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Abstract

Using the Mountain Pass Theorem, we establish the existence of periodic solution
for Euler-Lagrange equation. Lagrangian consists of kinetic part (an anisotropic
G-function), potential part K —W and a forcing term. We consider two situations:
G satisfying Ao N V2 at infinity and globally. We give conditions on the growth
of the potential near zero for both situations.
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1. Introduction

We consider the second order system

{thv(t,u(t),u(t)) = Ly(t,u(t), u(t))  for ae. t e (=T.T) (ELT)

u(=T) = u(T)
where L: [-T,T] x RN x RV — R is given by
L(t,xz,v) = Gv) + V(t,x) + (f(t), ).

We assume that G is a differentiable G-function (in the sense of Trudinger [1])
and V satisfies suitable growth conditions. If G(v) = L|v|P then the equation
(ELT) reduces to p-laplacian. More general case is G(v) = ¢(|v|), where ¢ is

convex and nonnegative. In the above cases, G depends on norm |v| and its
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growth is the same in all directions (isotropic). In this paper we consider the
situation when the growth of G is different in different directions (anisotropic)
eg. G(z,y) = |zP + |y|%.

Existence of periodic solutions for the problem (ELT) was investigated in
many papers, e.g.: [2] (anisotropic case), [3] (isotropic case), [4] ((p, ¢)-laplacian),
[5, 6] (p-laplacian), [7] (laplacian) and many others.

This paper is motivated by [8, 9, 10], where the existence of homoclinic so-
lution of 4L, (t,u(t),u(t)) = Ly(t,u(t),u(t)) is investigated (see also [11, 12]).
In all these papers an intermediate step is to show, using the Mountain Pass
Theorem, that corresponding periodic problem has a solution.

We want to adapt methods from [8] to anisotropic Orlicz-Sobolev space set-
ting. It turns out, that the mountain pass geometry of action functional is
strongly depended on Simonenko indices pg and gg (see section 2). To show
that the action functional satisfies the Palais-Smale condition we need index ¢g.
Similar observation can be found in [13, 14, 15, 16] where the existence of solu-
tions to elliptic systems via the Mountain Pass Theorem is considered. In [14]
authors deal with an anisotropic problem. The isotropic case is considered in
[13, 15, 16].

We assume that:

(A1) G: RN — [0,00) is a continuously differentiable G-function (i.e. G is con-
vex, even, G(0) =0 and G(z)/|z| — o0, as |x| — oo) satisfying Ay and Vs
condition,

(A9) V(t,z) = K(t,z) — W(t,z), where K, W € C}([-T,T] x RV, R),
(A3) there exist a € LY([-T,T],R), b > 1 and pp > 0 such that

V(t,x) > bG(x) —a(t) for|z| <po, te|-T,T],

(A4) there exist by > 0 and p > 1 satisfying | - [P < G, such that

K(t, )

> by uniformly in ¢t € [T, T

and W(t )
X
lim inf i
el oo max{K (¢, 2), G(z)}

> 3 uniformly in ¢t € [-T,T],

(As) there exist v € R, u > ¢&¥ + v and k € L([-T,T],[0,00)) such that

(Vu(t,z),2) < (@& +v)K(t,x)—pW (t,z)+r(t) for (t,z) € [-T,T] x RY,

(Ag) [T, V(t,0)dt =0,
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(A7) f S LG*([_T7TLRN)'

Assumptions (Ag), (A4) and (As) are essential for the Mountain Pass Theo-
rem. We need (Ajs) to show that there exists « > 0 such that functional

T
T(u) = /_ )+ Vi(t)+ (fu) e ()

is greater than a on the boundary of some ball (see lemma 3.4). To do this we
need to control behavior of V near zero.

Condition (A4) allows us to control the growth of V' at infinity. The first
condition, together with (As), is used to show that the Palais-Smale condition
is satisfied. The latter condition is used to show that functional [ is negative
far from zero. Assumption (As) is a modification of the well known Ambrosetti-
Rabinowitz condition.

Let us denote by C w1 e an embedding constant for W!LE < L*® and
define

Po
pi= G ()
oo, W LE

Now we can formulate our main theorems.

Theorem 1.1. Let L: [-T, T xRN xRY — R satisfies (A1) (Az). Assume that
G satisfies Ao and Vo globally, and

(p/2)%e, p<2
(p/2)P¢ p>2

/T G*(f(#)) + a(t) dt < min{1,b— 1} { (1)
-7

Then (ELT) possesses a periodic solution.

The assumption that G satisfies As and V4 globally can be relaxed if we
assume that p > 2. In this case we need a stronger assumption on f and a.

Theorem 1.2. Let L: [-T, T] xRN xRY — R satisfies (A1)-(A7). Assume that
p>2 and

T
/_T GH(F(1)) + a(t) dt < min{1,b— 1}(p/2) @)

Then (ELT) possesses a periodic solution.

Theorem 1.1 generalizes Lemma 3.1 from [8]. Actually, assumption (1) has
the same form as (Hs) in [8], since in p-laplacian case pc = q¢ = ¢&F = p.
Note that p-laplacian satisfies Ay and Vo globally. To the best of the authors
knowledge there is no analogue of Theorem 1.2 in the literature.

Now we give two examples of potentials suitable for our setting.

3
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Example 1.3. Consider the functions
G(z,y) = 22+ (z —y)4, K(t,z,y) = (2+sint)G(x,y) + 2% + y2\2 cos®t
|x2 + y2‘5/2(6t2($2+y2—1) _ 1)

W(t =
( 73;7 y) t2 + 1

G is differentiable G-function satisfying Ao and Vo globally. Here V =K — W
satisfies (A2)-(Ag), where pg = 2, qF = qa = 4, p = 5, a(t) = sint, b = 2,
k(t) > bsint. On the other hand K does not satisfy assumption (Hy) and W
does not satisfy assumption (Hg) from [8].

+ sint.

The next example shows that our results generalize Lemma 7 from [9].

Example 1.4. Set
V(t,x) = c(t)G(x) — Ad(t)F(z),

where F is convex function satisfying Ao globally, G << F, the functions c(t),
d(t) are continuously differentiable, even on R, 0 < c < c¢(t) < C, 0<d <d(t) <
D, td(t) > 0 fort # 0 and td(t) < 0 fort # 0. Then V satisfies conditions
(Az2)-(A7).

Theorems 1.1 and 1.2 assert the existence of periodic solutions for

%va(u) — c(t)VG(u) + \d(t)VF (u) = f(t),
u(—T) = U(T) =0

which is a generalization of the problem (2) from [9].

2. Some facts about G-functions and Orlicz-Sobolev spaces
Assume that G: RY — [0, 00) satisfies assumption (A;). We say that

e ( satisfies the Ay condition if
Jri>2 I >0 Vig>ar, G(22) < KiG(2), (Ag)

e (7 satisfies the V5 condition if

1
K51 I >0 Vjg>m, G(2) < %G(Kﬂ)- (V)

o G satisfies Ag (resp. Va) globally if M; =0 (resp. My = 0).
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Functions G1(z) = |zP, Ga(z) = |z|P* + |z[P? satisfy A and V3 globally. If
G does not satisfy Ay globally, then it could decrease very fast near zero. For

example,
2 —1/|z| 0
S (e
0 z=0

satisfies As but does not satisfy Ay globally. For more details about As condition
in case of N-function we refer the reader to [17].
Since G is differentiable and convex,

G(z) — Gz —y) < (VG(x),y) < Gx+y)— G(z) forallz,y cRY. (3)

A function G*(y) = sup,epn{(z,y) — G(x)} is called the Fenchel conjugate of
G. As an immediate consequence of the definition we have the Fenchel inequality:

Voyery (2,y) < G(x) + G (y).

Now we briefly recall the notion of anisotropic Orlicz space. For more details
we refer the reader to [18] and [19]. The Orlicz space associated with G is defined
to be

LC = {u: [-T,T] = R": /T G(u) dt < oo}.
-7

The space LE equipped with the Luxemburg norm

T u
:' . - <
ull 1nf{)\>0 /_TG<)\) dt < 1}

is a reflexive Banach space. We have the Holder inequality
/(u, v) dt < 2lullpe||v]ex  for every u € LY and v € LE".
I

Let us denote by
W!'LY = {ue LY : 4 e LC}

an anisotropic Orlicz-Sobolev space of vector valued functions with norm
lullwr e = llullye + [[dllge-

We introduce the following subset of W' L¢

WLLY = {ue W'LY :u(-T) = u(T)} .

We will also consider an equivalent norm given by
T

. U U
[ully wre :1nf{)\>0: /_TG<)\) +G<)\) dt < 1}.

The following proposition will be crucial to Lemma 3.4.
5
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Proposition 2.1.

1
Slulwie < llullywripe < 2lullwi pe

The proof for isotropic case can be found in [20, Proposition 9, p.177]. It
remains the same for anisotropic case.
Functional Rg(u) := ffT G(u) dt is called modular.

Proposition 2.2. [21, Proposition 2.7] Rg(u) is coercive on LE in the following
sense:

Rg(u)

lullyc—oo [|ullye
Define the Simonenko indices for G-function

(z, VG(z)) (2, VG(z)) o _ .

pg = inf ———*, gg = sup ———, qp = limsup——--

|z|>0 G(l’) |z|>0 G(.CC) “ |z|—o00 G(‘T)

It is obvious that pg < ¢ < qg. Moreover, if G satisfies Az and V3 globally,
then 1 < pg and ¢ < 0o0. The following results is crucial to Lemma 3.4.

Proposition 2.3. Let G satisfies Ao and Vo globally.
1 1 Jullge < 1. then [ul < R(u).
2. If |lullye > 1, then Hu||1[7‘GG < Rg(u).

The proof can be found in appendix. More information about indices for
isotropic case can be found in [22], [23] and [13]. For relations between Luxemburg
norm and modular for anisotropic spaces we refer the reader to [19, Examples
3.8 and 3.9].

For, respectively, continuous and compact embeddings we will use the symbols
— and ——.

Let G1 and G5 be G-functions. Define

G1 < Gy == In>0 Fx>0 Vg >m Gi(2) < Go(K 2). (4)

The relation < allows to compare growth rate of functions G; and Gb.
It is well known that if Gi < Ga, then L& — L&, Let u € W!LC,
Ag : RN — [0,00) be the greatest convex radial minorant of G' (see [2]). Then

[ullLe < Coowt L& lullwa e,
where C w116 = AG! (5) max{1,2T}.

The following proposition will be used in the proof of Lemma 3.2.
6
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Proposition 2.4. (¢f. [8]) For any 1 < p < q < oo, such that |-|P < G(-) < |-]4,

T
[ ez 7 o Cotlulfyt ol

foru € WHLE\{0}, where Cgq is an embedding constant from LI — LC.

Proof. Let u € W' L% \{0}. Since G < |- |1,

T
/ e = ully > OG5 ullte.

From Hélder’s inequality and embedding W' LE < L>® we obtain

T T
/ ful? dt = / P[P, dt <
T T

T T
<l [ e < Coowiolulwe o)™ [t

O
3. Proof of the main results
Let J : W%w L% — R be given by
T
) = [ G+ K(tw) = Wltw) + (£ . ()
-7
From (A1), (A2) and [19, Thm. 5.5] we have J € C* and
T T
Fwe= [ Ve@. g+ [ i+ so.0d ()

It is standard to prove that critical points of J are solutions of (ELT).
Our proof is based on the well-known Mountain Pass Theorem (see [24]).

Theorem 3.1. Let X be a real Banach space and I € C'(X,R) satisfies the
following conditions:

2. I satisfies Palais-Smale condition,

3. there exist p > 0, e € X such that |le||x > p and I(e) <0,
7
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4. there exists a > 0 such that I|pp,0) > a.

Then I possesses a critical value ¢ > « given by

— inf I
¢= Inf max (9(s)),

where T' = {g € C([0,1], X); g(0) =0, g(1) = e}.
We divide the proof into sequence of lemmas.

Lemma 3.2. J satisfies the Palais-Smale condition, i.e. every sequence {u,} C
WLLY such that {J (u,)} is bounded and J'(un) — 0 as n — oo contains a
convergent subsequence.

Proof. From (As) and (J') we get

T
/ pW(t,u) — (g +v)K(t,u)dt <

=T
T T
< Twu+ / (VG(), i) dt + / (), u) + m() dt. (5)
-7 -7
From the definition of the functional we obtain
T T
p [ Gades u-qg -v) [ K(tu)di=
-T =T
T T
~n T+ [ Vi) = @F + K= [ (0
Applying (5), the Holder inequality and (A7) we have
T T
p [ Gliydes ooy -v) [ K<
-T =T
T
<nI(w) - 't [ (V6.0 dt+ ot (1= w)Cylulyire, (©
=T

where Cy, = fTT k(t)dt and Cy = 2| f|le+. By the definition of ¢, there exists

M > 0 such that
(x,VG(x)) < (¢&F +v)G(x), for |z| > M.

Hence

T
/ (VG(i), a) dt = / (VG(a), a) dt + / (VG(i), i) dt <
7 >} Hal<n)

T
Gi) dt + Coa < (¢ +v) /_ Gl dt + e, (7

8

<G +v) [

{la|>n}
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where Oy, = max|y < 27 M VG(z). Applying (7) we can rewrite (6) as

(1 —aq& —V)/ZG(ﬁ)JrK(t,U)dt <
<puJw) = T (wu+Cy+ (1 — pu)Cfllullwige + Cva-  (8)
From (Ay), given any 0 < €1 < by, there exists 6; > 0 such that
K(t,z) > (by —e1)|zlP — 6y, for z € RN and t € [-T,T].

By Proposition 2.4 we obtain

T T
/ K(t,u) di 2/ (by — e1)|ul? di — 276, >
-7

-7
s —eyort, oor Lo ops )
=\l T U WILG Y G 1a—p L
Hu||wlLG

for any ¢ such that G < |- |?. Finally, applying (9) to (8) we obtain

a0 ([ G o200 8! lfge
o w16 CGa
— (= 1)Cf|lullwi e + T (wu < pJ(u) + Cy + Cy,, + Cs,, (10)

where Cs, = 2761 (pn — g — v).
Let {u,} € WLLY will be a Palais-Smale sequence for 7. There exist C,
Cj > 0 such that

T (upn) < Cy, j/(un)un > —OJ’HUnHW1 L¢

Without loss of generality we can assume, that ||uy||yw1 e > 0. Substituting wu,
into (10) we obtain

Re (i [Jun I
[ [ alin) TL o) <o, (11)
W [unlw Lo P
nllwine  [[unllyi po

where C’,C"” > 0 are suitable constants independent of n.

We show that {u,} is bounded. On the contrary, suppose that there exists a
subsequence of u,, (still denoted wu,,) such that ||uy|\y1 e — co. Consider three
cases.
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1. Let ||up||pe — oo and |[|iy|,¢ — oo (again, w.lo.g. |4nl/e > 0). From
Proposition 2.2 we have that

Ro(iy)  lluallle
Fenlwice " Junlhetsh
) y 1+q—p
- etin) Joulwe ., (CIudie )Ry oty o
HunHLG ”UnHWl LG Hun”wl LG L

2. Let ||ty |lpe¢ — oo and ||uy||y¢ is bounded. Then

Re(in,) Rei) haie
G\Un) _ G u”. = el o e || tn]lc — oo.
lunllwire  llunllpe + anllpe Nenlie
Tl

3. Let ||up|lpe — oo and ||1y|f,¢ is bounded. Since p > 1, we have

Rolin)  llunllle . N
Fenlwice a5~ (tnllge + lnlga) o7

Therefore, in view of (11), {u,} is bounded in Wi L¢.

It follows from reflexivity of W LY and embeddings WLLE < LE
WLLY < Wh! that there exists u € WL LS and a subsequence of u,, (still
denoted wu,) such that w, — wu in LC. Moreover, %, — u in L! and hence
pointwise a.e.

Since {u,} is a Palais-Smale sequence, we have

T T

(VG (ty), tty — ) dt + /_T<Vm(t, ) + f(t), up — u) dt.

0 7" (un) (11 — 1) = /

-T

Since fTT<Vx(t, upn) + f(t), u, — u) dt — 0 we can deduce that

T
/ (VG (i), it — 1) dt — 0.
-T

From (3) we obtain

/ " Gy dt < / i Gla)dt + / VG, (i — i) di

-T -T

Hence

n—-4o00

T T
lim sup/ G(uy) dt < / G(u)dt.
-T 10 -7
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On the other hand, by Fatou’s Theorem we have

n—-4o00

T T
lim inf/ G(ty,) dt > / G(u) dt.
=T -T

Combining these inequalities we get that

/_ i G i) dt — /_ i G () dt.

Therefore 1, — @ in LY by [19, Lemma 3.16]. O
We next prove that J is negative for some point outside B, (0).
Lemma 3.3. There exist e € WLLCY such that ||e||i e > p and J(e) < 0.
Proof. By assumption (Ay), there exist g, > 0 such that
W(t,z) > (3 +¢eo) max{K(t,x),G(x)} for |x| > r.

This gives
K(t,x) —W(t,z) < —(2+¢9)G(z) for |z| > r. (12)

Fix v € RY. For ¢ > T + 1 define e: [-T,T] — RN by

|t]
t)=€(1— —— |w.
elt) =& ( T+1 v
Direct computation shows

£
e(t) _ 75’1“? U, te (O7T]7
mv, t S [_T7 0)

Since |le|lpe =& > T +1 and ||é||p=~ = &/(T + 1) > 1, we can choose & such that
both (12) and ||e||\y1 ¢ > p hold. From (), the Fenchel inequality and (12) we
have

T(e) < /_ i G) + K(t, ) — W(t,e) + Gle) + G*(f) dt <

T
< / Gé) — Gle) — 20Gle) + G (f) dt.
-7

Since 1 — T'%ll > %ﬂ for t € [-T,T], we have

[rao-cen= [ 6(z0) e (s(-5L) ) s
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Choosing £ large enough we get

T
j(e)g/ —eoGle) + G (f) dt < 0.

-T
O

In order to show that J satisfies the fourth assumption of the Mountain Pass
Theorem, we first provide some estimates for Rg(w) + Rg(u) on 0B, (0).

If Ay and V4 are satisfied globally then we can use Proposition 2.3 to estimate
R¢ (1) + R (u) from below by (p/2)", r > 1, for any p > 0. If G does not satisfies
Ay and Vg globally then we cannot use Proposition 2.3 (for explanation see
Remark A.2). In this case we use equivalent norm and Proposition 2.1 but we
obtain only that Rg (@) + Ra(u) > p/2. Moreover, we are forced to assume p > 2.

Let u € WL LE be such that ||ullywipe = p- Set p1 = ||lullpe, p2 = |illge,
p1+ p2 = p. Assuming that G satisfies Ay an Vg globally we get, by Proposition
2.3, the following estimates:

L. If p1, p2 < 1 then Re (i) + Re(u) > [[afl[E + [Jul|{%. Hence
Rg (@) + Rg(u) 2 279 (||| + ullye)™ = (p/2)%°, (13)
since p19¢ + pi¢ > 21796 (py + py)?c.
2. If p1 <1, pp > 1 then (p1 + p2)’9 < (2p2)P¢ < 276 (pi© + ph°) . Hence
Rg(i) + Ra(u) > allfE + lull{% = (p/2)P. (14)
3. If p1 > 1, po <1 then (p1 + p2)P¢ < (2p1)P¢ < 2PC (p)C + pd¢) . Thus
Rg(i) + Ra(u) > [[allG + lullfé = (p/2)P. (15)
4. If p1,p2 > 1 then
Rg(i) + Ra(u) = |all{% + lull{¢ = (p/2)P. (16)

From the other hand, Proposition 2.1 implies

T 4 1
i : — — < > —p.
1nf{)\>0 /TG(A)JFG(A) dt_l}_2p
T .
[ro(2) o )
-T P P

p
2

Therefore

and consequently,

Rg(u) + Rg(u) > =, (17)

provided p > 2.
12
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Lemma 3.4. Assume that either (1) or (2) holds. There exists positive constant
a such that J|ap,0) > -

Proof. From the definition of p and embedding Wi LY < L we have
[u@)] < [lulle= < C wipellullwi e = Coo wirep = po for t € [T, T].

From (As) and the Fenchel inequality we obtain

T
T(u) > / Gi) + bG(u) — alt) + (f,u) dt >

-T
T
> min(1,b ~ 1}(Ra(@) + Ra(w) - Re- ()~ [ a(t)dt.
-T
Assume that (1) holds. If p < 2 then (13), (14) and (15) yields
T
T(u) > min{1,b— 1}(p/2)% — R (f) — / a(t) dt = o
-T
If p > 2, then by (14), (15) and (16) we get
T
J(u) > min{l,b — 1}(p/2)P¢ — R~ (f) — / a(t)dt >0 =: a.
-T
From (1) it follows that in both cases a > 0.
Assume that (2) holds. From (17) we obtain
T
F(w) > min{1,b = 1}(Ra(i) + Rolw)) = Rer () = [ a(t) >
T
> min{1,b— 1}(p/2) — Re-(f) — / a(t) dt =: a.
-7
From (2) we have a > 0. O

Now we are in position to prove our main theorems. Note that by (Ag) and
G(0) = 0 we have J(0) = 0. From Lemmas 3.2, 3.3 and 3.4 we have that J
satisfies all assumptions of the Mountain Pass Theorem. Hence there exists a
critical point v € WL LY of 7 and (ELT) have periodic solution.

Actually, we can show that any solution to (ELT) is more regular (cf. Corol-
lary 16.16 in [25]).

Proposition 3.5. If u € WLLY is a solution of (ELT), then u € WL,

13
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Proof. Let u € W LY be a solution of (ELT). Then
t
VG(a(t)) = / YV (£, u(t)) dt + C
-T

and there exists M > 0 such that |[VG(4(t))| < M < oo. From the other hand
G(u(t)) < (VG(u(t)), u(t)) < Mlu(t)].

Since % — 00 as |v| = oo, we obtain |u(t)| is bounded. O

Remark 3.6. If G is strictly convex then one can show that if u € Wk LY isa
solution of (ELT), then u € C'.

Remark 3.7. Theorem 1.1 remains true if we change assumption (1) to

2p/2)ie, p < 21-1/(ac—pc)

18
(p/2)Pc p > 21-1/lee—ra), (18)

T
/ G*(f(t)) + a(t)dt < min{1,b— 1} {
-T
Estimate in the first case is better than (1) but it is taken on smaller set. In the

second case estimate is the same as in (1) but can be taken on bigger set.

Remark 3.8. In the proof of Lemma 3.4 we can use the Hélder inequality instead
of the Fenchel inequality to estimate f_TT(f, u)ydt. It allows us to take b > 0 if
p<1

Appendix A.

Assume that G satisfies Vo globally. It is easy to show that G* satisfies Ao
globally with K} = 2K>.

Since G € C! and is convex, we have
K1G(z) > G(2z) > G(2x) — G(z) > (z,VG(z)) for all z € RV,

Let y € RY and s € G*(y), where OG* denotes the subdifferential of G*. Since
G* satisfies Ay globally, we have

KiG*(y) 2 G*(2y) 2 G*(2y) — G*(y) = (s,y) forally € RY

Let x € RN, Then z € 0G*(VG(x)) and G(z) + G*(VG(z)) = (x, VG(z)). Tt
follows that

G(x) = (. VG(x)) — G*(VG(x)) < (1 _

1
(x, VG(x)).
=)

K7
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Finally
2K, < (x,VG(z))
2Ko —1 — G(.%’)

<K, forallzeRY, (A.1)

Since Ky > 1, we have 212(12(31 > 1 and from (A.1) we obtain

pag>1 and gg < oc.
For any:L‘GRN and A > 1 we have

MVG (M), )

A
log G(\z) — log G(z) = / dr< [ %€ ax =10g A6

1 G(Az) 1A
Thus
G(\z) < NG (z) forall z € RY, A > 1. (A.2)
Similarly, we get
G(\z) > N6G(z) forallz e RN, A >1. (A.3)

Lemma A.l. Letu € LY.
1. If lullye <1 then Ra(u) > ||lull{G-
2. If [lullye > 1 then Ra(u) > ||lullyé.

B
that G <%) < (l>qG G(z) for all z € RN. Hence

Proof. For any 0 < 8 < ||u||pe¢ < 1 we have Rg <H) > 1. From (A.2) we obtain

B
Re(u) > A% Rg (;) > gee.

Letting 8 1 |Ju||¢ gives Rg(u) > ||ul i%
For any 1 < 3 < ||ul|pe¢ we have Rg (%) > 1. Then from (A.3) we obtain
that G(z) > pPeG (%) for all z € RY. Hence

Rg(u) > B¢ Ra (;) > pPe.

Letting 8 1 |Ju||¢ gives Rg(u) > HuHi% O

Remark A.2. If G satisfies Ay and Vo (not globally), estimates similar to (A.2)
and (A.3) can be obtained for sufficiently large |x|. Howewver, even if ||ull ¢ is
large it does not necessarily mean that |u(t)| is large. Hence we cannot use these

estimates to obtain result similar to Lemma A.1.
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