LG ↪→↪→W1,1 that there exists u ∈W1
T LG and a subsequence of un (still

denoted un) such that un → u in LG. Moreover, u̇n → u̇ in L1 and hence
pointwise a.e.

Since {un} is a Palais-Smale sequence, we have

0← J ′(un)(un− u) =

∫ T

−T
〈∇G(u̇n), u̇n− u̇〉 dt+

∫ T

−T
〈Vx(t, un) + f(t), un− u〉 dt.

Since
∫ T
−T 〈Vx(t, un) + f(t), un − u〉 dt→ 0 we can deduce that∫ T

−T
〈∇G(u̇n), u̇n − u̇〉 dt→ 0.

From (3) we obtain∫ T

−T
G(u̇n) dt ≤

∫ T

−T
G(u̇) dt+

∫ T

−T
〈∇G(u̇n), (u̇n − u̇)〉 dt

Hence

lim sup
n→+∞

∫ T

−T
G(u̇n) dt ≤

∫ T

−T
G(u̇) dt.
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On the other hand, by Fatou’s Theorem we have

lim inf
n→+∞

∫ T

−T
G(u̇n) dt ≥

∫ T

−T
G(u̇) dt.

Combining these inequalities we get that∫ T

−T
G(u̇n) dt→

∫ T

−T
G(u̇) dt.

Therefore u̇n → u̇ in LG by [19, Lemma 3.16].

We next prove that J is negative for some point outside Bρ(0).

Lemma 3.3. There exist e ∈W1
T LG such that ‖e‖W1 LG > ρ and J (e) < 0.

Proof. By assumption (A4), there exist ε0, r > 0 such that

W (t, x) ≥ (3 + ε0) max{K(t, x), G(x)} for |x| > r.

This gives
K(t, x)−W (t, x) ≤ −(2 + ε0)G(x) for |x| > r. (12)

Fix v ∈ RN . For ξ > T + 1 define e : [−T, T ]→ RN by

e(t) = ξ

(
1− |t|

T + 1

)
v.

Direct computation shows

ė(t) =

{
− ξ
T+1 v, t ∈ (0, T ],
ξ

T+1 v, t ∈ [−T, 0).

Since ‖e‖L∞ = ξ > T + 1 and ‖ė‖L∞ = ξ/(T + 1) > 1, we can choose ξ such that
both (12) and ‖e‖W1 LG ≥ ρ hold. From (J ), the Fenchel inequality and (12) we
have

J (e) ≤
∫ T

−T
G(ė) +K(t, e)−W (t, e) +G(e) +G∗(f) dt ≤

≤
∫ T

−T
G(ė)−G(e)− ε0G(e) +G∗(f) dt.

Since 1− |t|
T+1 ≥

1
T+1 for t ∈ [−T, T ], we have∫ T

−T
G(ė)−G(e) dt =

∫ T

−T
G

(
ξ

T + 1
v

)
−G

(
ξ

(
1− |t|

T + 1

)
v

)
dt ≤ 0.
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Choosing ξ large enough we get

J (e) ≤
∫ T

−T
−ε0G(e) +G∗(f) dt < 0.

In order to show that J satisfies the fourth assumption of the Mountain Pass
Theorem, we first provide some estimates for RG(u̇) +RG(u) on ∂Bρ(0).

If ∆2 and ∇2 are satisfied globally then we can use Proposition 2.3 to estimate
RG(u̇)+RG(u) from below by (ρ/2)r, r > 1, for any ρ > 0. If G does not satisfies
∆2 and ∇2 globally then we cannot use Proposition 2.3 (for explanation see
Remark A.2). In this case we use equivalent norm and Proposition 2.1 but we
obtain only that RG(u̇)+RG(u) ≥ ρ/2. Moreover, we are forced to assume ρ > 2.

Let u ∈ W1
T LG be such that ‖u‖W1 LG = ρ. Set ρ1 = ‖u‖LG , ρ2 = ‖u̇‖LG ,

ρ1 + ρ2 = ρ. Assuming that G satisfies ∆2 an ∇2 globally we get, by Proposition
2.3, the following estimates:

1. If ρ1, ρ2 ≤ 1 then RG(u̇) +RG(u) ≥ ‖u̇‖qG
LG

+ ‖u‖qG
LG
. Hence

RG(u̇) +RG(u) ≥ 21−qG(‖u̇‖LG + ‖u‖LG)qG ≥ (ρ/2)qG , (13)

since ρ1
qG + ρqG2 ≥ 21−qG(ρ1 + ρ2)qG .

2. If ρ1 ≤ 1, ρ2 ≥ 1 then (ρ1 + ρ2)pG ≤ (2ρ2)pG ≤ 2pG (ρqG1 + ρpG2 ) . Hence

RG(u̇) +RG(u) ≥ ‖u̇‖pG
LG

+ ‖u‖qG
LG
≥ (ρ/2)pG . (14)

3. If ρ1 ≥ 1, ρ2 ≤ 1 then (ρ1 + ρ2)pG ≤ (2ρ1)pG ≤ 2pG (ρpG1 + ρqG2 ) . Thus

RG(u̇) +RG(u) ≥ ‖u̇‖qG
LG

+ ‖u‖pG
LG
≥ (ρ/2)pG . (15)

4. If ρ1, ρ2 ≥ 1 then

RG(u̇) +RG(u) ≥ ‖u̇‖pG
LG

+ ‖u‖pG
LG
≥ (ρ/2)pG . (16)

From the other hand, Proposition 2.1 implies

inf

{
λ > 0:

∫ T

−T
G
(u
λ

)
+G

(
u̇

λ

)
dt ≤ 1

}
≥ 1

2
ρ.

Therefore ∫ T

−T
G

(
2u

ρ

)
+G

(
2u̇

ρ

)
dt ≥ 1

and consequently,

RG(u) +RG(u̇) ≥ ρ

2
, (17)

provided ρ > 2.
12

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Lemma 3.4. Assume that either (1) or (2) holds. There exists positive constant
α such that J |∂Bρ(0) ≥ α.

Proof. From the definition of ρ and embedding W1
T LG ↪→ L∞ we have

|u(t)| ≤ ‖u‖L∞ ≤ C∞,W1 LG‖u‖W1 LG = C∞,W1 LGρ = ρ0 for t ∈ [−T, T ].

From (A3) and the Fenchel inequality we obtain

J (u) ≥
∫ T

−T
G(u̇) + bG(u)− a(t) + 〈f, u〉 dt ≥

≥ min{1, b− 1}(RG(u̇) +RG(u))−RG∗(f)−
∫ T

−T
a(t) dt.

Assume that (1) holds. If ρ ≤ 2 then (13), (14) and (15) yields

J (u) ≥ min{1, b− 1}(ρ/2)qG −RG∗(f)−
∫ T

−T
a(t) dt =: α.

If ρ > 2, then by (14), (15) and (16) we get

J (u) ≥ min{1, b− 1}(ρ/2)pG −RG∗(f)−
∫ T

−T
a(t) dt > 0 =: α.

From (1) it follows that in both cases α > 0.
Assume that (2) holds. From (17) we obtain

J (u) ≥ min{1, b− 1}(RG(u̇) +RG(u))−RG∗(f)−
∫ T

−T
a(t) ≥

≥ min{1, b− 1}(ρ/2)−RG∗(f)−
∫ T

−T
a(t) dt =: α.

From (2) we have α > 0.

Now we are in position to prove our main theorems. Note that by (A6) and
G(0) = 0 we have J (0) = 0. From Lemmas 3.2, 3.3 and 3.4 we have that J
satisfies all assumptions of the Mountain Pass Theorem. Hence there exists a
critical point u ∈W1

T LG of J and (ELT) have periodic solution.
Actually, we can show that any solution to (ELT) is more regular (cf. Corol-

lary 16.16 in [25]).

Proposition 3.5. If u ∈W1
T LG is a solution of (ELT), then u ∈W1 L∞.
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Proof. Let u ∈W1 LG be a solution of (ELT). Then

∇G(u̇(t)) =

∫ t

−T
∇V (t, u(t)) dt+ C

and there exists M > 0 such that |∇G(u̇(t))| ≤M <∞. From the other hand

G(u̇(t)) ≤ 〈∇G(u̇(t)), u̇(t)〉 ≤M |u̇(t)|.

Since G(v)
|v| →∞ as |v| → ∞, we obtain |u̇(t)| is bounded.

Remark 3.6. If G is strictly convex then one can show that if u ∈W1
T LG is a

solution of (ELT), then u ∈ C1.

Remark 3.7. Theorem 1.1 remains true if we change assumption (1) to∫ T

−T
G∗(f(t)) + a(t) dt < min{1, b− 1}

{
2(ρ/2)qG , ρ ≤ 21−1/(qG−pG)

(ρ/2)pG ρ > 21−1/(qG−pG).
(18)

Estimate in the first case is better than (1) but it is taken on smaller set. In the
second case estimate is the same as in (1) but can be taken on bigger set.

Remark 3.8. In the proof of Lemma 3.4 we can use the Hölder inequality instead
of the Fenchel inequality to estimate

∫ T
−T 〈f, u〉 dt. It allows us to take b > 0 if

ρ ≤ 1.

Appendix A.

Assume that G satisfies ∇2 globally. It is easy to show that G∗ satisfies ∆2

globally with K∗1 = 2K2.
Since G ∈ C1 and is convex, we have

K1G(x) ≥ G(2x) ≥ G(2x)−G(x) ≥ 〈x,∇G(x)〉 for all x ∈ RN .

Let y ∈ RN and s ∈ ∂G∗(y), where ∂G∗ denotes the subdifferential of G∗. Since
G∗ satisfies ∆2 globally, we have

K∗1G
∗(y) ≥ G∗(2y) ≥ G∗(2y)−G∗(y) ≥ 〈s, y〉 for all y ∈ RN

Let x ∈ RN . Then x ∈ ∂G∗(∇G(x)) and G(x) + G∗(∇G(x)) = 〈x,∇G(x)〉. It
follows that

G(x) = 〈x,∇G(x)〉 −G∗(∇G(x)) ≤
(

1− 1

K∗1

)
〈x,∇G(x)〉.
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Finally
2K2

2K2 − 1
≤ 〈x,∇G(x)〉

G(x)
≤ K1 for all x ∈ RN . (A.1)

Since K2 > 1, we have 2K2
2K2−1 > 1 and from (A.1) we obtain

pG > 1 and qG <∞.

For any x ∈ RN and λ ≥ 1 we have

logG(λx)− logG(x) =

∫ λ

1

〈∇G(λx), x〉
G(λx)

dλ ≤
∫ λ

1

qG
λ
dλ = log λqG .

Thus
G(λx) ≤ λqGG(x) for all x ∈ RN , λ ≥ 1. (A.2)

Similarly, we get

G(λx) ≥ λpGG(x) for all x ∈ RN , λ ≥ 1. (A.3)

Lemma A.1. Let u ∈ LG.

1. If ‖u‖LG < 1 then RG(u) ≥ ‖u‖qG
LG

.

2. If ‖u‖LG > 1 then RG(u) ≥ ‖u‖pG
LG

.

Proof. For any 0 < β < ‖u‖LG < 1 we have RG

(
u
β

)
≥ 1. From (A.2) we obtain

that G
(
x
β

)
≤
(

1
β

)qG
G(x) for all x ∈ RN . Hence

RG(u) ≥ βqGRG
(
u

β

)
≥ βqG .

Letting β ↑ ‖u‖LG gives RG(u) ≥ ‖u‖qG
LG
.

For any 1 < β < ‖u‖LG we have RG

(
u
β

)
> 1. Then from (A.3) we obtain

that G(x) ≥ βpGG
(
x
β

)
for all x ∈ RN . Hence

RG(u) ≥ βpGRG
(
u

β

)
≥ βpG .

Letting β ↑ ‖u‖LG gives RG(u) ≥ ‖u‖pG
LG
.

Remark A.2. If G satisfies ∆2 and ∇2 (not globally), estimates similar to (A.2)
and (A.3) can be obtained for sufficiently large |x|. However, even if ‖u‖LG is
large it does not necessarily mean that |u(t)| is large. Hence we cannot use these
estimates to obtain result similar to Lemma A.1.
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