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A compact smart sensor based on a neural classifier for objects 
modeled by Beaunier's model 

 
 

Abstract. A new solution of a smart microcontroller sensor based on a simple direct sensor-microcontroller interface for technical objects modeled 
by two-terminal networks and by the Beaunier’s model of anticorrosion coating is proposed. The tested object is stimulated by a square pulse and its 
time voltage response is sampled four times by the internal ADC of microcontroller. A neural classifier based on measurement data classifies the 
tested object to a  given degradation stage. 
 
Streszczenie. Przedstawiono nowe rozwiązanie inteligentnego czujnika opartego na bezpośrednim interfejsie mikrokontroler-czujnik dla obiektów 
technicznych modelowanych dwójnikami i modelem Beauniera dla powłok antykorozyjnych. Testowany obiekt jest pobudzany impulsem 
prostokątnym, a jego odpowiedź próbkowana cztery razy przez wewnętrzny przetwornik A/C mikrokontrolera. Klasyfikator neuronowy bazując na 
wynikach pomiarowych dokonuje klasyfikacji testowanego obiektu do danego etapu degradacji (Inteligentny kompaktowy czujnik oparty na 
klasyfikatorze neuronowym dla obiektów modelowanych modelem Beauniera). 
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Introduction 
 Generally, modern smart sensors integrate analog or 
digital sensors with conditioning circuits (input circuitries) 
with communication interfaces, where data processing, data 
storing and communication control are made by 
microcontrollers (Fig. 1). Thus, the physical variables of a 
monitored environment, technical objects and processes 
are measured, processed and next send to the wireless 
network by a smart sensor.  
  

 
 
Fig.1. A typical structure of the smart sensor controlled by a 
microcontroller for objects modeled by two-terminal networks 
 
 One of these technical objects is an anticorrosion 
coating. It can be modeled by a two-terminal network based 
on the Beaunier’s model [1,2]. Thank to such modeling, we 
can simulate these objects using well-developed tools and 
methods designed for electrical circuits. 
 A smart sensor is either battery powered or fed by a 
power obtained with a harvesting technique. Therefore, it 
should be designed as an energy-efficient data acquisition 
system. 
 Hence, we propose a new solution of a smart 
microcontroller sensor. It is based on a simple direct 
sensor-microcontroller interface for objects modeled by two-
terminal networks, a simple measurement procedure and a 
neural classifier used to process and classify the 
measurement data. The neural classifier is especially useful 
for dispersed data obtained from a low accuracy 
microcontroller measurement system working e.g. in a 
difficult noisy environment. The efficiency of different 
versions of a minimum distance classifier was also 
compared. 

A model of the tested object 
 As mentioned earlier, the Beaunier’s model of an 
anticorrosion coating, presented in Fig. 2, has been chosen. 
 

 
 
Fig.2. A tested object modeled by a two-terminal network based on 
the Beaunier’s equivalent circuit of an anticorrosion coating 
 
 This four-parameter model represents an anticorrosion 
coating in its early stage of degradation, i.e. the first stage 
of under-film corrosion [3]. We can distinguish five 
degradation stages of anticorrosion coating, starting from 
the nominal stage A, through under-paint corrosion stages 
B-D, up to the stage E, when the coating is delaminated 
and penetrated by water [1,2]. The values of parameters of 
the model for these stages are presented in Table 1. 
  
Table 1. Parameters of anticorrosion coating in different stages of 
degradation [1,2] 
Object Rp Rct Cc Cdl 
Stage A 100 G 100 G 10 pF 100 pF 
Stage B 10 G 10 G 100 pF 1 nF 
Stage C 10 G 1 G 1 nF 10 nF 
Stage D 1 G 0.1 G 1 nF 100 nF 
Stage E 1 G 0.1 G 1 nF 1 F 
 
The smart sensor structure 
 An example of the smart sensor structure is shown in 
Fig. 3. In the paper we focus only on the measurement part 
of the sensor, hence the communication module and the 
power source are omitted. We show only a minimal set of 
elements needed by the measurement method. The sensor 
consists of an 8-bit ATxmega32A4 microcontroller [4], an 
inverting buffer built with IRF7105 [5], a reference resistor 
Rr and a buffer. The chosen microcontroller performs the 
following functions: 

 generates a signal stimulating the tested object, 
 samples the voltage response of the object, 
 classifies a stage of the object with the use of a 

classifier. 
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Fig.3. A structure of the measurement part of smart sensor based 
on an ATxmaga32A4 microcontroller 
 
 In the presented solution we propose to fully use the 
extensive hardware functionality of a 16-bit Timer/Counter 
TC0 and a 12-bit ADC. Each of these peripherals have four 
channels, which can be synchronized by an event system. 
Therefore, the voltage response is sampled four times. It 
simplifies the measurement algorithm and improves the 
measurement accuracy. 
 An amplitude of the stimulating pulse Vin is set to 2.5 V. 
It follows from the fact that a reference voltage Vref of the 
ADC is equal to Vcc – VD (Vcc = 3.3 V, VD  0.7 V). 
 The comparisons in channels A, B, C and D of the TC0 
determine the moments of voltage sample conversions in 
channels 0, 1, 2 and 3 of the ADC, respectively. The 
inverter eliminates a negative effect of a varying impedance 
of the output pin PC0 [7] and the buffer provides a large 
input impedance of the input circuitry. 
 
The measurement procedure 
 The timing of the measurement procedure, similar to 
that presented in [6], is shown in Fig. 4. The stimulating 
pulse Vin, the time responses Vout of the object for all 
degradation stages and four sample moments are plotted in 
the figure. 
 The algorithm of this procedure is partly implemented in 
the program code of the microcontroller (Fig. 5), and partly 
in the microcontroller hardware configuration (i.e., in its 
peripheral devices) (Fig. 6). Hence, a description of the 
measurement procedure requires simultaneous analysis of 
Figures 4, 5 and 6. The steps of the algorithm are marked in 
the figures in the form of numbers in circles. 
 In the first step the TC0 is started and the stimulating 
pulse is generated. Also, four sample moments t1, t2, t3 and 
t4 are set, where a time interval between samples ts = 
131.072 ms. At the end of this step the end_conv variable is 
set. It is used to synchronize the software with the hardware 
of the microcontroller. 
 As it is seen in Fig. 6, the ADC A, without a participation 
of software, samples four times the time response at the 
ADC 1 input. A match in the TCC0_CCA (counting the time 
t1 – the second step) triggers the first AD conversion on the 
CH0, a match in the TCC0_CCB (counting the time t2 – the 
third step) triggers the second one on the CH1, a match in 
the TCC0_CCC (counting the time t3 – the fourth step) 

triggers the third one on the CH2, and a match in the 
TCC0_CCD (counting the time t4– the fifth step) triggers the 
fourth one on the CH3. When the ADC conversion on the 
channel CH3 is completed, an interrupt is generated. During 
its service the TC0 is stopped, generation of the pulse is 
ended (the sixth step) and the end_conv flag is cleared, 
which informs the main function that all voltage 
measurements have been completed. 
 

 
 
Fig.4. The timing of the measurement procedure, Rr = 1 G  
 

 
 
Fig.5. A flowchart of the algorithm of the measurement procedure  
 
 The results of AD conversions are placed in the ADC A 
result registers: CH0RES, CH1RES, CH2RES and 
CH3RES. At the end of the main function these values are 
saved in the v_out table containing four 16-bit variables. 
 In the next step the measured samples of the response 
are used by the classifier in order to determine a stage of 
degradation of the tested object. 
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Fig.6. A block scheme of the sensor part configured from peripheral 
devices of the ATXmega32A4 microcontroller  
 
Data preparation 
 Simulation of the model of the anticorrosion coating 
performed for different stages of degradation have shown 
that using the selected measurement method we are not 
able to distinguish stages D and E. Therefore, further 
studies are focused exclusively on the distinction of stages 
from A to D. 
 It should be noticed, that based on the values of 
parameters given in Table 1 we are able to calculate the 
coordinates of only 4 points corresponding to the 
considered stages in a 4-dimensional input space with the 
coordinates: u(t1), u(t2), u(t3) and u(t4). However, it is 
important to examine the behavior of the coating in 
transitional stages, when values of parameters differ from 
those given in the table. This will also be useful when 
checking the effectiveness of the classifiers, which in 
practice should operate on real measurement results and 
should have sufficient generalization capabilities. Hence, it 
was assumed that the values of parameters change either 
linearly or logarithmically (Fig. 7), depending on the 
neighboring parameter values given in Table 1. 
 

 
 
Fig.7. Values of the anticorrosion coating parameters in different 
stages of degradation 

 In the next step four test sets (for stages from A to D), 
containing 1000 signatures each, were generated. A 
random dispersion of values of all parameters at intervals 
corresponding to individual stages was assumed. Each test 
set is a cluster of data in a 4-dimensional input space. All 
clusters in a 2-dimensional space with the coordinates u(t1) 
and u(t4) are shown in Fig. 8. The points marked with circles 
correspond to the values obtained from Table 1 and a 
broken curve, marked with black, corresponds to the values 
of coating parameters obtained from Fig. 7. 
 

 
 
Fig.8. Test sets in a 2-dimensional input space 
 
Using typical classifiers 
 The problem of classification of a stage of anticorrosion 
coating can be treated as a dictionary method of detecting 
catastrophic faults in analog electronic circuits. In the 
simplest words, the method depends on using a Minimum 
Distance (MD) classifier on a set of signatures of faults. For 
that purpose no further data processing is required. The 
efficiency of this classification method is weak when we 
take into account tolerances of parameters. In the case of 
anticorrosion coating the classification error is equal to 
17.7%. To increase the efficiency of the classifier, the 
signatures of stages were assumed to be the mean 
positions of clusters. These points are marked as squares 
in Fig. 9, which shows the data clusters in a 3-dimensional 
space with the coordinates u(t2), u(t3) and u(t4). In this case, 
the classification error on data sets is reduced to 12.3%, 
which is still not acceptable. 
 

 
 
Fig.9. Test sets in a 3-dimensional input space with marked centers 
of different versions of the minimum distance classifier. 
 
 One solution in classification of signatures of stretched 
clusters in fault dictionary methods is increasing the number 
of centers assigned to classes. This method increases also 
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the number of calculations, but guarantees a better fit to the 
shapes of data clusters. We used the Fuzzy C-Means 
(FCM) clustering algorithm. Due to different structures of 
clusters, different numbers of centers were also assumed: 2 
for stages A, D and 6 for stages B, C. These centers, 
marked ‘x’, are shown in Fig. 9. Consequently, increasing 
the number of centers in the MD classifier reduced the 
classification error to 0.6%. 
 
A specialized neural classifier with TCSB functions 
 The previous research on diagnosis parametric faults of 
analog electronic circuits performed by the authors proved a 
high effectiveness of the specialized neural network with 
Two-Center Basis Functions (TCB Functions) [7-9]. For the 
purpose of this study a simplified version of the TCB 
function was used. The new function radially transforms the 
space around a line segment connecting two centers c(1) 
and c(2) with the equation: 
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where: s(x) is a scaling function and w(x) are center 
functions depending on the coordinates of centers. In order 
to decrease the computational complexity, in respect to the 
previous versions, the exponential function was eliminated 
from the equation. The method of transformation of the 
space is now square - hence the function’s name is Two-
Center Square Basis (TCSB). An example of the TCSB 
function shape in a 2-dimensional space with the 
coordinates x1 and x2 in arbitrary units (au) is shown in Fig. 
10. The coordinates of centers are: c(1) = (1, 1), c(2) = (2, 2). 
 

 
Fig.10. An example of the TCSB function shape in a 2-dimensional 
input space with the coordinates x1 and x2 (au – arbitrary unit) 
 
 The neural classifier with 4 TCSB functions assigned to 
stages from A to D was constructed. For the purpose of 
calculating centers of these functions, the curves shown in 
Fig. 7 were taken into account. Five selected centers of 
TCSB functions correspond to the values of parameters for 
the middle positions between predefined stages. Classifying 
a stage of the anticorrosion coating is the same as in the 
MD classifier, except that we do not compare the distances 
from the measurement signature to all centers, but the 
squares of the distances from the measurement signature 
to the segments connecting centers of TCSB functions. In 
both cases we select a center or a function that is closest to 
the measurement signature. Each center or function is 
assigned to a particular stage of the coating and the 
minimum distance value strictly indicates that stage. 

 In the simulation all signatures contained in the test data 
sets were correctly classified with the TCSB function 
classifier. 
 Table 2 lists the basic parameters of analyzed 
classifiers. The times of calculations for the MD classifier 
with the FCM clustering algorithm and the TCSB function 
classifier are comparable. However, there is a noticeable 
increase in the computational complexity per center in the 
TCSB function classifier. This disadvantage is compensated 
by a lower demand for the number of centers required to 
cover clusters of data, because the activation area for the 
TCSB function is much larger than that for a single center in 
the MD classifier. 
 
Table 2. Comparison of classifiers 

Classifier Number of 
centers 

Time of calculations 
[time arbitrary unit] 

Classifi-
cation error 

[%] total per center 
MD 

4 7 1.8 
17.7 

MD (mean) 12.3 
MD (FCM) 16 61 3.8 0.6 
TCSB 5 52 10.4 0.0 
 
Conclusions 
 A compact smart sensor presented in this paper can be 
used for diagnosis of technical objects modeled by a two-
terminal network, e.g. anticorrosion coatings. With only two 
voltage buffers and a reference resistor we can excite an 
object with a square voltage pulse and measure its 
response. Four voltage samples are used by the classifier 
to determine a degradation stage of the anticorrosion 
coating. Using a neural classifier with TCSB functions 
provides a better fit to the shape of complex structures of 
data clusters, than obtained by using simple classifiers 
based on a minimum distance. 
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