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ABSTRACT

In this paper the problem of detection of impulsive distur-

bances in archive audio signals is considered. It is shown

that semi-causal/noncausal solutions based on joint evalua-

tion of signal prediction errors and leave-one-out signal in-

terpolation errors, allow one to noticeably improve detection

results compared to the prediction-only based solutions. The

proposed approaches are evaluated on a set of clean audio sig-

nals contaminated with real click waveforms extracted from

silent parts of old gramophone recordings.

Index Terms— Audio signal restoration, outlier detection

1. INTRODUCTION

Impulsive disturbances, such as clicks, crackles and record

scratches are usually caused by aging and/or mishandling of

the surface of gramophone records, specs of dust and dirt etc.

[1],[2]. Elimination of noise pulses from archive audio docu-

ments is an important element of saving our cultural heritage.

Most approaches to audio restoration are based on an au-

toregressive (AR) or an autoregressive moving average signal

representation [3]–[13]. When stereo audio recordings are re-

stored, a vector autoregressive signal representation can be

alternatively used [14], [15]. In recent studies also the time-

frequency approaches were successfully applied [16], [17].
For the sake of simplicity, in this paper we will deal only

with the problem of elimination of impulsive disturbances,
i.e., we will assume that the measured signal y(t) has the form

y(t) = s(t) + δ(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes normalized (dimension-
less) discrete time, s(t) denotes the noiseless signal and δ(t)
is the noise pulse sample. It is assumed that the noise pulse se-
quence is statistically independent of s(t), and that the pulses,
varying in length and shape, are sparsely distributed in time.
Let s(t) be represented by the AR model of order n

s(t) =
n∑

i=1

ais(t− i) + η(t), var[η(t)] = ρ (2)

*Calculations were carried out at the Academic Computer Centre in

Gdańsk.

where ai is the i-th autoregressive coefficient and {η(t)} de-

notes white noise sequence with variance ρ. Denote by d(t)
the noise pulse location function: d(t) = 1 will further mean

that the sample y(t) is corrupted with a noise pulse, otherwise

d(t) = 0. Our goal will be to precisely localize noise pulses,

i.e., to obtain a good estimate d̂(t) of the function d(t).
Classical approaches [3]–[5], based on examination of

residual errors, suffer from some negative effects known as

outlier masking and outlier smearing, and may fail to detect

small noise pulses. More sophisticated approaches [6]–[11]

work satisfactory when signal characteristics change in a

smooth manner but in the presence of abrupt changes they

usually generate false alarms. When the entire history of the

analyzed signal is available this drawback can be eliminated

using noncausal approaches [12], [13].

The paper presents a new pulse detection rule which is

based on evaluation of both signal prediction errors and leave-

one-out signal interpolation errors. It will be shown that such

a strengthened decision rule significantly improves properties

of both causal and noncausal detection schemes.

2. SIGNAL RECONSTRUCTION

According to [18], the AR-model based reconstruction of cor-

rupted samples can be carried out independently, without any

information loss, for each local analysis frame starting and

ending with n undistorted samples y(t) = s(t).
In the simplest case, if one sample is missing at instant t,

the interpolation formula can be derived in the form

s̃(t) =

n∑

i=1

ci[s(t− i) + s(t+ i)]

ci = [ai −

n−i∑

j=1

ajaj+i]/[1 +

n∑

j=1

a2
j ]

(3)

where ci is the i-th interpolation coefficient. The variance ρ∗,
ρ∗ < ρ, of the leave-one-out signal interpolation error e∗(t)

e∗(t) = s(t)− s̃(t) var[e∗(t)] = ρ∗ (4)

is related to the variance ρ by the equation

ρ∗ = ρ/[1 +
n∑

j=1

a2
j ]. (5)
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3. ESTIMATION OF SIGNAL PARAMETERS

When the investigated process is nonstationary, but its char-
acteristics vary slowly with time, parameters of the AR
model can be obtained using local estimation technique,
e.g. by means of processing a fixed-length data segment
{y(t − 2k), . . . , y(t)} of length M = 2k + 1. The order
of autoregression can be fixed or chosen adaptively using
the generalized Akaike’s criteria [19]. The estimates of AR
parameters, â1(t), . . . , ân(t) and ρ̂(t), can be obtained by
solving the following set of Yule-Walker (YW) equations

[1,−â1(t), . . . ,−ân(t)]R(t) = [ρ̂(t), 0, . . . , 0] (6)

R(t) =




r0(t) . . . rn(t)
...

. . .
...

rn(t) . . . r0(t)




where

ri(t) =
1

L
pi(t), i = 0, . . . , n (7)

can be interpreted as a local estimate of the i-th autocorre-
lation coefficient of y(t). The quantity pi(t) is given in the
form

pi(t) =

k∑

l=−k+i

w(l)w(l − i)hi(t− k + l) (8)

wherehi(t) = y(t)y(t−i) andw(l), w(l) > 0 for l ∈ [−k, k],
is a bell-shaped tapering function taking its largest value in
the center and smoothly decaying to 0 at the edges. Finally,
the normalizing constant in (7) takes the form

L =

k∑

l=−k

w2(l). (9)

Since R(t) is, by construction, positive definite and Toeplitz,

the YW estimates (6) can be obtained using the Levinson-

Durbin algorithm which guarantees model stability [20].
Since the unweighted YW estimates, (w(l) = 1, ∀l), are

identical with the least squares estimates obtained for the
original data sequence extended with n zero samples at the
segment beginning and at its end, data tapering allows one to
smooth out signal discontinuities introduced by such a mod-
ification, and hence to reduce the associated estimation bias
[21]. We advice to use the cosinusoidal window, given by

w(l) = cos
πl

2(k + 1)
, l ∈ [−k, k], L = k + 1. (10)

We note that w2(l) is identical with the Hann (raised cosine)
window. The cosinusoidal window offers good bias-variance
tradeoff and allows for recursive computation of (8)

pi(t) =
1

2
fi(t) cos

πi
2(k+1)

+
1

2
Re[gi(t)e

−
jπi

2(k+1) ]

gi(t+ 1) = e−
jπ
k+1 gi(t) + e

jπi
k+1 hi(t− 2k + i) + e

jπk
k+1 hi(t+ 1)

fi(t+ 1) = fi(t)− hi(t− 2k + i) + hi(t+ 1)

where

gi(t) =

k∑

l=−k+i

hi(t− k + l)e
jπl
k+1 , fi(t) =

k∑

l=−k+i

hi(t− k + l).

Computation of pi(t) requires 12 real multiply-add operations

per time update for each lag, and does not depend on M .

To protect the identification algorithm against outliers, pa-

rameter estimation should be suspended at the beginning of

each detection alarm and resumed after signal reconstruction.

4. ADAPTIVE DETECTION

4.1. Causal detection

The popular noise pulse detection scheme is based on mon-
itoring signal prediction errors: detection alarm is raised at
the instant t0 + 1 if the prediction error statistic α(t0 + 1|t0)
exceeds detection threshold µ2

α:

d̂(t0 + 1) =

{
1 if α(t0 + 1|t0) > µ2

α

0 elsewhere
(11)

where

α(t0 + 1|t0) = e2(t0 + 1|t0)/ρ̂(t0)

e(t0 + 1|t0) = y(t0 + 1) −

n∑

i=1

âi(t0)y(t0 − i+ 1)
(12)

and the multiplier µα is chosen so as to guarantee that

P
(
α(t0 + 1|t0) > µ2

α | d(t0 + 1) = 0
)
= ǫ (13)

and ǫ, 0 < ǫ ≪ 1 denotes the significance level. Under Gaus-

sian assumptions, for ǫ = 0.003 one obtains µα = 3, which

corresponds to the well-known “3-sigma” rule used to detect

outliers in Gaussian signals. Since real signals are usually

non-Gaussian, µα ∈ [3, 4.5] is a typical choice.
Once the detection alarm is triggered, the test is ex-

tended to multi-step-ahead predictions using the open-loop
or decision-feedback scheme, derived for the state space
description of the AR signal

x(t+ 1) = Ax(t) +Cη(t+ 1)

y(t) = C
T
x(t) + δ(t)

(14)

where

A =

[
θ
T

In−1 0n−1

]
, C =

[
1

0n−1

]
,

and x(t) = [s(t), . . . , s(t−n+1)]T denotes the state vector,
θ
T = [a1, . . . , an] denotes the row vector of AR coefficients,

and In−1 denotes the (n−1)×(n−1) identity matrix. Detec-
tion algorithms, which should be started at the instant t0 + 1
and continued for t ≥ t0 + 1, can be summarized as follows

x̂(t|t− 1) = Â(t0)x̂(t− 1|t − 1)

Q(t|t− 1) = Â(t0)Q(t− 1|t− 1)ÂT(t0) + ρ̂(t0)CC
T

σ2(t|t− 1) = C
T
Q(t|t− 1)C

e(t|t− 1) = y(t)−C
T
x̂(t|t− 1)

α(t|t0) = e2(t|t− 1)/σ2(t|t− 1)

(15a)
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open-loop variant

x̂(t|t) = x̂(t|t− 1)

Q(t|t) = Q(t|t − 1)
(15b)

decision-feedback variant

if α(t|t0) ≤ µ2
α:

L(t) = Q(t|t− 1)C/σ2(t|t− 1)

x̂(t|t) = x̂(t|t− 1) + L(t)e(t|t− 1)

Q(t|t) = Q(t|t− 1) − L(t)σ2(t|t− 1)LT(t) (15c)

if α(t|t0) > µ2
α:

x̂(t|t) = x̂(t|t− 1)

Q(t|t) = Q(t|t − 1)

where initial conditions should be set to Q(t0|t0) = On,

x̂(t0|t0) = [y(t0), . . . , y(t0 − n + 1)]T and θ̂
T(t0) =

[â1(t0), . . . , ân(t0)].
Detection alarm started at the instant t0+1 is terminated at

the instant t0+k0+1 if α(t0+k0|t0) > µ2
α and n consecutive

prediction errors are sufficiently small

α(t|t0) = e2(t|t− 1)/σ2(t|t− 1) ≤ µ2
α

t = t0 + k0 + 1, . . . , t0 + k0 + n
(16)

or if k0 reaches its maximum allowable value kmax (which

plays the role of a “safety valve”).

While the open-loop scheme (15a,15b) detects an entire

block of corrupted samples, the decision-feedback scheme

(15a,15c) approves/rejects samples in a sequential way, one

by one. In this case the multi-step-ahead signal prediction and

the corresponding variance of prediction error at the instant

t depend on earlier decisions of the outlier detector, i.e., on

decisions made prior to t. However, to avoid negative effects

of “accidental approvals”, when detection alarm is terminated

according to (16), both rejected and approved samples (if any)

are scheduled for reconstruction, i.e., the final form of the de-

tection alarm is d̂(t0 + 1) = · · · = d̂(t0 + k0) = 1.

4.2. Semi-causal detection

When detection threshold µα is low, causal detector is prone

to raise many false alarms. We will introduce a new semi-

causal detector which not only reduces significantly the num-

ber of false alarms, but also allows one to lower detection

threshold making the detector more sensitive to noise pulses.
Consider a block of corrupted samples starting at instant

t0 + 1 and ending at instant t0 + k0. According to (3-5),
the adaptive leave-one-out signal interpolation formula can
be written down in the form

ỹ(t|t0) =

n∑

i=1

ĉi(t0)[y(t− i) + y(t+ i)]

ĉi(t0) = [âi(t0)−

n−i∑

j=1

âj(t0)âj+i(t0)]/[1 +
n∑

j=1

âj(t0)
2].

(17)

The estimate of ρ∗ (the interpolation error variance) can be
obtained from

ρ̂∗(t0) = ρ̂(t0)/[1 +
n∑

j=1

â2
j(t0)]. (18)

The proposed detection scheme is based on monitoring of
both prediction error based [α(t|t0)] and interpolation error
based [β(t|t0)] statistics, where

β(t|t0) = [e∗(t|t0)]
2/ρ̂∗(t0)

e∗(t|t0) = y(t)− ỹ(t|t0).
(19)

In the presence of noise pulse starting at the instant t0 + 1,

the quantity β(t|t0), t ∈ [t0 + 2 − n, t0 + k0 + n + 1] takes

usually much higher values than its prediction based counter-

part [since it depends on both past and future values of δ(t)].
This suggests that it may be worthwhile to use two different

detection thresholds µβ and µα, such that µβ ≥ µα.
The following strengthened alarm triggering rule is pro-

posed

d̂(t0 + 1) =





1 if α(t0 + 1|t0) > µ2
α and

β(t|t0) > µ2
β for at least one t ∈ Tβ(t0)

0 elsewhere

(20)

where Tβ(t0) = [t0 + 2 − n, t0 + 1]. Note that according

to (20) the prediction based detection alarm is confirmed if

β(t|t0) exceeds the corresponding detection threshold at least

once in the recent past – otherwise the prediction based detec-

tion alarm is canceled. Since noise pulses may form complex

oscillatory patterns, the rule (20) usually performs better than

the strictly synchronized alarm triggering rule: d̂(t0 +1) = 1
if α(t0 + 1|t0) > µ2

α and β(t0 + 1|t0) > µ2

β , which may fail

to correctly detect the beginning of the pulse when excessive

prediction error e(t0+1|t0) is “accidentally” accompanied by

a small interpolation error e∗(t0 + 1|t0).
Unlike prediction parameters, ρ̂(t) and âi(t), which must

be updated in a continuous manner, the interpolation parame-

ters, ρ̂∗(t) and ĉi(t), have to be computed only at the instants

t where α(t+ 1|t) > µ2
α (to confirm or cancel the prediction

based detection alarm). Since the detection scheme based on

(20) incorporates only n “future” signal samples y(t0 + 2)
, . . . , y(t0 + n+ 1), it will be referred to as semi-causal. It is

suitable for real-time processing.
Once detection alarm is triggered, both prediction error

based and interpolation error based statistics are updated and
combined to decide upon the termination point. The alarm
started at the instant t0 + 1 is terminated at the instant t∗ =
t0 + k∗0 + 1 if one of two stop conditions is fulfilled

α(t∗ − 1|t0) > µ2
α and α(t∗ − 1 + i|t0) ≤ µ2

α,

or

β(t∗ − 1|t0) > µ2
β and β(t∗ − 1 + i|t0) ≤ µ2

β ,

i = 1, . . . , n

(21)

or if k∗
0

= kmax. According to (21), when the prediction

alarm lasts longer than the interpolation one, the termination

point t∗ coincides with the end of the interpolation alarm.
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4.3. Noncausal detection

If the entire history of the analyzed signal y(1), . . . , y(N) is

available, detection of impulsive disturbances can be carried

out more efficiently if the results of forward-time (causal or

semi-causal) outlier detection are combined with the analo-

gous results of backward-time detection. The set of local fu-

sion rules, allowing one to combine forward/backward detec-

tion alarms, was experimentally established in [13].

5. SIMULATION RESULTS

To evaluate the detection algorithms we used 40 = 4 × 10
clean audio recordings representing 4 music categories (jazz,

choir, opera, classical), lasting for about 22 seconds each,

sampled at the rate of 48 kHz and contaminated with real

click waveforms extracted from silent parts of old gramo-

phone recording1. Prior to adding noise pulses, all audio sig-

nals were scaled so as to make their energy in the corrupted

part identical. The 20 second long click template (the same

for all recordings) consisted of 2175 noise pulses, with width

ranging between 4 and 31 samples, picked at random from the

click database containing 710 waveforms. The total number

of corrupted samples was equal to 23898, which constitutes

2.49% of all samples in the analyzed fragment.

All detectors incorporated AR models of order n = 10.

AR parameters were obtained using the local estimation tech-

nique with data tapering (M = 481). Detection threshold

µα was restricted to the range [3, 4.5]. For the values of

µα higher than 4.5 the noise pulse detector overlooks small

pulses and/or yields undersized detection alarms. For µα < 3
the noise pulse detector triggers a large number of false and/or

oversized detection alarms. In the case of semi-causal detec-

tion, detection threshold µβ was set to 4.5. The maximum

length of detection alarm was set to kmax = 50. Once the

noise pulse was localized the corrupted fragment of the sig-

nal was reconstructed using the least squares interpolation

method described in [18].

Our evaluation was performed using the Perceptual Eval-

uation of Audio Quality (PEAQ) tool – a specialized software

which scores the restored audio (by comparing it with the

original, noiseless recording) using several perceptual criteria

[22], [23]. Even though PEAQ was introduced as an objective

method to measure the quality of perceptual coders, without

any reference to audio restoration, we have found it useful for

our purposes as it gives scores that are well correlated with the

results of time consuming listening tests [11]. PEAQ scores

take negative values that range from -4 (very annoying distor-

tions) to 0 (imperceptible distortions). In the impulsive noise

removal context, improvement of the PEAQ score by 0.1 (or

more) is usually audible, i.e., perceptually significant.

1All algorithms (the MATLAB code) and all recordings, along

with the results of their processing, are available through the website:

http://eti.pg.edu.pl/katedra-systemow-automatyki/ICASSP2017

µα A B C D A∗ B∗ C∗ D∗

4.5 -3.32 -3.30 -1.00 -0.88 -1.40 -1.58 -0.53 -0.43

4 -3.31 -3.28 -1.24 -0.83 -1.38 -1.54 -0.69 -0.44

3.5 -3.31 -3.26 -2.23 -0.79 -1.42 -1.49 -1.22 -0.45

3 -3.33 -3.23 -3.41 -0.77 -1.65 -1.41 -2.80 -0.47

Table 1: Comparison of the average PEAQ scores obtained for 8

unidirectional/bidirectional detection algorithms described in the pa-

per. All results were obtained for 40 artificially corrupted audio files.

The average score of the input (corrupted) recordings was equal to

−3.6 and the average “ground truth” score, obtained when interpola-

tion of the corrupted samples was based on exact knowledge of pulse

locations, was equal to −0.29. Interpretation of PEAQ scores: 0 =

imperceptible (signal distortions), −1 = perceptible but not annoy-

ing, −2 = slightly annoying, −3 = annoying, −4 = very annoying.

Table 1 shows the average PEAQ scores obtained for 4

unidirectional algorithms: causal, equipped with open-loop

detection scheme (A), semi-causal, equipped with open-

loop detection scheme (B), causal, equipped with decision-

feedback detection scheme (C), semi-causal, equipped with

decision-feedback detection scheme (D), and 4 bidirectional

algorithms, i.e. noncausal extensions of algorithms A, B, C,

D denoted by A∗, B∗, C∗, D∗, respectively. The results show

clearly advantages of bidirectional processing (A, B, C, D vs.

A∗, B∗, C∗, D∗, respectively), advantages of the decision-

feedback strategy (A vs. C, B vs. D, A∗ vs. C∗, B∗ vs. D∗),

and advantages of applying semi-causal detection (A vs. B,

C vs. D, C∗ vs. D∗). Notice that semi-causal detection is

robust to the choice of detection threshold µα which confirms

its ability to reliably cancel false alarms.

Next, the approach D∗, with the best average PEAQ

scores, was compared against the state-of-the-art restora-

tion algorithm – the combined least squares autoregres-

sive+sinusoid (LSAR+SIN) method, proposed in [2]. This

algorithm is a well-known standard in professional audio

restoration. We used the source code with default settings

which was recently tested in [16], and is provided on the web

page of Nuzman [24]. The average PEAQ score obtained for

LSAR+SIN was −0.88 which shows that the approach D∗ is

superior to LSAR+SIN. Informal listening tests, performed

on real archive gramophone recordings1 corrupted with pops,

clicks and crackles, support the above findings.

6. CONCLUSION

The problem of elimination of impulsive disturbances from

archive audio signals was considered and new pulse detec-

tion rules, combining analysis of one-step-ahead signal pre-

diction errors with critical evaluation of leave-one-out signal

interpolation errors, were proposed. The new detectors have

increased ability to reliably cancel false alarms. Perceptual

scores, obtained using the PEAQ tool, confirm that the pro-

posed detection rules yield better results than the classical

ones, based on evaluation of signal prediction errors only.
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