
1 INTRODUCTION 

The plates and shells analysis makes use of real ge-
ometric and material imperfections. Ideal structural 
models lead to an improper assessment of buckling 
and limit structural load. On the other hand, virtually 
assumed imperfections, e.g. natural vibration modes 
may indicate lowered limit loads. The available 
measurements and standardized tolerances lead to 
numerical models reflecting real structures. There-
fore random imperfection fields may be generated. 

The theoretical background for a random field 
generation is found in (Adler 1981). The developed 
methods allow to generate homogeneous and Gauss-
ian fields of numerous applications. However, 
worldwide literature also proposes methods to gen-
erate non-homogeneous and non-Gaussian fields. 
The paper presents conditional generation method, 
included in papers (Bielewicz & Gorski 2002, 
Walukiewicz et al. 1997, Górski 2006), further com-
pared with the widely used Karhunen – Loève ex-
pansion (Karhunen 1994, Anders 2000). 

2 RANDOM FIELD GENERATION BASED ON 
CONDITIONAL ACCEPTANCE AND 
REJECTION METHOD 

The conditional acceptance and rejection method of 
random field generation makes it possible to gener-
ate a broad class of 2D and 3D Gaussian random 
fields. Wide analysis proved this method versatile 
and applicable for both homogenous and non-
homogeneous fields. The tests proved them effective 
even for fields of advanced Wiener or Braun correla-
tion functions. The algorithm does not specify the 
field bounds. It is presented in (Górski 2006).  

The method employs a discrete random field in 
the form of multivariate random vectors defined in a 
number of m grid points. Thus a random vector 

( 1)m×X  of a mean ( 1)m×X  represents the field. The field 
covariance function is represented by a covariance 
matrix ( ) .m m×K  Due to the conditional method, the 
random vector ( 1)m×X  is split into two parts: the 
known ( 1)k p×X  and the unknown ( 1)u p×X , where 

.n p m+ =  The unknown vector part is determined on 
the basis of a conditional distribution, given in 
(Devroye 1986) 

( ) ( ) ( )u k kf f f=X X X X  (1) 

where ( )kf X  is a joint probability density function 
of random variables kX . 

In engineering applications the random variables 
are strictly bounded. Thus, a bounded Gaussian vari-
able is applied here (Jankowski & Walukiewicz 
1997) in the form 

( )2exp 2 2 ( )t s s erf sp= − (2) 

where s  denotes the bounding parameter of stand-
ard deviation.  

Finally, the joint probability density functions of 
a bounded Gaussian variable takes the form 
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where cK  is a conditional covariance matrix, and 
cX  is a conditional expectation vector 
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The generation algorithm employs a base field of 
random variables of a defined range. The generation 
process makes the base field shift in order to cover 
the entire generation field. The assumed generation 
method defines the maximum dimension of a covar-
iance matrix related to the base field dimension. 

The first algorithm step generates four starting 
points. The next points are further generated from 
the base field. The following stage is multiple-
repeated. The base field is shifted, next single points 
of a field are generated. Note that any subsequent 
field point i gives an unknown iX  while all prior 
generated variables 1 1iX X −÷  are known. The one-
dimensional reduction of an algorithm essentially 
improves the computational efficiency. 

The key issue in the generation process is the in-
terval ( , ) ,i ia b  defined separately for a point, bound-
ing the generated variates. The interval is related to 
the i-th point standard deviation 

( ) ( )
1 2
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x x f x dx σ
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∫  (6) 

It is worth highlighting that the conditional ran-
dom field generation method fits any correlation 
function type, homogeneous or non-homogeneous, 
of strong or weak correlation. The field envelope in-
troduction opens the method to highly developed 
boundary conditions (constraints), due to considered 
structural problems. The field envelope makes it 
possible to generate random fields defined by corre-
lation functions adjusted to experimental data, e.g. 
real structural geometric imperfections. While the 
method is working for Gaussian symmetric fields, 
the introduction of non-symmetric field envelopes 
allows the non-symmetric field generation as well. 

Random field generation based on the bounded 
base field makes it possible not to limit the field di-
mension. The generation block, the base field, is ad-
justable to cylindrical surfaces, e.g. tanks, of a 
closed-type random field. This is the most essential 
and unique feature of the method, as compared to 
other numerical tools. 

3 RANDOM FIELD GENERATION BY 
KARHUNEN – LOÈVE EXPANSION  

The random field generation software commonly 
applies orthogonal Karhunen – Loève approach 
(Karhunen 1947, Anders 2000)). The expansion ap-
plies the three-dimensional decomposition of a sec-

ond-order random field covariance function. The 
field generation takes the form 

(1 )α= +w w  (7)  

where w denotes a random variable, w  denotes its 
mean value, and α  – its variation.  

The Karhunen theorem (1947) states (Adler 1981, 
Anders 2000) that for a second-order random field 
of a zero mean value and a correlation function 

1 2( , )αC x x  the following relation is proper 

1
( , ) ( ) ( )α ω λ ξ ω ϕ

∞

=

= ∑ m m m
m

ξξ   (8)  
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C x x x x  (9)  

1 1 2 2 2( ) ( , ) ( ) , 1,2,3,...αλ ϕ ϕ= =∫m m mV
C d mx x x x x  (10)  

where 1 2, , ...ϕ ϕ  are the subsequent eigenfunctions of 
1 2( , ) ,αC x x  they are forming an orthogonal base 

( , ) ,ϕ ϕ δ=m n mn  , 1,2,3,...=m n , and 1 2, , ...λ λ  are the 
eigenvalues of the functions 1 2( ... 0).λ λ≥ ≥ >   

The functions 1 2, , ...,ξ ξ  may be presented in the 
form 

1( ) ( , ) ( )ξ ω α ω ϕ
λ

= ∫m mV
m

dξξξ    (11)  

The Karhunen – Loève expansion is basically in-
tended for the Gaussian field ( , )α ωx  generation. 
The random variables 1 2, , ...ξ ξ  are assumed to be 
Gaussian as well.  

In order to compare both methods a simplified 
procedure was proposed by (Ghanem & Spanos 
1991). It assumes a homogeneous correlation func-
tion for the field (Anders 2000) 

2 1 2 12
2 1 2 1( , )α ασ

 − −
− − = − −  

 x y

x x y y
C x x y y

b b
 (12) 

where ασ  is the standard deviation, whereas the pa-
rameters xb  and yb  are the correlation ranges. 

The defined function is not isotropic. Moreover, 
in the case x yb b b= =  while the point position is 
marked by a unit vector ( , ) ,x yn n  the formula should 
be replaced by a new one (Anders 2000) 

( )2( ) x y
s

C s n n
bα αs

 
= − + 

 
 (13)  

The Wiener – Khintchine relations (Vanmarcke 
1983) specify a spectral density of a homogeneous 
correlation function Cα  by means of 
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Assuming the solution in a rectangular domain 

, ,
2 2 2 2

y yx x l ll lA
  = − × −     

 (15)  

the final two-dimensional problem can be solved as 
one-dimensional. The solution is presented in 
(Ghanem & Spanos 1981) and may be presented as 

1
2sin( )1 cos( ),

2
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where the parameters , 1,2,3,...s
iw i =  come from the 

solution of 

1tan tan 0
2 2
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When x yl l=  and x yb b=   

1( , , ) ( ) ( ) ( ) ( )
2

x x x x
i j j ix y z x y x yjjjjj     = +   (20) 

4 AN EXAMPLE OF RANDOM FIELD 
SIMULATION BY MEANS OF THE 
PRESENTED GENERATION TECHNIQUES 

The following example compares the results of both 
generation methods. The 10th field was taken for the 
computations, taking 1.0 m,x yl l= =  1.0 m,x yb b= =  

1.0 mασ =  and assuming the prescribed disretization 
into 20 and 40 elements  

Thus, the dimensions of a random field grid are 
1.0 / 20 0.05 [m] and 1.0 / 40 0.025 [m].x y∆ = ∆ = = =

The dimension of a covariance matrix for both cases 
covers 441 × 441 and 1681 × 1681 elements, respec-
tively. The assumed number of series expansion 
terms is 4m = . Each element grid was generated us-
ing a number of 500 realizations. 

The corresponding computations employing iden-
tical numerical data of a generated field were con-

ducted with the use of the conditional rejection and 
acceptance method. Two generation variants were 
further compared.  

Figure 1 compares graphically diagonal elements 
of a theoretical covariance matrix of 441 × 441 ele-
ments with the generation results of both methods. 
Figure 2 compares in detail the first row elements of 
the matrix. 

Figure 3 compares graphically diagonal elements 
of a theoretical covariance matrix of 1681 × 1681  

 
 
Figure 1. Comparison of diagonal elements of a covariance ma-
trix (441 × 441 elements). 

 
 
Figure 2. Comparison of the first row elements of a covariance 
matrix (441 × 441 elements). 

 
 
Figure 3. Comparison of diagonal elements of a covariance ma-
trix (1681 × 1681 elements). 



elements with the generation results of both meth-
ods. Figure 4 compares in detail the first row ele-
ments of the matrix. 

Additionally the global error of the covariance 
matrix was calculated (Górski 2006) 

( )
( )

ˆ
100%blG

−
= ×

K K

K
 (21) 

where K̂  is the covariance matrix estimator  

T

1

1ˆ ˆ ˆ( )( )
1

NR

i i
iNR =

= − −
− ∑K w w w w  (22) 

and ŵ  is the expected value vector estimator 

1

1ˆ
NR

i
iNR =

= ∑w w  (23) 

In the case of 20 × 20 field elements the global 
covariance matrix relative error is 1.76% for condi-
tional generation and 0.08% for Karhunen – Loève 
generation, respectively.  

The corresponding variance estimation errors are 
1.59% and 11.37%, respectively.  

In the case of 40 × 40 field elements the respec-
tive errors are 9.39% and 0.06% for global covari-
ance matrices, 5.94% and 0.06% for variance errors. 

5 CONCLUSIONS 

The errors of field generation are comparable for 
both methods. The generation time is also similar, 
because full covariance matrices are not covered 
here, no time-consuming computations, e.g. eigen-
value problem or full matrix inversion, occur in the 
procedure. 

The conditional generation method is more gen-
eral, capturing the engineering cases. It has been  

 
 
Figure 4. Comparison of the first row elements of a covariance 
matrix (1681 × 1681 elements). 

applied for the liquid fuel storage tanks (Górski & 
Mikulski 2008), silos (Górski et al. 2015), granular 
material behaviour (Tejchman & Górski 2009), 
composite structures (Winkelmann & Górski 2014, 
Winkelmann & Sabik 2014). The three-dimensional 
random field generation was conducted in (Prze-
włócki & Górski 2001).  

The ongoing research is aimed at expanding the 
method to cover any random field, including the 
non-symmetric one. The envelopes are of special in-
terest here, allowing to properly reflect the structural 
boundary conditions. 
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