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Abstract. The article discusses, on a certain level of abstraction and
generalization, a coherent anthropological approach to the issue of con-
trolling autonomous robots or agents. A contemporary idea can be based
on appropriate modeling of the human mind using the available psycho-
logical knowledge. One of the main reasons for developing such projects
is the lack of available and effective top-down approaches resulting from
the known research on autonomous robotics. On the other hand, there is
no system that models human psychology sufficiently well for the purpose
of constructing autonomous systems. Nevertheless, to combat this lack,
several ideas have been proposed for embodying human intelligence. We
review recent progress in our understanding of the mechanisms of cog-
nitive computations underlying decision-making and discuss some of the
pertinent challenges identified and implemented in several systemic solu-
tions founded on cognitive ideas (like LIDA, CLARION, SOAR, MANIC,
DUAL, OpenCog). In particular, we highlight the idea of an Intelligent
System of Decision-making (ISD) based on the achievements of cognitive
psychology (using the aspect of ’information path’), motivation theory
(where the needs and emotions serve as the main drives, or motiva-
tions, in the mechanism of governing autonomous systems), and several
other detailed theories, which concern memory, categorization, percep-
tion, and decision-making. In the ISD system, in particular, an xEmotion
subsystem covers the psychological theories on emotions, including the
appraisal, evolutionary and somatic theories.

Keywords: cognitive architecture, cognitive development, decision-making,
human-computer interaction, perception, intelligent agents

1 Introduction

Creating a system functioning in a human-like way, has long been a principal
subject of artificial intelligence and robotics. As can be seen from the many
known results of robotics, a significant number of artificial creatures and hu-
manoids have been constructed [32], and some of them even try to communicate
in natural language [55]. Moreover, considering the inner aspect, the well-known



artificial neural networks (of a convolutional type) have been conceived and ap-
plied for different system control and recognition purposes [23,9]. All such minor
steps are being made towards creating an artificial humanoid, synthetic organ-
ism, or android robot, designed to look and act like a human.

Artificial Intelligence is being developed in a continued effort to solve engi-
neering problems, such as reasoning, problem solving, knowledge representation,
machine learning, natural language processing, machine perception, and others.
Eventually, solving these problems should lead to an invented humanoid system
similar to a human being, to a certain extent. A few principal types of approaches
to artificial intelligence are worth mentioning here:

– cybernetic – which postulates to follow an imitation of some aspects of real,
physical, or biological systems in a virtual world (using neural networks,
evolution algorithms, swarm algorithms, etc.) [53],

– statistic – which seeks to build rigorous, usually sophisticated, mathematical
tools necessary for statistical modeling of processes [49],

– symbolic (top-down, synthetic, ‘neats’, clean) – which uses high-level logic
(simplistic, black-box) mathematical modeling, knowledge-based processing,
and machine learning [47],

– sub-symbolic (bottom-up, analytic, ‘scruffies’, ad hoc, embodied) – which
involves the use of small (white-box, physical, neuronal) models to first create
a low-level, and next, by the ad hoc rules, higher-level solutions [8].

The variety of known AI branches strive for (usually partially) modeling of
the human mind, and none of them fulfills this objective fully. Modeling the hu-
man mind can be performed by applying the symbolic (top-down) approach and
the sub-symbolic (bottom-up) method. These two approaches are complemen-
tary, and both are related to the cybernetic method. Certainly, the statistical
tools developed in a mathematical way are of great use. Probably, solely an in-
telligent combination of many methods will be able to satisfactorily reflect the
effects of the human brain.

Embodied Intelligence (EI) represents the sub-symbolic approach. It is
an extension of the genuine cybernetic projects from the 50s, which tried to
reproduce simple phenomena of ‘intelligence’ identified at a low level of cognition
[17,3,8,7]. We can recall here the early cybernetic projects, like the construction
of homeostat, a device which retains stable despite external disturbances, or
tortois, a robot which follows an assumed intensity of light [53]. Quite promising
results can be obtained by following baby steps, that is, by simulating a certain
basic functionality using simple elements (note that the tortois had only two
neurons, for instance). On the basis of such affirmative experience, a new branch
of behavior-based robotics has emerged [4].

Most issues, such as finding an optimal trajectory or recognition of environ-
mental objects, require rather complex operation, whereas inference and rea-
soning are relatively simple (from the biological and computer science points of
view). It is Moravec’s paradox that applies to this problem [46]:

Encoded in the large, highly evolved sensory and motor portions of the
human brain is a billion years of experience about the nature of the world
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and how to survive in it. The deliberate process we call reasoning is, I
believe, the thinnest veneer of human thought, effective only because it
is supported by this much older and much more powerful, though usually
unconscious, sensorimotor knowledge. We are all prodigious olympians
in perceptual and motor areas, so good that we make the difficult look
easy. Abstract thought, though, is a new trick, perhaps less than a hun-
dred thousand years old. We have not yet mastered it. It is not all that
intrinsically difficult; it just seems so when we do it.

It seems natural that different achievements from the fields of embodied intel-
ligence, behavior-based robotics, and top-down approaches in AI, are indispen-
sible in modeling the effect of the human mind. However, to reach an intelligent
interaction of an artificial agent with the environment it is also important to
clearly define what ‘embodied intelligence’ means [60].

In this paper the concept of ‘embodied intelligence’ will be understood in
a slightly different way than the ‘classical’ notion. Recall that mathematical
modeling providing a description of a hypothetical fragment of an existing re-
ality, reflects the behavior of a real system in a particular environment. Such
an environment generates different distal signals determining the so-called ex-
perimental setting. At each stage of the process of modeling of physical phe-
nomena, the results of the next simplified mathematical model are thoroughly
referenced to the previously conducted experiments. This is in line with the
bottom-up approach (analytic, physical, white-box). On the other hand in nat-
ural sciences, psychology, philosophy, and cybernetics, the top-down approach
(synthetic, mathematical, black-box) is most frequently in use. Ignorance of the
aforementioned principles may easily lead to confusion and inadequate interpre-
tations.

1.1 . . . Intelligence

One of the first definitions of intelligence has been proposed by Spearman in
[59]:

...all branches of intellectual activity have in common one fundamental
function, whereas the remaining or specific elements of the activity seem
in every case to be wholly different from that in all the others.

It appears, however, too vague for the aim of determining the intelligence for
robot purposes. Though clear, other definitions like:„The ability to deal with
cognitive complexity” or „Goal-directed adaptive behavior” [20,61] also seem to
be overly general. Nevertheless, due to such definitions, you can at least imagine
what is the essence of human-like intelligence:

Definition 1. Intelligence is the ability of active processing of cognitive infor-
mation in order to adapt to the changing environment and to gain own, specific
purposes or common goals.
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In an extremely simple case, an intelligent agent, by being completely focused
on searching for a source of energy necessary to survive, can function completely
selfishly. Clearly, the latter brings to the mind the aforementioned tortois and
cybernetic theories.

1.2 Embodied . . .

Embodiment in the human case means that the entire perception of the real
world completely relies on its physical components and senses. Embodiment is
also associated with the philosophy of mind, and, in particular, with the whole
mind-body problem as formulated by Descartes [2].

Certainly, intelligence could not be developed without embodiment [60]. It is
also clear that any virtual or robotic agent ought to be designed for, and located
in, a certain environment to have a chance to implement a two-way interac-
tion. Then one can talk about engineered intelligence, having the environmental
embodiment (or foundation) defined as:

Mechanism under the control of an intelligence core that contains sensors
and actuators connected with this core via communication channels.

Such embodiment of a robot or agent can be easily extended with various kinds
of tools (like glasses, spectacles, drives, or even a mobile or car), which augment
both the agent’s perception and possibilities of reaction.

2 Decision systems

The idea is to build a system that – in line with the increasing capabilities of com-
puters and their power – would be able to take autonomous decisions, according
to current circumstances. Certainly, there exist, and are being developed, in-
creasingly sophisticated decision-support systems, such as: expert systems [1,5],
and systems based on Bayesian networks [16,65] or neural networks [57,66]. Such
systems usually support human decision making (for diagnostic purposes, for in-
stance). In most cases they are strictly tailored to pre-defined conditions. In
general, however, there are two known paths for decision-making:

– classical, which finds the most optimal decision for a well-defined problem,
– cognitive, aiming at finding a solution to real problems defined or recognized

only partially.

Thus the classical decision theory treats about taking decisions in a strictly
optimal sense for mathematically well-modeled tasks and well-defined problems.
Whereas the cognitive theory shows how to take proper decisions for difficult
real-world problems, which are usually uncertain and not well defined [19].

An early elaboration on human decision-making processes was delivered in
1910 by Dewey [15]. According to him, there are five stages in the decision mak-
ing process: Defining the problem, Indication of its character, Finding possible
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solutions, their Evaluation, and Selection of the appropriate solution. A similar
and a bit more universal division, referred to as GOFER, presented in 1991 [41]
suggests the following phases:

1. Goals – searching for selecting the objectives,
2. Options – considering a wider spectrum of alternative actions concerning the

goals currently considered,
3. Facts – gathering additional knowledge about actions (options) and goals,
4. Effects – evaluating (usually hypothetically) the results of the chosen options,
5. Rating – final evaluation of the decisions, and selecting the best one.

In addition, there are many other interesting approaches to the analysis of
complete decision processes [54,6,44]. Not far from, in its simplest form, the
decision making process can always be described in solely three phases [58]:

1. definition of the problem,
2. finding possible solutions,
3. selection of the optimal solution.

In order to achieve the effect of autonomous decision-making suitable for a
current situation, the system should not only take the opportunity of learning
(knowledge extension), understanding and recognizing (known) objects, but also
it should have some motivations which compel it to take action.

There are a great number of decision-making systems based on human mo-
tivation factors. Human is the highest of all species in terms of adaptation to
the changing environment, thus the human system of motivation appears to be
most adequate as a template of behavior. Ethical foundations for such systems
can be derived from the existing variety of the available models of psychology
and human intelligence. These achievements have also notably contributed to
artificial intelligence. Among them one can distinguish the following types of
conceptual solutions:

– behavioral [4,14],
– BDI (Beliefs-Desires-Intentions) [25,13,52,21],
– emotional [42,33] (sometimes they are assigned to BDI),
– driven by needs [22,56,43,45,50],
– cognitive (LIDA, CLARION, SOAR, MANIC, DUAL, OpenCog, ...).

To give you a taste of the existing spectrum of complex systems, we will discuss
below three (in bold) of the above-listed representatives of cognitive systems.

2.1 LIDA

Learning Intelligent Distribution Agent, LIDA, originally developed by Stan
Franklin [18], is a cognitive system which intends to model biological cogni-
tion [40,18]. It implements an architecture of sub-sumption [8] and other aspects
of the sub-symbolic branch of AI. This is one of the most advanced projects aim-
ing at modeling the results of psychological and neuro-psychological theories, in
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Fig. 1. Cognitive architecture of Lida: the grey lines represent interaction with the en-
vironment, blue lines show low-level processing, orange lines indicate learning process,
and dotted lines portray consolidation of the memory.

particular, embodied knowledge, symbolic systems of perception, different types
of memory, and the different ways of learning mechanisms, overt attention and
motivation in the form of emotion (Fig. 1).

LIDA is executed using cognitive cycles (repeated in each executive run),
each of which consists of the subprocesses of perception, selection of appropriate
response (relative to the perceived environmental facts), and implementation
of the selected reaction. Advanced cognitive processes, such as planning, can be
synthesized as an aggregate of the perception-action cycles. Motivational aspects
in the LIDA system concern feelings, which have their own valence (positive or
negative), associated with satisfaction, or pain (which evidently attributes LIDA
also to the emotional developments and solutions).

Stimuli recorded by sensors and pre-processed, are next analyzed in a work-
ing/operational memory referring to various types of long-term memory (per-
ceptual, episodic, declarative and procedural). Memory is instrumental in cre-
ating a current model of actual circumstances, which constitute an executive
groundwork for the process of selecting the desired reaction (using the procedu-
ral memory). Conscious contents are intended to add an external context to this
model, and to enable learning processes. Once selected, the reaction is directly
implemented by the actuators.

2.2 CLARION

Connectionist Learning with Adaptive Rule Induction On-line, CLARION, rep-
resents a cognitive architecture based on theories from cognitive and social psy-
chology [63,62,11,64]. CLARION implements several AI results to ensure the
effect of creating an intelligent system. CLARION’s architecture, developed and
implemented by Ron Sun, is composed of four units shown in Fig. 2:

– ACS – (procedural) Action Centered Sub-system,
– NACS – Non-Action Centered Sub-system,
– MS – Motivational Sub-system,
– MCS – Meta-Cognitive Sub-system.
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In each of the above sub-systems the data and structures are represented dually:
at a higher level (overt/explicit) and at a lower level (covert/implicit). This dual
representation in CLARION, connected with (different) philosophic theories and
with the issue of memory representation [35,51], enables autonomous learning in
two ways: bottom-up (induction) and top-down (deduction). The assumptions
applied are fully compliant with the requirements of the embodied intelligence
design discussed earlier.

Fig. 2. Cognitive architecture in Clarion: the orange lines present attention (in gen-
eral), green lines indicate data exchange, and red lines show interaction with the sys-
tem’s environment.

The action oriented sub-system (ACS) is responsible for all kinds of the
agent’s reactions, both internal and external (concerning the environment). The
covert (implicit) part is implemented as a neural network, while the overt (ex-
plicit) layer represents a rule base. The non-action centered sub-system (NACS),
which mimics the role of the semantic and episodic memories, is responsible for
the storage and delivery of knowledge. It is also divided into two parts. Its hid-
den part takes the form of an associative neural network, while its explicit layer
can be described with the use of symbolic notations and rules. The inference
performed in this module is founded on similarities.
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Motivation means are also important to the design of the cognitive structure
of CLARION. Corresponding motivational elements of the MS sub-system are
of both the explicit and implicit type. Explicit (higher) elements include targets
(explicit goals), such as: belonging, recognition, power, autonomy, respect, and
honesty. On the other hand, the lower motivational factors (prime movers) of
the CLARION system, realize the idea similar to the concept of needs (discussed
later), which are of a physiological nature (consider eating, drinking, sleep, secu-
rity, and reproduction). In addition, CLARION’s MS sub-system allows you to
program your own secondary needs to define a more subtle motivation (in order
to achieve a certain goal).

The MCS sub-system is responsible for a meta-cognitive function resembling
attention or awareness. It monitors and regulates all other cognitive processes of
the agent and fulfills the idea of consciousness. More specifically, MCS chooses
which goals are most important, with autonomous inferencing and learning, and
how to adjust the gain of the learning process. It is also responsible for informa-
tion filtering and for selecting the method of data interpretation.

2.3 SOAR

State, Operator And Result, SOAR, is a cognitive architecture invented by Laird,
Newell, and Rosenbloom [39,36,24,48,10,38]. It is one of the earliest systems of
this type (its first version is dated back to 1983), whose main purpose is behavior
resembling an intelligent agent. Its architecture is suitable for operation under
varied conditions, from routine tasks upto creatively difficult open problems.
It requires appropriate forms of knowledge representation, and suitable types
of memories (procedural, semantic, episodic and iconic). To be consistent with
the assumptions of embodiment, the agent needs to interact with the ambient
world, and to learn constantly about its features. The decision making in SOAR
is based on the current situation perceived from the environment, whereas the
necessary information and knowledge is acquired by suitable dynamic processing
of the data gained through the sensors. An internal expert system plays the role
of fundamental processing unit.

SOAR’s cognitive architecture has several components concerning [37]:

– memory functioning, for the task of knowledge storage,
– processing module of attention, used for extraction, mixing and remembering

knowledge,
– semantics and syntax of the language used for storage and processing of

knowledge.

Similarly to LIDA, SOAR is based on a certain decision cycle. A perception
sub-system manipulates the data stored in a symbolic short-term memory. De-
ductive rules are used to test the agent’s capabilities in the context of possible ac-
tions. Another layer of rules is applied to suggest optimal reactions (operations)
adequate to the current situation evaluated by perception and motivational sub-
systems, and next the agent’s preferences are calculated. Finally, according to
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Fig. 3. Cognitive system of SOAR (ver. 9).

the perceived state (situation), and given a pre-processed set of possible reac-
tions and preferences, SOAR is ready to select one of the estimated reactions,
and then to apply it using the system actuators.

The cognitive structure of SOAR is shown in Fig. 3, where decision cycle
is implemented by the block of decision procedure. In the SOAR system, emo-
tions are generated in the appraisal detection block, and next they serve as
reinforcement applied in learning processes (indirectly through mood and feel-
ings). Semantic memory is an essential element in the treatment of procedural
and episodic knowledge (using long-term memory). It allows the agent to store
information about the environment. On the other hand, the episodic memory
contains the knowledge related to the execution and effects of various types of
actions, including the degree of fulfillment of the rules and operations performed
by the agent (and others). Long-term visual memory as well as imagination assist
in the agent’s mind operations concerning spatial processing.

2.4 Intelligent System of Decision-making

Intelligent System of Decision-making, ISD, as presented in the recent papers
[26,27,28,29,30,31,12,35], is a control system of an agent that intends to covert
and implement the contemporary theory of embodied intelligence and decision
theory, and in particular, the models of cognitive psychology and motivation
theory. It mimics roughly the way people make decisions, from the arrival of the
stimuli to the generation of a reaction. As a consequence, the ultimate design
of the ISD unit is the result of a thorough modeling of human psychology em-
bedded in elementary findings of an extensive literature study. In practice, ISD
is a universal system which can control robots and unmanned ground vehicles,
including cars, as is presented in [12]. A view on ISD is presented in Fig. 4.
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Fig. 4. Schematic view on the Intelligent System of Decision-making.

ISD is a cognitive decision-making system, which implements all of the stages
of decision-making, presented earlier. The main mechanism of decision-making
in ISD is based on the concept of needs, which are principal drives for acting.
Needs are variables programmable by the user. They can also be possibly created
autonomously by the agent and adjusted for certain situations. Thus, different
sets of needs may be used to shape the characteristics (personality) of the agent,
according to its environmental conditioning. Observed objects and events, and
actions performed by the agent (namely their inner and outer results) have
impact on the state of the agent’s needs.

ISD presents also cognitive abilities with respect to the understanding of
the environment (in practice, without them the system would not be consis-
tent). It means that from the robotic point of view, the agent is ‘conscious’ of
its environment, it knows its position, and the position of surrounding objects
and their definition. Stimuli perceived by the agent’s senses (sensors) are stored
in an ultra-short-term memory (USTM). Simple features of perceived objects
(impressions), such as colors, shapes, textures, etc. (like red flat rectangle), are
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extracted from USTM, and stored in a short-term memory (STM). To recog-
nize a simple impression, the agent can apply various mechanisms, developed
as filters, masks, neural networks, fuzzy systems, decision rules and others. For
example, a Haar cascade can be used for recognizing head shapes (impressions).
During extraction, certain stimuli may cause an immediate unconscious action of
the agent (like: ‘step back’ in response to pain). On the basis of the observed fea-
tures (impressions), complete discoveries/objects are ‘mentally’ created, taking
into account the relative location of the features in space. In a simple transla-
tion, the discovery consists of impressions in a specific location. Next, they are
compared to known objects stored in a long-term memory (LTM). If the ‘mind’
detects a certain level of similarity between the perceived discovery and a know
object from LTM, the discovery is recognized/identified with the object from
LTM. A suitable recognition procedure is described in [12]. Some of the discov-
eries may result in half-conscious activities, previously learned through multiple
repetitions.

Recognized objects are transferred to the agent’s operational memory that
represents the current scene, where they are analyzed from different angles, tak-
ing into account:

– the impact of external (environmental) facts/objects, as they may affect the
needs or cause sub-emotions, which can, in turn, change the agent’s proper
emotion; Remember also that both the needs and the sub-emotions must
be previously stored as connected to certain discoveries (e.g. a pink blanket
from childhood can connect with the need for security), and thus affect the
agent’s current system of needs;

– the effect of the internal (body) facts/states, as they can also modify the
agent’s system of needs (e.g. an energy sensor connected to the need of
energy, can directly change the need of the agent, according to its value).

According to the above, the states of needs are constantly updated, creating,
and pointing to, new goals. The agent tries to find (or formulate) a conscious
action to be implemented by the system in order to fulfill its most important or
painful needs [27,28,29]. The action undertaken by the ISD unit is then tracked
by the part of the thinking process which is referred to as the observer of re-
sults. This process always seeks to see a desired effect of the previous action (for
instance, in the change of the degree of fulfilment of the agent’s needs) by pene-
trating the contents of the operational memory. It is also related to the learning
process in ISD. The achieved results of the previous activities are memorized
(for future searches of optimal actions).

In line with the human motivation theory, emotions are one of the most im-
portant factors of human behavior. Systems, based on human psychology (both
cognitive and motivative), but deprived of emotions would be ineffective. Emo-
tions in ISD perform their function at a higher level of control than the basic
ISD control ruled by the system of needs. In our robotics applications, emotions
allow us to narrow down the set of possible reactions to those that are most
adequate (in the view of the system designer) for the current time moment and
the state of the ISD system [30,34].
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Pre-defined sub-emotions (emotions associated with identified objects) do
influence the current state of the proper emotion of the agent, which strikes
(assumes) one of 24 possibilities, according to the theory of Plutchik. The degree
of satisfaction of all the agent’s needs, the former emotional state, and the effect
of calming down (emotion simply decays with time), all influence the state of
the emotion of the agent. Changes in emotion affect the mood, which, in turn,
tune the fuzzy parameters of the needs models. As mentioned earlier, emotion
effectively preselects (narrows) the set of possible reactions. In addition, it can
modify some reactions (for instance, by using additional forms of expression, like
wording, gestures, or facial expressions).

There are different types of long-term memory in the ISD system [31]:

– semantic (abstract and realistic),
– episodic,
– procedural.

Knowledge in ISD is stored in the form of (abstract or instance) discover-
ies, consisting of many different features/impressions (including those related
to needs and emotions), labels, and relations to other discoveries [35]. Episodic
memory is used to describe events on the time axis, and with reference to respec-
tive discoveries stored in the semantic memory. A forgetting phenomenon decays
the activity level of remembrances (the events remembered in the episodic mem-
ory). Depending on this level, the more frequent the remembrances (memories)
are, the faster they can be recalled. Procedural memory contains specifications
(declarations) of the agent’s actions.

3 Comparison

The above-presented systems represent a cognitive approach to the problem of
decision-making. All of them are trying to combine the bottom-up and top-down
approaches and methods. In practice, however, they are very different in the
aspects of implementation and concept. There is no great sense to compare them
in terms of parameters such as computational complexity, speed of response,
accuracy and performance of individual activities, because of the large variety of
implementation and use of these systems. Certainly, there are several useful tests
for autonomous cognitive systems like user-end tests for coffee-making or student
behavior, but they have a limited use, due to the lack of the necessary actuators.
The utility of such one-sided (one goal) tests is also controversial due to their
selectivity, at which some cognitive systems appear to be better than the other
ones, depending on the particular test task. However, one may always compile
a multi-purpose comparison of the cognitive architectures in terms of structure
models, driving systems, and implementing concepts, as has been shown in tab. 1.

4 Synchronization of cognitive systems

Each of the presented systems approaches the issue of modeling the human
cognitive processes in its own way. They appear to be more or less explanatory,
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Table 1. Comparison of cognitive architectures.

LIDA CLARION SOAR ISD
structure perception-action

cycles
explicit and implicit
sub-systems (paral-
lel)

cycles cycles with interrup-
tions

stimuli internal and exter-
nal

external dependent on de-
signer

internal and exter-
nal

perception
memory

Slip-Net (associa-
tive)

connected to work-
ing memory

not known impressions

basic mem-
ory unit

codlet chunk rule discovery

short-time
or working
memory

global workspace
theory

limited (visuospa-
tial, auditory, other)

symbolic short-term
memory

current scene and
imagination with ac-
tivation levels (lim-
ited)

long-time
memory
structure

perceptual,
episodic, declara-
tive, procedural

Non-Action Cen-
tered Subsystem
(semantic, associa-
tive knowledge)

procedural, seman-
tic, episodic

semantic (abstract
and instance),
episodic, procedural

drivers not known similar to human
needs, goals

emotions needs & emotions

emotions feelings (positive or
negative)

not known appraisal (mood and
feelings)

based on Plutchik

decision-
making

based on current
environmental situ-
ation

rules and neural net-
works

rules and reasoning motivation driven

program-
ming lan-
guage

Java C# Java & C++ Python

usage medical diagnostic simulations concern-
ing wide spectrum of
cognition

simulations from
towers of Hanoi to
quakebot

partial simulations

and usually to some extend (partially) support the psychological theories on
these processes. This knowledge allows us both to evaluate the psychological
theories and generalize or adapt the cognitive processes for autonomous agents.
For example, each of presented systems has some basic memory entity, which
let the agent to comprehend particular real objects, and an overall semantic
memory, necessary for grasping the actual situation by an autonomous robot.

Note that cognitive architectures are primarily designed to make decisions
under the circumstances of autonomous work. Nevertheless modeling the en-
vironment of the agent appears to be even more difficult than the inferencing
itself. Therefore, it is important that the developed systems also indicate how
to describe the environment for the purpose of autonomous agents (letting the
necessary and inevitable interaction).

For comparative purposes and definite concluding results, each of the pre-
sented systems should be implemented on a platform of an autonomous (mobile)
robot, and then tested under identical conditions (this would be more effec-
tive than partial simulation, certainly). In particular, the cognitive architectures
should be tested at different angles, highlighted below:

– perception - estimated in terms of speed and accuracy of environmental
recognition,

– attention - to determine the importance of objects due to agent’s security
and decisions,
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– decision-making - adequate for practical uncertainty,
– learning and reasoning - enabling the agent to correct its mistakes and to

expand its knowledge about the surrounding environment,
– computing power - necessary for proper functioning of the system.

5 Summary

The paper discusses the idea of embodied intelligence as an approach that com-
bines both the cognitive modeling of complex systems (top-down approach), as
well as the (bottom-up) implementation of systems designed to detect and com-
prehend the basic characteristics of the environment. Needing a variety of tools,
the creation of such architecture principally relies on established theories, and
thus results in workable reformulations of several essential definitions concerning
intelligence.

The agent that has the ability to actively process cognitive information using
its sensors and mechanisms to adapt itself to the changing environment and to
achieve its objectives (at least to strive for them), possesses embodied intelli-
gence. In our pursuit of the goal of embodied intelligence, we used a systematic
approach to the cognitive decision-making process through the implementation
of several major ideas of cognitive psychology and motivation theory, which led
us to design of the Intelligent System of Decision-making (ISD).

Though the presented cognitive systems have been developed for different
purposes, all of them model the decision-making process in a very interesting,
instructive and practicable way, using differently defined motivational aspects.
In the near future, such systems will have the opportunity to achieve a high level
of sophistication in terms of both the design conception and technical implemen-
tation - with great hope to achieve at least some level of intelligence of simple
living creatures (like lizards, for instance).
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