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ABSTRACT. This work continues the analysis of complex dynamics in a class
of bidimensional nonlinear hybrid dynamical systems with resets modeling
neuronal voltage dynamics with adaptation and spike emission. We show
that these models can generically display a form of mixed-mode oscillations
(MMOs), which are trajectories featuring an alternation of small oscillations
with spikes or bursts (multiple consecutive spikes). The mechanism by which
these are generated relies fundamentally on the hybrid structure of the flow:
invariant manifolds of the continuous dynamics govern small oscillations, while
discrete resets govern the emission of spikes or bursts, contrasting with classical
MMO mechanisms in ordinary differential equations involving more than three
dimensions and generally relying on a timescale separation. The decomposition
of mechanisms reveals the geometrical origin of MMOs, allowing a relatively
simple classification of points on the reset manifold associated to specific num-
bers of small oscillations. We show that the MMO pattern can be described
through the study of orbits of a discrete adaptation map, which is singular as
it features discrete discontinuities with unbounded left- and right-derivatives.
We study orbits of the map via rotation theory for discontinuous circle maps
and elucidate in detail complex behaviors arising in the case where MMOs
display at most one small oscillation between each consecutive pair of spikes.
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1. Introduction. In this paper, we continue our study of hybrid integrate-and-
fire neuronal models from [51], turning our attention to the analysis of mixed-mode
oscillations (MMOs). MMOs are trajectories exhibiting small or subthreshold os-
cillations alternating with one or more large amplitude oscillations or spikes. These
appear in a variety of cell types and brain areas including inferior olive nucleus
neurons [6, 36, 37], stellate cells of the entorhinal cortex [1, 2, 27, 63], and neurons
in the dorsal root ganglia [5, 34, 35], as well as in thalamocortical spindle waves [38].
Neurons transmit information through the timing of spikes and the pattern of spikes
fired, and subthreshold oscillations and associated MMO patterns may contribute
to the precision, timing, and robustness of neuronal spiking [31, 63, 47] as well as
to spatial navigation [14]. The major goal of this work is to provide a detailed
mathematical analysis of MMOs in a class of neuronal models. Specifically, in this
article, we (i) consider a class of planar hybrid models widely used to model the
electrical activity of neurons, (ii) show that models in this class are able to generate
a wide range of MMO patterns, (iii) introduce a general mathematical framework
for studying the dynamical structure involved and the orbits that result, and (iv)
describe the geometric mechanism underlying these patterns.

From the biological viewpoint, neuronal activity patterns, including MMOs, rely
on ionic and biochemical mechanisms that are accurately described by nonlinear
dynamical systems of relatively high complexity, such as variants on the celebrated
Hodgkin-Huxley model [19, 52]. As described in our companion paper [51], in con-
trast with detailed biophysical models, integrate-and-fire models are abstractions
of the voltage dynamics in which differential equations describing the dynamics of
membrane depolarization are combined with a discrete reset corresponding to the
emission of an action potential (a spike) and subsequent hyperpolarization. These
models, first introduced more than a century ago [32], have evolved to incorpo-
rate nonlinearities to model the fast dynamics of spike initiation [9, 11] and addi-
tional variables modeling adaptation [21], synaptic dynamics [40] or resonant prop-
erties [24]. Among these models, nonlinear bidimensional integrate-and-fire models
with blow-up and resets are widely used in computational neuroscience, owing to
their relative simplicity yet very rich dynamical phenomenology [8, 21, 23, 59, 62].
However, none of these studies reported the presence of MMOs in these systems.

More generally and despite their importance for applications, MMOs have so
far received little attention in hybrid systems. A notable exception is the work of
Rotstein and collaborators on linear bidimensional resonate-and-fire neuron mod-
els [24]. These models are organized around an unstable focus and naturally exhibit
a variety of MMOs. Numerical simulations guided by characterizations of the trajec-
tories and timescale analysis were used to explore associated subthreshold dynamics
[49, 50] and to show how they can give an abrupt increase in firing frequency [46].
MMOs in this class of models result from a combination of subthreshold oscillations
together with subsequent threshold crossings corresponding to spikes. The multi-
timescale MMO scenario in these models does not necessarily represent the general
mechanism for MMOs in hybrid models, however, and to date, there has not been
a thorough analytical investigation of the detailed mechanisms underlying MMOs,
incorporating both subthreshold and spiking components, in these models in the
absence of timescale separation.

In the current manuscript we present a rigorous study of MMOs in nonlinear
bidimensional integrate-and-fire neuron models. We show that these can exhibit
a wide variety of MMO patterns when the subthreshold dynamics features two
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unstable fixed points, a saddle and an unstable focus. We investigate spike patterns
through iterates of a discrete map, the so-called adaptation map introduced in [62]
(see the companion paper [51] for more details on the construction and use of this
map). While previous works have considered settings in which the adaptation map
is continuous, here, in the presence of an unstable focus, we will show that the
adaptation map is singular: it may be undefined on a countable set of values at
which the map has well-defined and finite left and right limits and infinite one-
sided derivatives. A number of difficulties emerge from the irregular nature of the
map; since associated circle maps may also feature analogous singularities, classical
theories of Poincaré and Denjoy of circle homeomorphisms or their extensions to
continuous non-invertible maps ([41]) do not apply, and because of the unbounded
derivative, neither do theories of discontinuous contractive maps [16, 29]. This
contrasts with previous detailed studies of interspike intervals for periodically driven
one-dimensional integrate-and-fire models [10, 13, 30, 39, 55, 58]. Here, we will
demonstrate a fundamental relationship between the type of MMO pattern arising
and the rotation number of the adaptation map. With the aim of characterizing
rotation numbers of these maps, we build upon a number of theoretical results on
circle maps that may have discontinuities [7, 16, 29, 41, 44, 45] and sometimes
extend these to singular maps with unbounded derivative. In this way, we describe
a new mechanism underlying robust MMOs, not requiring multiple timescales, in
hybrid dynamical systems constituting an important class of neuron models.

Our presentation of these results is organized as follows. In section 2, we in-
troduce the model studied, review a few results on its dynamics, and describe the
geometric mechanisms underlying the generation of MMOs. We detail the prop-
erties of the adaptation map in section 3, with a particular focus on discontinuity
points and divergence of the derivative, which is proved to be a general result based
on a Poincaré section encompassing the stable manifold of a saddle. We further
show that the particular structure of the map ensures that any type of transient
MMO can be generated by these neuron models. In section 4, we use discontinuous
rotation theory to develop a precise description of the dynamics in the case where
the adaptation map admits one discontinuity in its invariant interval. Implications
and perspectives in dynamical systems and neuroscience, as well as some exten-
sions and prospects for analyzes of cases with more discontinuities, are discussed in
sections 5 and 6.

2. Hybrid neuron model and the geometry of the MMO mechanism. In
this work, we study the class of integrate-and-fire neuron models introduced in [59],
described in detail in the companion paper [51]:

{gng(v)—w+I O

?Tlt” =e(bv — w),

where £,b > 0 and I are real parameters. Following [59, 62], we will assume that the
real function F is regular (at least three times continuously differentiable), strictly
convex, superquadratic at infinity, with its derivative having a negative limit at —oo
and an infinite limit at +oo (see Assumption (Al) in the companion paper [51]).
These assumptions imply in particular that the membrane potential blows up in
finite time and at this explosion time, say t,, the adaptation variable converges to a
finite value w(t; ) [60]. At time t,, it is considered that the neuron has fired a spike;
the voltage is instantaneously reset to the fixed reset value vg and the adaptation
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variable is updated as follows:

v(ty) = vR ©)
w(ty) =yw(ty) +d

with v < 1 and d > 0. Although v = 1 is often assumed, we provide a calculation in
[51] that shows precisely how v < 1 arises in accounting for spike duration. Specif-
ically, small v characterizes scenarios in which significant decay in adaptation can
happen during the duration of each spike, which is the case when spikes (including
both depolarization after threshold crossing and subsequent initial hyperpolariza-
tion) are relatively broad or when the rate of recovery from adaptation is relatively
fast.

Numerical simulations performed in the present article correspond to the case of
the quartic model F(v) = v* + av with, unless otherwise stated,

a=02 =01 b=1, I=0.1175, wvr=0.1158. (3)

The values of the parameters associated with resets, d and +, are left free and will
be used as bifurcation parameters.

As discussed in the companion paper [51], the 1-dimensional adaptation map ®
can be defined based on the orbits of the system in the phase plane. Specifically, if
(V(,vg,w), W(-,vg,w)) is the solution of equation (1) with initial condition (vg,w)
and if V' blows up at ¢, (i.e., lim, - V(t,vr,w) = c0), then

O(w) := W(ts,vg,w) =YW (t, ,vr,w) +d (4)

is the associated value of the adaptation variable after spike and reset. In [51, 62], we
detailed the mathematical analysis of (1)-(2) in the absence of fixed points (yellow
region of Fig. 1.1 of [51]). In that regime, the system fires an action potential for
any initial condition in the phase plane. The adaptation map is thus well-defined
on the whole real line and smooth. The orbits of the map can be used to analyze
spike patterns and transitions between them.

In the present manuscript, we analyze the dynamics in regions in which the
system features an unstable spiral point and a saddle (pink region of Fig. 1.1 of [51]).
The stable manifold of the saddle is a one-dimensional heteroclinic orbit spiraling
out from the unstable focus (see Fig. 1.1 of [51] and Fig. 1). This geometry of the
phase space constrains trajectories reset within the spiral to proceed to a prescribed
number of rotations around the unstable fixed point before firing (Fig. 1, inset and
bottom). The rotations around the unstable fixed point provide small oscillations
used to define mixed-mode oscillations as follows.

Definition 2.1. Mixed-mode oscillations (MMOs) for the system (1)-(2) are spiking
orbits consisting of an alternation of small oscillations and spikes. MMO patterns
formed by a sequence of £, € N* := {1,2,...} spikes followed by s, € N* small
oscillations are characterized by their signature £i*L3?L5? - --. Periodic signatures
with period p are only denoted by finite sequence of length p, £ L£5%...L,7.

Remark 1. MMOs featuring bursts of two or more consecutive spikes not separated
by periods of small oscillations (i.e., £ > 2 for some k) are referred to as mixed-
mode bursting oscillations (MMBOs). We use the term MMO as a generic term
to describe any combination of spikes and small oscillations, and the term MMBO
is applied specifically to distinguish those trajectories featuring bursts and small
oscillations.
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Remark 2. In the present paper, we will be able to distinguish small oscillations
at half-rotation precision, and thus will extend the definition above to signatures
with half-integer numbers of small oscillations s; € %N*.

We henceforth assume that the reset line {v = vg} intersects the spiraling stable
manifold of the saddle, as in Fig. 1. The adaptation map is undefined at each
intersection of the reset line with the stable manifold of the saddle, since the orbit
of (1) starting from such a point converges to the saddle, and thus no spike follows.
For any initial condition (vg,w) not on the stable manifold, the associated orbit
performs a specific number of small oscillations before firing, resulting in an MMO
pattern. As indicated in Fig. 1, the present framework allows us to perform a
detailed analysis of this scenario, since:

e the fact that the stable manifold is bounded in the v variable implies that
the amplitudes of small oscillations are considerably smaller than the spike
amplitude, similarly to the case with biological MMOs, and

e the intersections of the stable manifold with the reset line partition the values
of w associated with a specific number of small oscillations (with half-rotation
precision).

The signature of the MMO patterns can be deduced from a dynamical analysis of
the adaptation map. The main objective of the manuscript is to characterize these
patterns, and the main results are summarized below.

We establish that, as a transient behavior, the system can feature MMOs with all
possible finite signatures (Proposition 1 and Corollary 1). Non-transient behaviors
are deduced from the iterates of the adaptation map, which may feature several
discontinuities and therefore support a very wide range of possible dynamics. We
concentrate in section 4 on the case where the adaptation map features a single dis-
continuity within its invariant interval. As in the seminal study of Keener on maps
with one discontinuity [29], we distinguish two cases depending on the monotonic-
ity of the lift, called overlapping or non-overlapping cases. In the non-overlapping
case (see subsection 4.1), we characterize the rotation number of the associated
adaptation map and show that it characterizes the MMO signature (Theorem 4.2)
or the chaotic nature of the spike pattern fired. In the overlapping case (see sub-
section 4.2), the adaptation map yields rotation intervals with rational numbers
corresponding to periodic orbits with MMOs (Proposition 4). To go beyond this
description, we provide conditions that guarantee existence of periodic orbits with
arbitrary periods, all displaying MMBOs (Proposition 6). Eventually, we discuss
how the methods used here could be extended to cases with multiple discontinuity
points within the invariant interval of the adaptation map (Theorem 5.1).

3. The adaptation map. We start by characterizing the properties of the adap-
tation map ® given in (4). In the absence of singular points of the subthreshold
dynamics, it is defined and continuous on R, and the nature of its orbits distin-
guishes regular spiking (fixed point of the map), bursting (periodic orbit of the
map) or chaotic spiking [51, 62]. In the present case with two singular points (un-
stable focus and saddle), we show that ® is undefined at specific points, no longer
continuous and has unbounded derivative, but its orbits still provide all the infor-
mation necessary to characterize the associated MMO patterns.
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FIGURE 1. The geometry of MMOs: (upper row) Phase plane with
v and w nullclines (dashed black) and stable (red) and unstable
(blue) manifolds of the saddle; the stable manifold winds around
the repulsive singular point. The reset line {v = vgr} (solid verti-
cal line) intersects the stable manifold, separating out regions such
that trajectories emanating from each undergo a specific number
of small oscillations (colored segments, here from 0 to 3 below the
w-nullcline and from 3.5 to 0.5 above). (Lower rows) The solution
for one given initial condition in each segment. Note that the time
interval varies in the different plots (indicated on the z-axis). Sim-
ulations had initial conditions v = vg = 0.012 and w chosen within
the different intervals on the reset line.

3.1. Properties of the adaptation map. Throughout the manuscript, we as-
sume that the vector field (1) has two unstable singular points, the repulsive sin-
gular point (v_,w_) = (v—, F(v_) + I) and the saddle singular point (v4,w;) =
(v4, F(vy) + 1), with v_ < vy (see [59, 62] providing detailed bifurcation analysis
of the subthreshold dynamics). We denote by W* and W* the stable and unstable
manifolds of the latter singular point; each of these is decomposed into two branches
(Fig. 2) with W (W3) extending towards w < wy (w > w4) and W* (WY) ex-
tending towards v < vy (v > v4). The shape of the map ® is organized around a
few important points (see Fig. 2):

e We denote by w* = F(vg) 4+ I the intersection of the reset line v = v with
the v-nullcline.

e We denote by w** = bvg the intersection of the reset line with the w-nullcline.

e We denote by {w; }?_; the sequence of w-coordinates of the intersection points
of the reset line with W?, labeled in increasing order with respect to the
adaptation variable w. We sometimes abuse the notation w; to refer to the


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

A\ MOST

MMOs IN A NONLINEAR NEURON MODEL 7

two-dimensional point (vg,w;). As long as vg # v_, there exists a finite
number of such intersection points or none depending on the parameter val-
ues: an even number of intersections for vg < v_ and an odd number for
vg > v—. We denote by p; the index such that {w;};<,, are smaller than
w* (intersections below the v-nullcline) and {w;};>p, are larger than w*; it
is easy to see that p; is the smallest integer larger than or equal to p/2, i.e.
p1 = [p/2]. Excluding the cases where the reset line is tangent to the W2,
the sequence of adaptation values {w;} split the real line into p + 1 intervals
that we denote {I;}}_,, with Iy = (—oo,w1), I; = (w;,wiy1), 1 =1,2,...,p—1,
and I, = (wp, 00). Remark that these intervals precisely correspond to those
in which the number of small oscillations occurring between two consecutive
spikes is constant, except the interval I,,, which is split into two subintervals
by w* (see Fig. 1). The number of small oscillations for trajectories starting
from I; is

7 if v < pq,

(p+1/2) =1 ifi>p,

1 if i =p; and w < w*, (5)
p1+1/2 if i = p; and w > w* and p is even

p1—1/2 if i =p; and w > w* and p is odd.

We denote by wy,, < wf{m < oo the limit of the adaptation variable when
v — +oo along W* and WY respectively. In addition, we introduce the
corresponding values obtained through the reset mechanism:

B=qw +d, a=ywi +d.

—
o
. u
47
.
1
1]
1
1)
0.5+
w
0+
’
'l
v,
'l
’
_05 1 .’ | 1 1 1 1 1 1
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

FIGURE 2. Geometry of the phase plane with indication of the
points relevant in the characterization of the adaptation map .

In this example, there are only p = 2 intersections of {v = vg}
with W* (thus p; = 1).

With these points defined, we can characterize the shape of the adaptation map.
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Theorem 3.1. The adaptation map ® has the following properties.
1. It is defined for allw € D :=R\ {w;}}_;.
2. It is regular (at least C3) everywhere except at the points {w;}}_,.
3. In any given interval I; with i € {0,--- ,p}, the map is increasing for w < w*
and decreasing for w > w*.
4. At the boundaries of the definition domain D, {w;}._;, the map has well-
defined and distinct left and right limits:

lim ®(w) =« and lirn+ O(w) =0 ifi <p,

w—rw,;” w—rw,
lim ®(w)=0 and lim ®(w)=« ifj> p1.
w—)wj_ w%w_j'

5. The derivative ®'(w) diverges at the discontinuity points*:
lim @' (w)=+o0 if i < py,
lim ®'(w)= —oc0 ifi> ps.

6. ® has a horizontal plateau for w — 400 provided that
lim F'(v) < —e(b+ V2). (6)

vV—— 00

7. Forw < min( wl,w**), we have ®(w) > yw + d > w.

d
Ty
8. Ifvg < vy, ®(w) < a for all w € D. Moreover, for any w taken between the

two branches of the unstable manifold of the saddle, hence in particular for

w € (wy,wp), ®(w) > B.

In comparison to the case without singular points [62, Theorem 3.1], the map
loses continuity, convexity, and uniqueness of the fixed point, but the monotonicity
property (point 3), the presence of a plateau (point 6) and the comparison with
identity (point 7) remain true. The presence of discontinuities and divergence of
the map derivative substantially change the nature of the dynamics as we will see
below. It is worth noting that this divergence is a general property of correspondence
maps in the vicinity of saddles (see Fig. 3), as we show in the following;:

Lemma 3.2. Consider a two-dimensional smooth vector field (at least C?) with
a hyperbolic saddle associated with the eigenvalues —p < 0 < v of the linearized
flow. We denote by W* and W*" the stable and unstable manifolds of the saddle
and consider two transverse linear sections Ss and S, intersecting W* and W* at
two points denoted x5 and x,,, respectively. There exists s a one-side neighborhood
of x5 on Sy that maps under the flow onto a one-side neighborhood Q,, of x,, on S,,.
The correspondence map ¥ : Q4 — Q,, is differentiable in Q; and we denote by ¥’
the one-sided derivative of ¥ at xs. We have:

qj,:{oo ifv—u>0

0 ifr—u<0 @

When p = v, the derivative is finite and its value depends on the precise location of
the sections.

LWith a slight abuse of terminology, we refer to the points w; as discontinuity points although

® is formally not defined at w;.
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FiGure 3. Typical topology of manifolds and sections in
Lemma 3.2: we consider correspondence map between sections Sy
(red) and S, (orange) transverse, respectively, to the stable and
unstable manifolds (black lines) of the saddle (orange circle). Typ-
ical trajectories are plotted in blue. The key arguments are the
characterization of correspondence maps associated with the lin-
earized system (upper left inset) between two transverse sections
S’ and S/, and the smooth conjugacy between the nonlinear flow
and its linearization.

Note that this statement is also true for general transverse sections S5 and S,
under suitable regularity conditions.

Proof. Let us start by considering the linearized system in the vicinity of the saddle
singular point. In the basis that diagonalizes the Jacobian, we can write the system

in the simple form:
T =vr
y=—my

and considering a section S’ corresponding to y = yo and a section S!, corresponding
to x = xg > 0, simple calculus leads to the formula that the correspondence map ¢
of the linearized system between S’ and S, is defined for z > 0 by @(z) = (yo/25)2¢
with &€ = u/v. Hence, the derivative of ¢ at 0% is such that:

o it diverges if £ < 1, hence for v — p > 0 (i.e. if the dilation along the unstable
direction is stronger than the contraction along the stable direction);

e it vanishes if £ > 1, hence for v —pu < 0 (i.e. if the contraction along the stable
direction is stronger than the dilation along the unstable direction);

e when £ =1 (i.e. contraction and dilatation are of the same intensity), we find
¢'(07) = yo/xo which depends on the precise location of the sections.

To demonstrate the lemma, we thus need to show that the same result holds for the
nonlinear system. The Hartman-Grobman Theorem [17], which ensures that the
nonlinear system is conjugated to its linearization through a homeomorphism in
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the vicinity of the (hyperbolic) saddle, will not be sufficient; we need to ensure that
the nonlinear and linear flows are locally conjugated via smooth diffeomorphisms
(at least C'). Finding smooth conjugacy is a subtle question for a general dynam-
ical system that has been the object of significant research and generally requires
avoiding resonances in the eigenvalues, which may lead to a relatively complex re-
lationship [53, 56]. In two dimensions, the problem is simpler and it was proved
in [57] that any C? planar dynamical system in the neighbourhood of a saddle is
smoothly (with at least C' regularity) conjugated with its linearization, and the
derivative of this conjugacy is bounded away from 0 in a sufficiently small neigh-
borhood of the saddle (since this conjugacy converges in a Cl-sense towards the
identity close to the saddle). Completing the proof thus only amounts to showing
that the correspondence maps from a neighborhood of S; to S’ and from S, to a
subset of S, are smooth with derivative bounded away from zero and infinity. This
is a classical consequence of the flow box theorem and regularity with respect to
the initial condition. O

Now that this general result is proved, we proceed to establish the properties of
the adaptation map by proving Theorem 3.1.

Proof of Theorem 3.1. First, note that generalization of the reset mechanism by
introducing a parameter v € (0, 1] does not substantially impact the shape of the
adaptation map. Indeed, all properties rely on the map associating with a point on
the reset line (vg,w) the value p(w) := W (¢, ;vg,w) of the adaptation variable at
the time ¢, of the subsequent spike, since p(w) = (®(w) — d)/7. In other words,
the generalization of the reset mechanism does not introduce any new mathematical
difficulty. Hence, the proofs for items 1 to 3 and 6 to 8 are straightforward extensions
of the analogous proof in [59] or simple algebra. Similarly, the proof of property 4
follows reasoning analogous to that of 3, with left and right limits found by finely
characterizing the shape of the trajectories as w approaches one of the discontinuity
points w;. In all cases, the trajectory will initially remain very close to the stable
manifold, before leaving the vicinity of the stable manifold near the saddle and
following the unstable manifold. Depending on whether the trajectory approaches
the saddle from the right or from the left, it will either follow the left or right branch
of the unstable manifold, hence either converge towards wf{m or Wy, -

We focus on the proof of property 5, which requires specific analysis. We use
Lemma 3.2 and prove that the conditions on the contraction and dilation near
the saddle are satisfied. We consider the specific sections that define ®, namely
Ss = {v =wvgr} (which is valid as long as the stable manifold is not tangent to the
reset line) and a section corresponding to spiking, denoted with a slight abuse of
notation as S, = {v = +o00}. The use of a section at oo, however, does not exactly
fit the statement of Lemma 3.2, and requires us to show that the derivative of the
correspondence map does not vanish as v — co.

First, note that since (v_, F(v—) + I) is an unstable focus, the linearized flow
there has two complex conjugate eigenvalues with positive real part and therefore
the trace of the Jacobian, given by F'(v_)—e, is strictly positive. Since F' is convex,
the trace of the Jacobian at the saddle equals F'(vy) —e > F'(v_) —e > 0. Hence
the dilation at the saddle is always stronger than the contraction; in the notation
of (7), we have v — > 0.

To show that the infinite derivative persists when one considers S,, = {v = +o0},
we express the map @ formally in the region below the stable manifold of the
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saddle, which all spiking trajectories cross. In this region, any trajectory has a
monotonically increasing voltage (that blows up in finite time), and the orbit with
initial condition (vg,wp) can be expressed as the parametric curve (v, W(v)) with

aw _ e(bv—-W)
v F)-W+1' (8)
W(’UR) = Wg-

The expression of the derivative of W with respect to wg at v is given by:

ow, Cf e(bu— F(u)— 1))\ oW (u)
&m“°‘1+1;<uwmwdw+fw> duwy ©)

with solution given, as a function of the trajectory W, by (see Peano’s Theorem in

[18])2:
ow ([ ebu-Fw -1
m&>‘“%ﬁﬂnm—ww+nﬂ>' (10)

Hence, for any section S, = {v = 0} (with § < o0), the derivative of the map ®
cannot vanish. Furthermore, for u large, we know that W (u) remains finite and
thus the integrand in (10) behaves as —e/F(u) which is integrable at infinity (cf.
Assumption (Al), [51]). Consequently, the integral within the exponential term
does not diverge towards —oo as v — oo and the derivative (10) does not vanish
at S, = {v = oo}. We further note that all correspondence maps away from
singularities (v_, F(v_) + I) and (v4, F(vy) + I) are well-defined and with finite
derivative bounded away from zero for the same reason. The intervals (—oo,w),
{I;}¥_,, and (w,, ) on the line {v = vr} are transverse sections of the flow and
correspondence maps from I; to (—oo,w;) are increasing for i < p; (hence the
left and right derivatives of ® at wli for ¢ < py are equal to +00) and decreasing
otherwise (hence the left and right derivatives at u}j‘E for i > py are equal to —o0).

O

3.2. Transient MMO behaviors. We recall that at each discontinuity point w;,
the right and left limits of the adaptation map are always equal to either « or .
This property, related to the fact that all discontinuities correspond to intersections
of the reset line with the stable manifold of the saddle, is a very important property
that endows the system with a rich phenomenology, ensuring that it can generate
MMOs of any signature.

We start by treating the case where the adaptation map has an infinite number
of discontinuity points, which occurs in particular® when the reset line {v = vg}
intersects the unstable focus (v_, F(v_) + I). We denote by {m,};en~ the w values
of the discontinuity points below the intersection w* of the reset line with the v-
nullcline, with m; < my; for any . Similarly, we denote by {M; };cn+ the w values

2From this expression one can propose an alternative direct (but particular) proof of the di-
vergence of the one-sided (left) derivative at the points w; that does not rely on the general
result of Lemma 3.2. Indeed, the stable manifold W#(u) has, close to (v4)~, a linear expansion
F(u)+ 1 —Ws(u) ~ —K (v} —u) with K = L (5 +F'(vy) + /(e + F'(03))2 — 4ab) >0 and it
is easy to deduce the divergence of the integral term within the exponential when v — (v4)™.

3This case also arises when the subthreshold dynamics (1) has a stable fixed point with a
circular attraction basin bounded by an unstable limit cycle (orange region C in Fig.1.1 of [51]),
and {v = vg} intersects this limit cycle. This scenario involves a different fixed point structure
than what we assume in this paper but the results on transient MMOs remain valid and the
statements of further sections on asymptotic MMOs have their counterparts in this case.
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of the discontinuity points satisfying M; > w* and M; > M;,;. We note that the
left and right limits of ® at m; (M;) are well defined, equal to o and 3, respectively
(8 and a, respectively)?.

Proposition 1. Assume that the reset line has an infinite number of intersections
with the stable manifold of the saddle. If moreover all the discontinuity points
{m; }ienU{M, }icn~ belong to [B, al, then for everyn € N* and every finite sequence
{si}iy, where s; = ki +1;/2, ki € N*, I, € {0,1}, there exists a set J C [B, o] with
non-empty interior such that for any wo € J, the orbit with initial condition (vg, wo)
has a transient signature

1%11%21%3..1%n,

Proof. We recall that for w € (my, my11) (resp. w € (Mg, My11)), the orbit passing
through (vg,w) performs exactly k (resp. k+1/2) small oscillations before spiking.
Thus, proving the proposition amounts to finding a set of initial conditions with a
prescribed topological dynamics. In detail, given an MMO pattern 151152 ... 1%,
where the s; are as above, we are searching for sequences of iterates of ® falling
sequentially in the intervals

1. = (my;, mig;4+1), ifl; =0
" (M, My, 41), ifl; =1,

The set of initial conditions corresponding to this prescribed signature is therefore
exactly ®~1(I,) N ®~2(I,,) N...N & (I, ), and proving the theorem amounts to
showing that this set is not empty, which relies on the particular shape of the map ®
and specifically on the fact that ®(I;, ) = (5, a) for any admissible s;. This property
implies that for any interval J C (3, &) with non-empty interior and any admissible
sk, the intersection of the pre-image ®~1(J) with I, is an interval with non-empty
interior. In turn, this fact allows us to establish the proposition by induction on the
length of the transient signature n. Indeed, for n = 1, the set of initial conditions
associated to a transient signature 1°! is the set J; = ®~ (I, ), which has a non-
empty interval of intersection with both (myg,mg+1) and (Mg, My11). Let us now
assume that the same property is true for some n € N*  namely that for any
sequence {s; }i=1...n, there exists a set of initial conditions with a non-empty interval
of intersection with both (my, mg41) and (Mg, Mgy1) from which trajectories have
the transient signature 15! ---1%». Let us now fix a sequence {s;};=1..,+1. By the
induction assumption, the set J,, associated to the transient signature 1%21%3...1%»+1
is such that J,, N I, is an interval with non-empty interior. Consequently, the set
TIn+1 = ®71(J,NIg,) contains a non-empty interval of intersection with all I, and
any trajectory with initial condition within that interval has the transient signature
151152193 1%n]8n+1, O

Remark 3. We emphasize that Proposition 1 does not assure the presence of
bursts of activity (i.e. s; € {0,1/2}): this is due to the fact that ®((8,m1)) =
(®(B), @) and ®( (M7,a)) = (P(), @) might be proper subintervals of (3, a) and
the argument used in the proof no longer applies. Therefore to account for s; = 0
or 8; = 1/2 one would need to make an additional technical assumption.

4Here the discontinuity points of ® are denoted by m; and M;, instead of w; as earlier, since
we have two infinite sequences of intersections lying, respectively, below and above w* and we
need to distinguish between them.
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If the reset map has a finite number of discontinuities, exactly the same proof ap-
plies to show that any MMO pattern with an accessible number of small oscillations
exists. This extension is precisely summarized in the following result.

Corollary 1. Suppose that the reset line v = vy has a finite number m of inter-
sections with W?, with w-coordinates ordered as w; < wa < ... < w; < W41 < ... <
Wik < .. < Wy, where | € N* denotes the largest index i such that w; <  and ex-
actly k > 2 intersections lie in [B,a): B < w1, ..., wipr < a. Let S denote the set
of numbers of small oscillations performed by the trajectories with initial condition
in Iip1 = (Wi, wite), liya = (W2, wiy3), - liyr—1 = (Wigk—1,wi4k) according
to the formula (5). Then for every n € N* and every sequence {s;}_, with each
s; € S, there exists an interval J C [8, ] such that every initial condition w € J
yields a transient MMO with the pattern 15115215,

If the number of intersections w; of the reset line v = vy with W? is infinite but
only k of them lie in the interval [5, o], then we have exactly two possibilities:

e all the points w; in [B,a] are not greater than w* and for every n € N* and
every sequence {s;}'_, with s; € {l + 1,1 +2,...,1 + k — 1} there exists an
interval J C [B,a] such that every initial condition w € J yields an MMO
with the pattern 1°11°%2...15~  where the index | is obtained from the ordering

wy <we < ..<w <P <L <o <wigg < o< W1 < .o S W

e all the points w; in [B,«] are greater than w* and for every n € N* and every
sequence {s;}_, with s; € {l+3/2,14+5/2,....,1 + (k= 1)+ 1/2} there exists
an interval J C [B,a] of initial conditions yielding MMOs with the pattern
151152, 1% where the index | is obtained from the ordering

W1 > > WS A W] > e > Wik > B> Wiy > e > W

This corollary covers all cases studied in this paper, including finite or infinite
number of intersections of the stable manifold with the reset line. Only the number
of these points in the interval [3, a] determines the possible MMO patterns.

4. Adaptation map with one discontinuity point in the invariant interval.
The general description developed above does not yield a precise specification of the
dynamics of the system. For clarity of exposition, from now on, we shall assume
that vg < v_ and we focus chiefly on the case where the adaptation map has exactly
one discontinuity point w; in the interval [3, ] (although there may be arbitrarily
many outside of that interval). One of the main limitations of this situation is that
the resulting MMOs have at most one small oscillation between spikes. Nonetheless,
this case is advantageous in that the number of possible configurations of the map
and identity line remains relatively limited, while there is a combinatorial explosion
in cases with more intersections. It will be clear that most of our techniques extend
beyond these situations under suitable technical assumptions®.

The shape of the map depends on the relation of certain points, as represented in
Fig. 4, and we list several relevant conditions that we will consider as we proceed:

(C1): There exists a unique discontinuity point w; in the interval [5, a]:

B <w <a<ws. (11)

5Tn particular, the unique discontinuity point wy in [8, a] might be replaced by any w; (with

respect to the notation introduced before (5)) such that w; < w*, and satisfying corresponding
conditions (C1)-(C3) below with wq and w2 replaced, respectively, by w; and w;y1.
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(C2): The map is piecewise increasing on [3, o], i.e.

a<w'. (12)
(C2?%): Alternatively to (C2),
wy < w* < a. (13)
(C3): The interval Z := [§, ] is invariant, which, since ®(w) < « for all w, is
set by the conditions:
®(B) > B and @(a) > . (14)

Note that the conditions given here and the regimes highlighted in Fig. 4 arise for
values of v that are small relative to 1, which, as we recall from Section 2, can result
when significant decay in adaptation is associated with each neural spike.

Non-transient regimes only depend on the properties of the map ® in a bounded
invariant interval. Indeed, we have seen in Theorem 3.1 that ® is bounded above
and that for w small enough ®(w) > w, implying the existence of an invariant
compact set Z in which any trajectory is trapped after a finite number of iterations.
This remark opens the way to consider ® as a circle map (after identifying the
endpoints of Z) and thus to use rotation theory in order to rigorously discriminate
(i) whether the firing is regular, bursting or chaotic, corresponding respectively to
fixed points, periodic orbits, or chaotic (non-periodic) orbits of ® (see [62]), as well
as (ii) the number of small oscillations occurring before a spike, according to the
partition of Fig. 1, i.e., the signature of the MMO pattern fired.

Definition 4.1. Under assumptions (C1) and (C3), the invariant interval of ®
can be defined as Z = [, «. The lift ¥ of ®|7 is defined for x € (3, a] as:

O (z) if < <w
U:=z—<a if x =wy (15)
S(z)+ (a—pP) ifu<z<a

and extended on R through the relationship that for any z € R and k € Z,
U(x +k(a— ) = U(z) + k(a - B).

The rotation number of ¥ at w € R is defined as:

o(¥,w) := lim Pw) —w

wse o~ ) (19)

provided that the limit exists.

An example of the lift is given in Fig. 8. Note that the lift is continuous on the
interior of the invariant interval Z. Indeed, it is continuous on (8,w;) and (wy, @)
since @ is continuous therein, and at z = wy, both its left limit ¥(w; ) = ®(w; ) and
right limit ¥ (w;") = ®(w]")+(a—B) are equal to a. However, the map W is generally
not continuous on R and displays discontinuities at the points 2, = a + k(a — )
for k € Z when ®(8) # ®(«) (which is generally the case). By convention, the
above definition introduces ¥ as a left-continuous map. As will be emphasized at
relevant places, this choice does not impact our developments, and in particular
does not affect possible values of rotation numbers. We finally note that the maps
¥ and ® restricted to [, a] induce the same circle map ¢ : $/ZI — 17l on the circle
of length |Z| = o — 3, and the orbits of ¥ coincide modulo |Z| with the orbits of
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FIGURE 4. Partitions of (d,~) parameter space (for fixed values
of the other parameters) according to geometric properties of the
map ® for the quartic model (F = v* 4 2av, a = ¢ = 0.1, b = 1,
I = 0.1175 and vg = 0.1158) assuming only two intersections of
the reset line with the stable manifold (see text for further infor-
mation).
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®, except at w; where the map @ is not defined®. Therefore ¥ captures well the
general dynamical properties of ®.

The sign of the jump of ¥ at its discontinuity points z; will be particularly
important in our developments. We will distinguish the following cases:

(C4): We say that the map is non-overlapping if (C1), (C2) and (C3) are
satisfied, and moreover:
P(a) < ©(B). (17)
When the inequality (17) does not hold, we identify another case:

(C4’): We say that the map is overlapping if conditions (C1), (C3) and either
(C2) or (C2) are satisfied and ¥ has a negative jump:

D(a) > B(B). (18)

The terminology follows [29] and refers to the property that ® is injective in [3, o
under assumption (C4), while the images of (8,w;) and (w;,«) under ® have
non-empty intersections (overlap) under assumptions (C4’). We also emphasize
that in the non-overlapping (resp., overlapping) case, the map ¥ has non-negative
(resp., negative) jumps at its discontinuity points (zy)kez, ie., ¥(z,) < ¥(z))
(respectively, U(zy ) > U(x))).

These conditions may seem complex to check theoretically since they involve
relative values for the adaptation map ®, the discontinuity points, and « and S.
However, they are very easy to check numerically for a specific set of parameters. In
Fig. 4 we illustrate these different situations for a quartic model with a particular
choice of the subthreshold parameters and for a fixed value of the reset voltage vg,
and we identify the regions with respect to the reset parameters v and d where the
above conditions are satisfied: The blue region in the top partition corresponds to
the (d,~y) values for which assumption (C1) is satisfied. The bottom partition of
that region specifies the subcases of interest: the non-overlapping case (assumption
(C4)) is decomposed into regions A (yellow), B (pink) and C (orange) according
to the position of the discontinuity point w; with respect to ®(«) and ®(3). The
overlapping case (assumption (C4’)) is decomposed into regions D (assumption
(C2)) and E (assumption (C2’)) according to the position of the critical point w*.
Note that, for the given value of vg, in the range of (d, ) values, assumption (C3)
is always satisfied. For each subregion, a prototypical scheme of adaptation map ®
is displayed. The grey regions in the map plots D and E highlight the overlap.

We will provide an exhaustive description of the MMO patterns produced by
the adaptation map when it has exactly one discontinuity in the interval Z. In our
framework, we can classify MMOs with half-oscillation precision. However, in this
section, we choose for the sake of simplicity in the formulation of the results to con-
sider integer numbers of small oscillations; that is, the points in (3, w) correspond
to no small oscillations whereas the points in (w1, ) result in one small oscillation.
Thus, referring to the signature of MMOs, we have s; = 0 or s; = 1 and by grouping
together in the signature consecutive spikes followed by no small oscillations, we can
assume that s; =1 for any .

We start with a simple remark stating, roughly speaking, that MMOs occur
frequently in our system:

SThe results shown on the orbits of ¥ correspond to actual spike pattern for any initial condi-
tions outside the discrete set of pre-images of w1, {®~"(w1), n € No} (where No := {0, 1,2,...}).
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Proposition 2. Under conditions (C1), (C3) and either (C2) or (C2’), all orbits
of the system (1)-(2) with initial conditions w € I, except for possible fized points
of ® in [B,w1) or orbits attracted by such fized points, display persistent MMOs. In
particular, every periodic orbit of ® in T with period q > 1 corresponds to reqular
MMOs (i.e., MMOs with a periodic signature) of the system.

Under (C1), (C2) and (C3), the MMOs displayed by periodic orbits of ®|z are
MMBOs.

Proof. The first two statements about MMOs follow from the monotonicity of ® in
[8,w1) and its limits at wq; indeed, it is easy to see that because of these properties
the considered orbits recurrently visit the set (wy, ], whereas any point of the orbit
in this set undergoes one small oscillation before firing a spike. Hence persistent
MMOs result, which are regular if these orbits are periodic.

Similarly under all assumptions (C1), (C2) and (C3), ® is monotone increasing
on (w1, a] in addition to [3,w;), with ®(w; ) > w; > ®(w;] ). Hence, if an orbit
of ®|z is not trapped by a fixed point in one of these intervals, then it necessarily
escapes to the other. In particular, any non-trivial periodic orbit thus features
small oscillations as well as consecutive spikes with no small oscillations in between,
leading to MMBOs. O

Note that under (C1), (C2%), (C3) it is possible that there are periodic orbits
fully contained in (w1, «]. Such periodic orbits always display one small oscillation
before each spike. Hence these are MMOs but not MMBOs.

When conditions (C1), (C2) and (C3) are satisfied, the singular case ®(8) =
®(a) can be treated using the classical Poincaré theory of orientation preserving
circle homeomorphisms. In all other cases the corresponding lift is discontinuous
and possibly non-monotonic. Our study will build upon previous works of Keener
[29], Misiurewicz [41], Rhodes and Thompson [44, 45] and Brette [7]. We link their
general results to MMOs in our system, as well as extend and strengthen some
of them to more specific subcases arising in our study, allowing for more refined
characterization of the dynamics of ®.

4.1. Non-overlapping case. We start by investigating the non-overlapping case
(C4). In that situation, the lift ¥ is discontinuous (unless ®(8) = ®(«)) but
conserves the orientation-preserving property since it only admits positive jumps.
It is well-known that monotone circle maps conserve the properties of continuous
orientation-preserving maps: they have a unique rotation number, and rational
rotation numbers imply asymptotically periodic behaviors.

To ensure convergence towards periodic orbits, one needs to take special care
about the presence of discontinuities. Indeed, when ® has a periodic orbit with
period ¢, then necessarily there exists zo € R such that ¥%(zg) = 29 + p(a — §) for
some p € N*| p, ¢ relatively prime, i.e. zq is periodic mod(a — ) for the lift .
However, since map ® is discontinuous at wq, it might happen that, although the
rotation number is rational, no truly periodic orbit of ® exists but point w; acts as
a periodic point. This means that one of the two following properties is necessarily
fulfilled, with 2o mod |Z| = w; (see [44]):

o for allt € R, Wi(t) >t + p|Z| and
dzg € R, lim Wi(t) = zg + p|Z|; (19)

t—zy
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e forallt € R, Wi(t) <t + p|Z| and
dzg € R, lim+ Ui(t) =z + p|Z|- (20)

t—xg
Remark 4. By allowing the lift to be bivalued at the discontinuity points, Brette [7]
and Granados et al [16] avoid the distinction of the three cases for rational rotation
numbers (i.e., the existence of the actual periodic orbit and the two cases listed
above). That formalism indeed ensures that the periodic orbit always exists, since
the two situations above can happen only if 29 mod |Z| = wy, i.e. when the periodic
orbit bifurcates.

For simplicity, with a little abuse of terminology, in both above cases, we will
refer to the orbit of ¢ (mod|Z|) under ® as the periodic orbit. Bearing that in mind
we now relate the orbits of ® to the dynamics of the neuron model and show that
the rotation number in the non-overlapping case fully characterizes the signature of
the resulting MMO.

Theorem 4.2. We assume that the adaptation map ® satisfies condition (C4) and
consider its lift ¥ : R — R. Then the rotation number o := o(¥V,w) of ¥ exists and
does not depend on w € R.
Moreover, the rotation number is rational, 0 = p/q € Q with p € Ny :=
{0,1,2,...} and q € N* relatively prime, if and only if ® has a periodic orbit, which
is related to the MMO pattern fired in the following way:
(i) If o = 0, then the model generates tonic asymptotically reqular spiking for
every nitial condition wo € [8,a] \ {w1} (see Figure 5, top).

(ii) If o = 1, then the model generates asymptotically reqular MMOs for every
initial condition wo € [B,a] \ {w1}, with periodic signature 11111%... = (11).

(isi) If o = p/q € Q\ Z (p,q relatively prime, ¢ > 1 and 1 < p < q), then
the model generates asymptotically reqular MMBOs for every initial condition
wo € [B,a] \ {w1} (see e.g., Figure 5, bottom). Defining 0 < I3 < -+ <
l, < g¢—1 as the unique integers such that l;p/q mod 1 > (q — p)/q and
L; =1lixt1 =1 fori=1---p (with the convention l,11 = q+ 1), the MMBO
signature is L1 -+ - Ezl,.

(i) If o € R\ Q, then there are no fixed points and no periodic orbits, and the
system fires non-reqular’ MMOs.

Remark 5. This result establishes that in the non-overlapping case, the MMO sig-
natures of orbits are determined by the rotation number and provides a constructive
algorithm to compute the MMO signature associated to a given rotation number.
We illustrate this construction on two examples:

e Orbits of the adaptation map with rotation number ¢ = 1/¢q have signature
q'. When ¢ = (q — 1)/q the signature is 211! ... 11 (with ¢ — 2 repetitions of
the pattern 11).

e For the rotation number ¢ = 3/5, up to cyclic ordering, the periodic orbits are
ordered as those of the corresponding rotation by 3/5 on the unit circle, i.e.
{O,%,% = % mod 1,% = % mod 1,%3 = % mod 1}. The three indices

7Although non-periodic spiking patterns are often referred to as ‘chaotic’, one can actually

see that the orbits corresponding to irrational rotation number, though not purely periodic, are
in fact almost-periodic (see e.g. [15] for the notion of an almost-periodic point in topological
dynamics). Therefore we will call MMO patterns fired by such orbits simply ‘non-regular’ to avoid
any confusion with terminology.
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F1GURE 5. Phase plane structure, v signal generated along attrac-
tive periodic orbits and sequence of w reset values for two sets of
parameter values for which the map @ is in the non-overlapping
case (C4). In both cases, vg = 0.1 and v = 0.05. The top case
(d = 0.08) illustrates the regular spiking behavior corresponding
to the rotation number ¢ = 0. The bottom case (d = 0.08657)
displays a complex MMBO periodic orbit with associated rational
rotation number.

corresponding to values greater or equal to 2/5 are {1,3,4}; hence, £, =
3—1=2,Ly,=4—-3=1,L3=1+5—4=2, and the signature is 21 112!,

Proof. Since the induced lift ¥ : R — R is strictly increasing, we can apply the
theory of monotone circle maps theory developed by Rhodes and Thompson [44, 45]
and Brette [7]. The existence and uniqueness of the rotation number is shown
in [44, Theorem 1] and [7], and the proof for orientation preserving homeomorphisms
applies®. The characterization of the orbits in the case of rational rotation numbers
results from [44, Theorem 2] and the fact that ¥ is strictly increasing,.

Moreover, if o = p/q, then it can be shown that every non-periodic point w €
[8,a] of @ tends under ®7 to some periodic point w € [, al: limy,_ oo P (w) = .
This is a consequence of [7, Proposition 5] since the monotonicity of ¥ ensures
that the underlying circle map is strictly orientation preserving. From the proof
therein it also follows that the asymptotic behavior is consistent for all the points

8 Continuity of the lift is not used in the classical proof of the uniqueness of the rotation number
for orientation preserving circle homeomorphisms, see e.g. [28, Proposition 11.1.1].
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of a given orbit, i.e. that if w tends under ®¢ to w, then ®*(w), k =0,1,...,q — 1,
tends to its corresponding point ®* () on the periodic orbit of . This provides
the classification of orbits for the adaptation map, analogous to the one for a circle
homeomorphism with rational rotation number (cf. [28, Proposition 11.2.2]). Next,
we consider the subcases of firing patterns.

(i-11)) When o(¥) = 0 mod 1, the adaptation map admits a fixed point. More-
over, under the current assumptions and the way we have defined the lift ¥ we
either have o(¥) = 0 if the fixed point belongs to (8, w1), in which case there is
no (full) small oscillation between spikes, or o(¥) = 1 if the fixed point belongs
to (wy, @), in which case the orbit displays one small oscillation between every two
consecutive spikes.

(i) As mentioned in Proposition 2, periodic orbits necessarily correspond to
MMBO. Moreover, it is not hard to show that g-periodic orbits with rotation num-
bers p/q have exactly p points to the right of w;. These points split the periodic
orbit into firing events consisting of either one spike or a burst, separated by a
small oscillation. Since the lift preserves the orientation, the consecutive points of
a periodic orbit {w, ®(w), ..., P97 (w)} with rotation number p/q are ordered as
the sequence of numbers (0,p/q,2p/q,...,(¢ —1)/q) in [0,1] (up to cyclic permu-
tation, see e.g. [28, Proposition 11.2.1]). The signature of the MMBO is directly
related to the indexes [ € {0,1,...,q — 1} such that ®!(w) > w;, and hence such
that Ip/q > (¢ —p)/q mod 1. We easily conclude that the signature of the MMBO
indeed is L1L5--- L.

(iv) If the rotation number is irrational, then ® admits no periodic orbit, and all
orbits under ® have the same limit set €2, which is either the circle or a Cantor-type
set as in the continuous case (®(5) = ®(«)), as proved in [7, Proposition 6]. O

When w is periodic mod (a — /3), the corresponding forward attracting periodic
orbit is unique. Otherwise, several attracting periodic orbits may exist with the
same rational rotation number, and hence with the same period and the same or-
dering. In [16], the authors have proved the uniqueness of the periodic orbit of maps
such as ® in the non-overlapping case with the assumption that ® is contractive on
both (8, w1) and (wq,«). Here, because of the divergence of the derivative at the
discontinuity points, we cannot use the contraction assumption.

We emphasize that since W is a strictly increasing lift of a degree-one circle map,
changing its value at a discontinuity point (while conserving monotonicity) does not
change the value of the rotation number (see e.g., [44]). The above remark means
that for the characterization of the dynamics of @, it does not matter whether we
define the lift ¥ to be left- or right-continous at its discontinuity points S+ k(a—03),

nor that @ is formally not defined at wy, since lim ®(w) = o and lim+ d(w) = .
w—rw, w—w{

We now provide a simple sufficient condition for the existence of 2! MMBOs. This
result is analogous to [29, Lemma 3.2] but does not necessitate the boundedness
assumption on the derivative of the map made in [29], which our map ® obviously
does not satisfy.

Proposition 3. Assume that ® fulfills condition (C4) and moreover that ®(a) <
wy < ®(B). Then ® admits a periodic orbit of period 2, thus the system has a 2*
MMBO.
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FIGURE 6. Phase plane (inset) and adaptation map (top) fulfilling
condition (C4) and the additional condition ®(a) < wy < ®(S),
along with the associated MMBO orbit of system (1) (bottom).
The rotation number is equal to 0.5, hence the v signal along the
orbit is a periodic alternation of a pair of spikes and one small
oscillation. The parameter values of the system corresponding to
this simulation are v = 0.1, v = 0.05 and d = 0.087.

Proof. In this case, ®2((8,w1)) C (B,w1), ®? is continuous on (B,w;) U (w1, ),

P2(B) > B and lim P*(w) = ®(a) < wy. Hence, ? admits a fixed point in
w—w]

(8,w1) corresponding to a periodic point of period 2 for ®. On the other hand, the

second point of this periodic orbit lies in (wq, «) since ®((8,wy)) C (wy,a). Thus

this orbit exhibits MMBO and necessarily o(¥) = 1/2. We illustrate this result in

Figure 6. O

When the second assumption of Proposition 3 is not valid and ®(8) > ®(«a) > wy,
the dynamics may generate complex orbits of higher period or even chaos. Different
MMBO patterns may therefore be observed in the non-overlapping case, depending
sensitively on the parameters. We now focus on this dependence on the reset pa-
rameters (d,~) and show that the rotation number varies as a devil’s staircase (in
the sense of Theorem 4.3 below). This result is based on a theorem in [7]. However
it does not follow from [7] immediately, since varying reset parameters changes the
invariant interval [8, o] and one needs to add some technical assumptions to ensure
that the lifts display an increasing relation. The detailed proof can be found in the
Appendix.
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Theorem 4.3. Assume that for any d € [dy,ds], the adaptation map ©4 remains
in the non-overlapping case (C4) and ®4(ag,) < ®q(Ba,). Let 0q be the unique
rotation number of ®4. Then:
e p:dw pg is continuous and non-decreasing on [dy,ds];
e for all p/q € QN image(p), p~1(p/q) is an interval containing more than one
point except, possibly, at the boundaries of the interval [dy,ds);
e for every irrational o4 € image(p), p~*(04) is a one-point set;
e the set of points d at which p takes irrational values is, up to a countable
number of points, a Cantor-type subset of [dy,da].

A similar result holds for the dependence of the rotation number on the parameter
7 in the regime where we can ensure the suitable monotonicity of v — o,. Fig. 7
illustrates a case where this theorem applies.

Adaptation map and attractive periodic orbit

(a) (b) (c)

e

0.7

06 1

05 '

04 | - -

03 : i

02 -_— 1

Rotation Number

0.1 ra i
/

0 . . . .
0.08 0.082 0.084 0.086 0.088 0.09 0.092

d

FIGURE 7. Rotation number as a function of d. The parameter
values vg = 0.1 and v = 0.05 have been chosen such that the adap-
tive map ® fulfills condition (C4) for any value of d € [0.08,0.092].
Theorem 4.3 applies here, and the rotation number varies as a
devil’s staircase, as shown in the bottom plot. The top panels show
the adaptation map and corresponding attractive periodic orbit at
the d values labelled correspondingly in the rotation number plot;
note that the rotation number for case (b) is a rational number
between 1/3 and 1/2.

4.2. Overlapping case. Now let ® satisfy the properties of the overlapping case
(C4’). In this case, the lift ¥ is no longer increasing (it has negative jumps at the
points 2, = a+k(a—p) for k € Z), and a number of important properties inherited
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from the well-behaved dynamics of orientation-preserving circle homeomorphisms
that persist in the non-overlapping case [7, 44, 45] are now lost, leaving room for
still richer dynamics.

In the overlapping case, it is easy to see that our map restricted to its invariant
interval [, a] falls in the framework of the so-called old heavy maps [41], since it
is a lift of a degree-one circle map with only negative jumps. These maps have
interesting dynamics with non-unique rotation numbers. More precisely, we can
define a rotation interval [a(¥), (V)] with

(V) = infyep liminf, o 20050, (21)

b(¥) :=sup,eglimsup,_, % (22)
As noted in [41], these two quantities are the (unique) rotation numbers of the
continuous orientation preserving maps:
U (w) = inf{¥(z):z>w}, (23)
U, (w) = sup{¥(z):z<wk (24)
that is, a(¥) = o(¥;) and b(¥) = o(¥,). The corresponding maps ¥; and ¥, for
the adaptation map of the hybrid neuron model are plotted in Fig. 8.

FIGURE 8. The orientation-preserving maps ¥; (green) and W,
(blue) enveloping the lift ¥ (red line), which is non-monotonic and
admits negative jumps, for the adaptation map ® (blue dashed
curve) in the overlapping case.

We can now conclude after [41]:

Proposition 4. Under assumption (C4’),
1. if ® admits a q-periodic point w with rotation number o(¥,w) = p/q, then
a(¥) < p/q < b(¥);
2. if (V) < p/g < b(¥), then ® admits a periodic point w of period q and
rotation number o(V,w) = p/q.
In both cases, the orbit of w displays MMOs, unless p = 0, in which case w is a fized
point in [B,w1). Moreover, for any o1 and o3 such that a(¥) < g1 < g2 < (),
there exist w such that

YV (w) —w

Iminf = =g o (25)
yr —

lim sup (w) —w = 09. (26)

n—oo  N(a—f)
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This result implies in particular that the rotation set in the overlapping case is
closed, meaning that every number g € [a(¥), b(¥)] is the rotation number o(¥, w)
of an orbit with initial condition w € [3, ], and the rational numbers in its inte-
rior correspond inevitably to periodic orbits. The property of having a non-trivial
rotation interval implies coexistence of infinitely many periodic orbits of distinct
periods; this situation is sometimes referred to as ‘chaos’ (see [29]). Precisely, if the
rotation interval is non-degenerate, then topological entropy is positive (with the
estimate of the topological entropy for the class of maps studied here given e.g. in
[3]) and consequently, the map is Li-Yorke chaotic (see e.g. [4]). We next consider
(1) the variation of the rotation interval as a function of the reset parameters and
(ii) the relationship between rotation intervals and MMO patterns.

A result from [41, Theorem B] ensures continuous dependence of the boundaries
of the rotation interval a(¥) and b(¥) on map parameters when ¥; and VU, re-
garded as elements of the space C°(R) occupied with the uniform topology, depend
continuously on these parameters. The following proposition makes this dependence
more precise in our case by showing that these vary as a devil’s staircase under mild
assumptions.

Proposition 5. Consider fized parameters vg, a, b, v and I and vary d € [\, \a]
such that, for each d € [A\1,\s], the corresponding adaptation map ®4 satisfies
the assumptions of the overlapping case (C4’). Then the maps d — a(¥4) and
d — b(Ty4) assigning to d the endpoints of the rotation interval of ®4 are continuous.

If we further assume that, for any pair (di,ds) € (A1, X2]? with dy < dy, we have

(I)dz (Bdl) < (pdz (6612) +d1 — d27 (27)

then the maps d — Uy(w), d — Y4, (w) and d — V4, (w) are increasing for each
w (Wq, and Vg, denote, respectively, upper and lower enveloping maps of the lift
Uy of ®q). Consequently, the maps d — a(Vq) and d — b(Vy) behave like a devil’s
staircase.

We note that the sufficient condition (27) is equivalent to
\dez (Bdl) < \de’z (BL) +dy — do, (28)

where Wy, (87 ) denotes the right limit of W4, at fBa,. This latter condition is
satisfied for instance when, for every d € [A1,A2], ®; < 1 in the whole interval
[Ba, Ba + (A2 — A1)]. The proposition is proved in Appendix A and illustrated in
Fig. 9.

In the overlapping case, the pointwise rotation numbers o(V¥,w) may not exist
for some initial conditions and generally depend upon w, implying that we have
non-trivial (i.e., non-singleton) rotation intervals. Moreover, despite Proposition 4,
even knowing the rotation interval [a(¥), 5(¥)] does not fully determine yet the
structure of the set of all (minimal) periods of orbits of ®. Specific cases were fully
characterized, however, notably degree-one continuous non-injective circle maps [4,
42]. For maps with discontinuities, the issue is very complex and, to our knowledge,
periods of periodic orbits are completely described only for lifts of monotonic modulo
1 transformations (see [20]), which corresponds to the overlapping case with the
additional monotonicity assumption (C2). In addition to these difficulties, the
overlap prevents systematic deduction of the MMO signature from knowledge of
the rotation number, since the rotation number o(V,w) does not determine the
ordering of points on the orbit of w.
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FIGURE 9. Rotation intervals for the lifts Uy, Uy, of the adapta-
tion maps ®4 for a range of d. The parameter value v = 0.05 has
been chosen so that ®; remains in the overlapping case for all
d € [0.0745,0.0825].

Specific analysis on the maps considered here, however, provides some informa-
tion about this characterization. First, when (C2) holds, the map ® is piecewise
increasing and thus Proposition 2 applies and ensures that periodic orbits are asso-
ciated to MMBOs. When (C2) is not valid, we still know that periodic orbits fully
contained in (w1, ) correspond to MMOs with signature 1'. Beyond these partic-
ular cases, we now demonstrate more general results under milder assumptions.

Proposition 6. Assume that ® fulfills (C4’) and admits at least two fixed points,
wy € [B,w1) and Wy € (wy,a). Then there exist periodic orbits of arbitrary period
displaying MMOs (which are MMBOs under (C2)).

Proof. First of all, we note that since wy € [8,w1) is a fixed point of @, it is also a
fixed point for ¥ and thus the associated rotation number is equal to 0. Moreover,
for wy € (wy,a) we have ¥(wys) = Wy + (o — B) and thus the associated rotation
number under ¥ is equal to 1. We thus conclude that the rotation interval of ¥
contains the full interval [0, 1], which concludes the proof. O

Proposition 7. Assume that ® satisfies (C4’) and that ® admits at least one fized
point in (w1, ), the smallest of which we denote by wy € (w1, ). Assume moreover
that there is no fized point of ® in [3,w1). Then

o if ®(B) < wy, then there exists ¢ > 1 such that for all ¢ > G, ® admits a
periodic orbit of period q, and the associated trajectories display MMOs;

o if &(5) > wy, then & admits a trivial rotation interval [a(¥),b(¥)] = {1} and
periodic orbits correspond to MMOs with signature 1*. If additionally oo < w*,
then ® admits no periodic orbit of period ¢ > 1, every orbit converges towards a
fized point in (w1, «], and associated trajectories display asymptotically reqular
MMOs with signature 11.

Proof. We first assume that ®(8) < wy. In this case, the lower envelope ¥, inter-
sects neither the identity (Id) line nor the Id + (o — §) line (and, obviously, none of
the lines Id + k(e — B) for k € Z). Thus the graph of ¥, is fully contained between
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the lines Id and Id + (o — 8) and since the functions ¥;(w) — w + k(o — ), k € Z,
are continuous and a — /8 periodic, there exists § > 0 such that for every w and
n € N* we have U} (w) < w + n(a — ) — nd and

_9
(a—pB)
On the other hand, ¥, (wy) = wy + (o — B) and thus b(¥) = o(¥,) = 1. Therefore,
the rotation interval is not trivial and
)
1— ——,1] C [a(¥P),b(T)].
(1= gy 1) € lalw).b(w)

For every ¢ > 1 large enough, we have

a(W) = o(W) < 1—

-1
a(W) < L= < p(wy;
that is, there exists a periodic orbit of ® with period ¢ and rotation number =1,

We now assume ®(5) > wy. Then wy is also a fixed point mod (a— 3) of ¥y, i.e.

Uy(wy) = wy + (a—B),
a(¥) = o(¥;) = o(¥,) = b(¥) = 1.

Thus, if there was some periodic orbit of period ¢ > 1, all points of such an orbit
would lie in (w1, «) and would have rotation number 1, yielding MMOs with signa-
ture 1!. However, if additionally o < w*, then the map @ is increasing in (wy, )
and no periodic orbit can be fully contained in this interval.

Assuming that o < w*, we notice that the interval [wy, o] is invariant for ® and
that ® is continuous and increasing therein. Consequently, every point w € [wy, o]
tends under ® to one of the fixed points in [wy,a]. But as every point in [3,wy)
in mapped finally into [wy, ], this holds for all the points in [3, @] and the proof is
completed. O

Later, we shall complement the above result in a slightly more general situation,
in Theorem 4.4, by treating maps admitting fixed points in [5,w;) and lacking a
fixed point in (w1, ). We can also easily justify the following:

Corollary 2. In the overlapping case, the existence of a fized point of ® and of a
periodic orbit with rotation number p/q, for some period ¢ > 1 and p # q, implies
the existence of periodic orbits with all arbitrary periods greater than q, each yielding
MMOs.

In particular, if there exist a fixed point and a periodic orbit of rotation number
1/2, then there are periodic orbits of all periods exhibiting MMOs. Similarly, as
already proved, if there are a fixed point in (8,w1) and a fized point in (wy, ), then
[a(P),b(P)] = [0,1] and there are periodic orbits of all periods, with MMOs.

In contrast to the non-overlapping case, in the overlapping case we have dropped
the assumption (C2) that the map is piecewise increasing. However, under this as-
sumption we can describe the chaotic behavior of the map’s iterates more precisely:

Corollary 3. Assume that ® satisfies (C4’°) with (C2), that ®(«) < wy, that @
has at least two periodic orbits with periods q1 # q2 and that exactly one point of
each of these periodic orbits is greater than wy. Then the mapping w — ®(w) is a
shift on a sequence space.
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To obtain the above proposition it suffices, for example, to look at the proof of
[29, Theorem 2.4] and notice that the piecewise contraction assumption made in [29]
does not interfere in the proof of this particular theorem and therefore it extends
to our class of discontinuous maps with unbounded derivative.

4.3. A general result for adaptation maps with one discontinuity in the
invariant interval [3,a]. In previous sections we have classified the dynamics of
the adaptation map and the associated spiking patterns in terms of rotation numbers
and rotation intervals. However, for particular values of the parameters, we lack an
explicit analytical expression with which to characterize the corresponding rotation
properties. Below we address this problem under the assumptions (C3), that [3, «]
is an invariant interval, and (C1), that the map has a unique discontinuity point
within this interval, regardless of whether the map is in the overlapping- or non-
overlapping case or neither of these (e.g. when the jumps at S+ k(a— ) are positive
but there is an overlap in values of ®|(g,,,) and ®|(y, a)-

Theorem 4.4. Assume that conditions (C1) and (C8) hold and that ® has a fized
point in [B,w1). By wy denote the largest fixed point in [3,wy1). Then

1. if max{®(w) : w € (w1,a]} < wy, then the rotation number o(V,w) = 0 is
unique and the system displays no MMOs;

2. if max{®(w) : w € (w1,a]} > wy > B, then there are subintervals of [, a]
of points with rotation number 0, corresponding to orbits with no MMOs.
However, if simultaneously ®(«) > ®(5), then there exists ¢ € N* such that
for every ¢ > q, ® admits also a periodic point w € (wyf, ) of period g,
displaying MMOs.

Proof. The first result follows from the fact that every point w € [8,a] \ {w;} is
mapped into [, w/] after at most a few iterates, and, since ®([5, wy]) C [8,ws] and
® is increasing therein, it is eventually attracted to one of the fixed points located
in (8, wy).

For the second result, the same argument applies to show the existence of subin-
tervals of [8, a] with rotation number 0 under the assumptions made. To establish
that there is ¢ € N* such that periodic points of every period greater than ¢ exist
under the additional assumption that ®(a) > ®(8), it suffices to show that the
rotation interval is of the form [0, §] for some ¢ > 0. Since wy is a fixed point for
the lower enveloping map ¥;, we clearly have a(¥) = o(¥;) = 0. In contrast, the
upper envelope W, has no fixed points, and using a similar argument as in the proof
of Proposition 7, we show that b(¥) = o(¥,.) > a‘s—_lﬁ > 0 for some ¢ > 0, which
completes the proof. O

4.4. Evolution of the rotation number along a segment of (d,v) values. In
the previous subsections, we have investigated the rotation number or the rotation
interval in various subcases existing under general assumption (C1), i.e. the adap-
tation map features a unique discontinuity point in the interval [3, o]. We illustrate
numerically the dependence of the rotation number (thus also the MMO pattern
fired) and its possible uniqueness on the values of parameters d and +.

The left panel of Fig. 10 shows the rotation number of the adaptation map for a
fixed initial condition and for (d,~) in [0,0.12] x [0.01, 0.15]. The various regions in
the (d,~)-plane corresponding to the different subcases studied above and already
shown in Fig. 4 are superimposed on the colormap. Regions A, B and C comprise
the non-overlapping case, i.e. assumption (C4) is fulfilled, and general Theorem
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FIGURE 10. Rotation numbers according to (d,~y). Left panel: ro-
tation number of the point w = 0 together with the boundaries of
the regions A to E corresponding to the different subcases when
wi is the unique discontinuity of the adaptation map lying in the
interval [, a] (see text for more details). Right panel: rotation
numbers of the left and right lifts ¥; and ¥, associated with ® for
(d,7) varying along the blue segment drawn in the inset.

4.2 applies for (d,v) values in these regions. In particular, the rotation number of
® is unique, i.e. does not depend on the initial condition.

e In region A, ®(a) < ®(5) < w;y. Along certain paths in this region, Theorem
4.3 applies and the rotation number varies as illustrated in Fig. 7.

e In region B, ®(a) < w1 < ®(B), hence Proposition 3 applies and ensures the
existence of a period-2 orbit of ®, with rotation number equal to 1/2.

e In region C, wy < ®(a) < ®(F). This region may feature a variety of different
dynamics including all types of behavior arising in the other regions. In the
example in the right panel of Fig. 7, the unique rotation number is 1/2, but
this value depends on the choice of (d, ), as can be seen in the left panel.

Regions D and E comprise the overlapping case and ® may admit different rotation
numbers depending on the initial condition. For (d,v) in these regions, the lift
U associated with the adaptation map exhibits only negative jumps. The general
Proposition 4 applies, which ensures the existence of a rotation interval. Using the
left and right lifts ¥; and W¥,. associated with ®, one computes the endpoints of the
rotation interval and their evolution according to parameter d (Proposition 5 and
Fig. 9).

e Inregion D, a < w* and ® is piecewise increasing. The rotation number is not
uniquely defined in the general case. Nevertheless, along the particular chosen
path in the parameter space (d,~y) shown in the right panel of Fig. 7, ¥; and
U, present the same rotation number 1/2 and the rotation number of ® does
not depend on the initial condition. This particular simulation illustrates a
way to demonstrate that the rotation number of the adaptation map is unique
by showing that the rotation interval is reduced to a singleton.

e In region E, w* < a. The rotation numbers of ¥; and W, differ and the
rotation interval of the adaptation map varies with changes in (d,~y) within
the region bounded by the black and red lines in the right panel of Fig. 7.
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Note that the global Theorem 4.4 applies in all regions A to E. One may track the
appearance and disappearance of the fixed points according to the values of d and
~ together with the evolution of the rotation number or rotation interval. Outside
of regions A to E, the structure of the lift is more complex due to the presence
of additional discontinuity points and obtaining the rotation interval numerically
might be very difficult (we provide some remarks on this point in the Discussion).

5. A note on the case of two or more discontinuities. One challenge in this
study is related to the fact that the map under scrutiny, the adaptation map, is
not known analytically. Our mathematical analysis has covered in detail the cases
of overlapping and non-overlapping maps with one discontinuity in the invariant
interval. These situations do not cover all possible shapes of adaptation maps that
can induce lifts with more discontinuity points; indeed, multiple discontinuities
can yield a combinatorial explosion of cases with different combinations of possible
jumps as well as maps that are non-monotone but with only positive jumps. While
in these cases it is still possible to obtain upper and lower bounds for the rotation set
by computing the rotation numbers of the non-decreasing maps ¥; and V.., defined
in the same way as in the overlapping case (C4’), it remains an open question to
determine when every value within this interval corresponds to the rotation number
of a given orbit, and it is not hard to find elementary examples for which this is
false”. Thus the general, complete and precise characterization of the dynamics of
the system is a complex and rich mathematical problem that raises several deep
questions of iterates of interval maps with discontinuities. In particular, we have
seen that in the non-overlapping case (C4), the rotation number allowed us to
completely decode the MMO signature. A natural extension of this work is thus to
define for maps with more discontinuities a mathematical invariant (perhaps some
vector of numbers) that would either provide the exact signature of each supported
MMO pattern or allow calculation of how many points from a random orbit would
be expected to fall into each continuity interval and hence how frequently a given
number of small oscillations occurs between two consecutive spikes.

Let us conclude with the following exemplary result, which allows for multiple
and even infinitely many intersections w; of the reset line {v = vg} with W?,
assuming that only finitely many of them lie in the interval (8, a):

Theorem 5.1. Suppose that ®(8) > B and that there are finitely many discontinuity
points of the map ® in (B,«), all located in (B,w*). Then the adaptation map
® induces the rotation interval with the same properties as in Corollary 4. In
particular, to every rational rotation number in the interior of this interval, there
corresponds a periodic orbit, displaying reqular MMOs.

The above theorem is straightforward once it is noted that the suitably defined
liftt ¥ for the adaption map under the given assumptions is an old heavy map, as
the maps studied in [41]. Therefore, in particular, one can also derive conditions
e.g. for periodic orbits of all possible periods exhibiting MMOs (with richer struc-
ture than what we considered earlier due to the additional discontinuities), and the
corresponding regions in the space of reset parameters for specific models can be
computed numerically, in the same way as in the previous subsection. We empha-
size that due to the properties of the adaptation map (in particular, the fact that
O (w;,w;+1) = (B,a) for the consecutive discontinuity points w;, w;4+1 < w*), the

9We thank Michal Misiurewicz for interesting discussion on this topic.
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lift ¥ of ® is very likely to be an old heavy map. Typically, in case of multiple
discontinuities one can expect the rotation interval to cover the whole interval [0, 1]
and the occurrence of periodic orbits of all periods and rich MMO structure.

6. Discussion. Nonlinear bidimensional hybrid neuron models, which combine
continuous subthreshold dynamics with a spike-related jump or reset condition,
are easily defined and show an astonishingly rich mathematical phenomenology.
A number of studies have already revealed their subthreshold dynamical proper-
ties [59], investigated their spike patterns in the absence of any equilibrium state
of the subthreshold dynamics [62], and highlighted their versatility [8, 22, 54] and
capacity to reproduce neuronal dynamics [23, 25, 43, 61]. The present paper and
its companion [51] add to this body of works by studying (i) chaotic dynamics
and period-incrementing structures, and (ii) oscillating solutions associated with
multiple unstable equilibria. The latter led us to investigate the dynamics of a par-
ticular class of interval maps that feature both discontinuities and divergence of the
derivative. Interestingly, in the presence of an unstable focus of the subthreshold
dynamics, we have shown that the spike patterns fired may correspond to com-
plex oscillations that combine action potentials (or bursts of action potentials) and
subthreshold oscillations, trajectories known as MMOs or MMBOs in continuous
dynamical system.

In contrast to continuous dynamical systems, these forms of complex oscillations
can occur in hybrid systems with only two variables. Moreover, the mechanism
of generation of these trajectories differs between these two models; in the hybrid
case, MMOs result entirely from the topology of the invariant manifolds of the
continuous-time dynamics. As such, these trajectories can occur in systems that
lack timescale separation and based on a mapping approach, discrete dynamical
systems methods can be used to rigorously establish their existence and properties.
One may however wonder if there exists a relationship between the two systems,
and particularly it is tempting to interpret the hybrid system as the reduction of
a differentiable multiple timescale system in a certain singular limit. The wide
variety of MMOs (in particular the wild signatures encountered) produced with the
reset mechanism indicates that such a differentiable system should be at least four-
dimensional and the vector field should induce a highly complex return mechanism
within the region of the phase space where small oscillations are generated (funnel).
The construction of such a return mechanism for reproducing the same versatility
in the MMOs signature in the differentiable case remains a challenging problem
from the dynamical viewpoint, involving complex interactions between the different
timescales.

To tune the model to attain the regime studied in this work, we introduced a
parameter -y, which yields an attenuation of the adaptation variable during the reset
and hence accounts for spike duration (see [51]). Many of the dynamics considered
in this paper arise for v significantly less than 1, a regime that represents dynamics
of neurons when spikes (including both depolarization after threshold crossing and
subsequent initial hyperpolarization) are broad relative to the timescale of adapta-
tion, such that significant attenuation of adaptation is associated with each spike.
This regime does not characterize certain classes of neurons that fire rapid sequences
of sharp spikes, such as inhibitory fast spiking interneurons, but likely applies to
other classes of cortical neurons. With the new parameter -y, the quartic model
(and, we expect, all other models of the class, including the Izhikevich model [22]
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and the adaptive exponential [8]) can be tuned to achieve any of the cases we have
identified. Therefore, our analysis provides useful information for tuning model
parameters to achieve outputs fulfilling a list of qualitative and quantitative speci-
fications. In particular, the ability to reproduce fine trajectories of MMOs may be
useful when modeling neurons in situations in which synchronization is essential.
Indeed, in neuroscience, it has been shown that in the presence of noise, small sub-
threshold oscillations support the generation of precise and robust rhythmic spike
patterns, as recorded in specific rhythmic pattern generators such as the inferior
olive nucleus [6, 36, 37], in the stellate cells of the entorhinal cortex [1, 2, 27], and
in the dorsal root ganglia [5, 34, 35]. A possible direction for future work would be
to go deeper into the analysis of the shape of the adaptation map of the adaptive
exponential integrate-and-fire system to relate the presence and possible signature
of MMOs to variations in biophysical parameters, following e.g. [61].

Another important direction related to the roles of model parameters would be
to characterize the structural stability of trajectories and their possible bifurcations.
First works in that direction have been developed in [12]: taking into account the
infinite contraction of the trajectories in the voltage variable associated with the
reset, the authors proposed to compute expansion or contraction exponents along
transverse directions, providing a notion of stability of hybrid orbits that is more
explicit than criteria on the shape of the adaptation map. It would be interest-
ing to develop these methods in the cases of non-monotonic spiraling trajectories
associated with the presence of MMOs. Alternatively, using models with simpler
subthreshold dynamics, for instance linear or piecewise linear [26, 48], may allow for
a derivation of an explicit expression of the reset maps, thus for fine characterization
of the stability of the orbits.

At the level of the adaptation map, a question that is open in the overlapping
case is to characterize the stability of orbits when the system has multiple possible
rotation numbers. Indeed, even if the rotation interval is not a singleton, one often
observes in simulations that only one rotation number is actually realized. This
could occur, for example, if there is a periodic orbit that attracts most initial con-
ditions or if, after roundoff, numerically computed rotation numbers for randomly
sampled initial conditions all produce the same result corresponding to the ‘average
rotation number’, i.e. to the integral of the displacement function ¥(w) — w with
respect to the invariant absolutely continuous measure (if such a measure exists)
or to some general Sinai-Ruelle-Bowen (SRB) measure (we refer e.g. to [64] for a
review on SRB measures and to Appendix 6 in [4] for discussion of a more general
approach to rotation theory). Unfortunately, rigorously establishing the existence
of such an invariant measure absolutely continuous with respect to the Lebesgue
measure is a challenge in most systems arising from applications. In particular,
we cannot use e.g. the classical Lasota-Yorke theorem [33], since the derivative @’
diverges at the discontinuity points. These factors imply that it is usually very hard
to numerically estimate the rotation interval, except for situations falling into the
old heavy maps case, where the endpoints of the rotation interval can be effectively
calculated via the enveloping maps ¥; and ¥,.. On the other hand, for investigat-
ing stability of orbits a possible approach would be to use and develop symbolic
dynamics and kneading theory for such discontinuous interval maps. However, we
emphasize that in our characterization of the orbits and the patterns of complex
oscillations generated, rotation theory turned out to be the most useful tool since we
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have an unequivocal, bidirectional link between the rotation number and the signa-
ture of the MMO (Theorem 4.2), which allows us to characterize situations in which
the neuron shows regular spiking, MMO, bursting, MMBO or chaotic behavior.

In these studies, we have made a crucial use of the planar nature of the system.
MMOs will of course exist in higher dimensional hybrid dynamical systems, and
analysis would require fine characterization of the invariant manifolds. The exten-
sion of the theory to higher dimensional systems would be particularly interesting
from the computational neuroscience viewpoint for understanding the behavior of
neuron networks in which several neurons driven by such dynamics are coupled and
communicate at the times of the spikes.

Appendix A. Proofs of Theorems 4.3 and 5.

Proof of Theorem 4.3. A general theorem for continuous orientation-preserving cir-
cle maps is shown in [28], and is extended to the case of non-continuous orientation-
preserving maps in [7] and in [45]. This theory is valid under non-degeneracy
conditions on the dependence of the maps on the parameters. In particular, a gen-
eral result on the monotone family of increasing lifts ¥, indexed by a parameter
s € [A1,A2] (in our case, s = d or y) can be shown under the assumption that the
map s — ¥, is increasing and continuous with respect to the Hausdorff topology of
H-convergence, which is equivalent to uniform convergence at the continuity points
(see [45]), i.e. under the condition

\ | \ s—8o| <éN|lw—w| <d = |V(w)— T, (0)| < e
welbnl i se[MM| ol <EA| | |Ws(w) =Wy, (0)]
w¢a50+k’(asg_5so) £>0 weR
e>0

where o, + k(as, — Bsy), k € Z, denotes the discontinuity point of the lift U, .

As the reset parameter d is increased, the map ® is rigidly increased by the same
amount. This particularly simple dependence of the map on d yields precise control
of how the dynamical features of the map vary with d. In particular, we note that
the boundaries of the invariant interval oy and (4 are also simply translated as d
varies, and in particular the length 6 := a4 — 34 of the invariant interval is constant.
Moreover, we also observe that for any d € [dy,ds], the maps ®,; have the same
discontinuity point wq g, and the lifts ¥4 are continuous at points wy g+ k(g — Ba),
have positive jumps at ag + k(ag — 84) and satisfy U4(w + 6) = ¥y4(w) + 0. So in
fact all these lifts ¥, can be seen as lifts of non-continuous invertible circle maps
under the same projection p : ¢ — exp(234).

However, even if the map ®4 is increasing with d, this is not necessarily the case
for Uy, because of the simultaneous fluctuation of the invariant interval. Indeed,
when each lift ¥, is obtained from (I)d|[Bd,ad] the relation ¥y, (w) < Wy, (w) for

dy < do might be violated in the intervals [B4,, 84,], as at the point a4, we glue the
right part of the graph of (I)d2|[[3d2704d2] to its left part (shifted up by 6). But noticing
that under the additional condition ®4(ag,) < ®4(B4,) for any d € [dy,ds], the
interval B4, , ag,| constitutes a particular invariant interval in which the adaptation
map P, is piecewise increasing and non-overlapping, we can build well-behaved
lifts ¥4 : R — R based on the shape of the map ®; on this bigger invariant
interval [B4,, @g,]. In contrast to ¥4, these new lifts are discontinuous at the points
wi,d + k(ag, — Ba,) (where they have positive jumps of amplitude ds — dy), in
addition to their discontinuity at ag, + k(aa, — B4,), K € Z. The latter jump also
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remains positive under our assumption that ®4(8,, ) is strictly greater than ®4(ag, ).
Constructing lifts U4 on an enlarged invariant interval [8q, , aq,] instead of [Sq, o]
has the advantage of ensuring that the mapping (w,d) — \i/d(w) is increasing in
both variables. Moreover, it has no effect on the dynamics, since any orbit of @4
with an initial condition in [8q4,, aq,] enters after a few iterations into the interval
[Ba, a). Since the orbits {¥7(w)} project mod (g, — B4, ) to the orbits {®%(w)},
we therefore have o(U4) = o(¥y).

Concluding the proof therefore only amounts to showing that the map d — ¥y
is continuous in the Hausdorff topology, which is very simple once it is noted, as
mentioned above, that this property is equivalent to the uniform convergence at all
points in the interior of [84, , ,] \{w1.4} and that ¥y — ¥, = d—d’ on this interval.
Thus the mapping j : d — o(¥4) has the properties listed in the theorem (compare
with Theorem 2 in [7]) and consequently, the same holds for p: d — o(¥y). O

We have noticed that while continuity of the lifts under the Hausdorff topology
was always satisfied in our case, an additional assumption is necessary to ensure
that the mapping (s,w) — W.(w) (where s denotes a parameter, here d or ) is
increasing in both variables, which otherwise is not always true. We emphasize
that even in situations in which this mapping is not increasing in both variables,
the rotation number remains continuous under the H-convergence provided that
the limit function W, is strictly increasing, see [45, Proposition 5.7].

The plateaus of rotation number observed in the devil’s staircase situation are
a general property of our system, called locking (see [45] for precise definition of
locking).

Remark 6. We observe that no condition beyond monotonicity of the lifts in w
and d is required to show locking of the rational rotation number in the strictly
non-overlapping case (i.e. ®(a) < ®(5)), unlike the case of continuous circle maps.
When ®(«) = ®(3), the lift ¥ would be in fact a lift of an orientation preserving
circle homeomorphism and thus locking of the rotation number at rational values
requires that there is no conjugacy with rational rotation for such a map (see e.g.
Propositions 11.1.10 and 11.1.11 in [28]).

Proof of Theorem 5. The first part of the proof amounts to showing that the upper
and lower envelopes of W4, denoted ¥4 ; and ¥, ,, are uniformly continuous in d for
de [)\1, )\2}

This regularity readily stems from the fact that ®; and ®,4, are simply shifted
by the amount d — dy. But as in the proof of Theorem 4.3, one needs to be careful
about the variation of the invariant intervals [84, aq] since these also have an additive
relationship in d (i.e. B4 — B4, = d — dp and similarly for ag). Thus close to the
discontinuity, we do not have an additive relationship in ¥, in general, but for the
maps ¥4, and ¥4, we can prove even uniform continuity in d € [A1, Az]:

Ve > 0,3¢ > 0,Y(d1,d2) € M, Xa)?, [di —da| <€ = Va0~ Va,illeo <& (29)

We now fix &,& > 0 and (dy,d>) € [A1,A2]? with d; — dy < &, and analyze the
maps Vg4, ; and Uy, ; in the interval [B4,, aq,] without loss of generality, since the
fact that Uy(w + 6) = ¥y(w) + 0 allows restricting the analysis to an arbitrary
interval of length 0 := ayg — B4.

We clearly have, for any w € [B4, , aug,]:

U (w) — U (w) = dy —da < €.
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For w € [B4,, Ba,], we find

Vg, i(w) = min{@q, (w+60), g, (Ba,)},
Vg, (w) = Pgy(w) < Py, (Bay) = Pa, (Ba,) — (d1 — da) < Pa, (Bay)-

We now distinguish between two cases depending on whether ¥4, ;(w) > Uy, ;(w)
or not. When this inequality is true, we find

(a1 (w) = Ve (w)] = g, (w) — P, 1 (w)
< \IJdl (ﬁdl) - \sz (ﬁd2)
< \de2 (Bdl) - \Ildfz (/8d2) + dl - d2 < (1 + C)f,

where C := max{(®4) (w) : w € [Bx,, Bxr,]} is actually a constant independent of d.
If, on the contrary, ¥4, ;(w) < ¥y, ;(w), then we have

Vi, 1 (w) < @4, (Bay) = Pa, (Bay) — (di — d2) < Py, (aa,) — (d1 — d2)

using the overlapping condition. Similarly, ¥4, ;(w) > Vg4, 1(Ba,) = Pa, (a,)-
Equipped with these estimates, we can compute that |¥g, ;(w) =¥y, ;(w)| < (14C)E,
where C := max{(®4)’(w) : w € [y, ax,]} is independent of d, which proves (29)
for Wg ;. Similar methods will work for proving the property for upper-enveloping
maps ¥4, concluding the proof of continuity of the mappings d — a(¥4) and
d— b(Ty).

Note that, in contrast to the proof of Theorem 4.3, we did not consider here
the maps ®4, and ®4, on a common bigger invariant interval, e.g. [B4,,q,] for
dy > ds, because such lifts would have positive jumps at w; and, consequently,
would no longer correspond to heavy maps.

To prove the second statement, we consider again (di,ds) € [A1, A2]? such that
dy > do. For d € [dg2,d;], we build the maps ¥y, ¥4, and ¥y, on the interval
[Bds» gy ]- Note that Uy, (w) — Uy, (w) = di —da > 0 for w € [Ba, , @a,] C [Bdys Ods]-
The relation ¥y, (w) — ¥y, (w) > 0 can only be violated in [B4,,84,]. However,
Uy, (w) < g, (Ba,) for w € [Bay, Pa,] since ¥y, is monotone increasing on this
interval. On the other hand, depending on whether w*(dy) € [B4, + 0,q,] or
not, Uy, in [B4,, B4,] is either monotone (non-decreasing or non-increasing) or has
exactly one local extremum, namely w*(dy). This yields

\I/dl (w) > min{\ljdl (ﬂd2)7 \Ild1 (5;1 )}

for every w € [B4,, B4,]- Additionally, since ¥, fulfills the overlapping condition,
V4, (B7,) > Va, (81 ) = Ya,(Ba,) + di — da > W, (Ba,)

and W, (8;,) > Va,(w) for every w € [Ba,, B4,]. Using an analogous argument for
V,,, we obtain

\Ildl(ﬂd2) = \de2(ﬁc?2) + dl - d2 > \sz(ﬂt—};) + dl - d2 Z \de2(ﬂd1)

due to (27). Thus Uy, (Ba,) > Vg, (w) for every w € [Ba,, Ba,]- It follows that
U4, (w) > Uy, (w) also in [B4,, B4,] and the mapping d — ¥, is increasing. Now,
by the definition of the enveloping maps ¥4; and ¥4, the fact that ¥4, < ¥4, on
R for dy < dy implies that ¥4, , < Vg4, , and ¥g,; < ¥y, ; on R. Thus the maps
d— Vg, and d — ¥4, are increasing and the statement about the devil’s staircase
follows. O
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Remark 7. To ensure that the mapping ¢ — o(F;) behaves as a devil’s staircase
for a continuous increasing family { F} }4¢(r,, 1) of continuous non-decreasing degree-
one maps F;, we also need to make sure that there exists a dense set S C Q such
that, for s € S, no map F; is conjugated to the rotation Rs by s and that the map
t — o(F}) is not constant (see Proposition 11.1.11 in [28]). However, in practice,
these two specific cases do not occur for any of the envelopes ¥; and W, of the
adaptation map.
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