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Abstract Rough set-based approach to the classification of EEG signals of real and imaginary
motion is presented. The pre-processing and signal parametrization procedures are described,
the rough set theory is briefly introduced, and several classification scenarios and parameters
selection methods are proposed. Classification results are provided and discussed with their
potential utilization for multimedia applications controlled by the motion intent. Accuracy
metrics of classification for real and imaginary motion obtained with different parameter sets
are compared. Results of experiments employing recorded EEG signals are commented and
further research directions are proposed.
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1 Introduction

Classification of EEG signals is a crucial task in every brain-computer interface
(BCI), allowing for accurate and low latency interaction between a disabled person
and a computer application [7, 16, 48]. Electroencephalography is a non-invasive
method for monitoring of brain activity [17], whereas applying dedicated method of
signal processing facilitates reasoning about mental condition, emotional state, as well
as motion intents. Many reported experiments were aimed at recognition of so called
imaginary motion, usually unilateral, i.e. of left or right hand. Such detection can be
employed for paralysed or locked-in-state persons for steering a motorized wheelchair
[8, 11] or computer applications [4, 10, 23–26, 33, 34, 47].

The classification of motion intent can be performed following two disjoint para-
digms of synchronous and asynchronous systems. The former one involves flashing an
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icon on the screen in strictly timed intervals and verifying by means of the P300
potential if the person is focusing at this icon [5, 6, 18, 35]. Varying the flashing
pattern for each icon is useful in applications with multiple choices. The latter
approach allows for self-paced interaction, but it requires determining two states:
non-control and control state, and then in the latter case classifying the type of
control [9, 39, 50]. The asynchronous approach is evaluated in this work, the method
and results of classification of left and right, and up and down motion intents are
assessed, and possibility for control of a multimedia applications is discussed.

There are many important factors hampering signal acquisition and classifications
in BCI applications. Published practical research is concerning the subject’s mental
fatigue often leading to low classification accuracy since the person is not able to
concentrate on the task [41]. Other aspects are electrodes positioning, skin conduc-
tance, hair thickness, which can be dealt with by hardware solutions such as: an
electrode type, tight mounting cap, electrolytic gels, etc. On the other hand, a
muscle electric activity of eye movements, blinks, heartbeat are present in the signal
as artefacts, that they can be eliminated only employing signal processing methods
[1, 12, 14, 52].

In this research the rough set based method for the analysis of EEG data of 106 persons
taken from an open database is presented. It is shown that the classification accuracy varies
from person to person, depending on the mentioned issues, but it may exceed 80% (corre-
sponding to more than 10,176 correctly classified cases in a testing set of 12,720 cases), for a
particular imaginary motion task.

2 EEG signal processing approaches

The common approach to EEG classification is based on the analysis in frequency
bands, that are proven to be related to various types of mental and physical conditions
[40, 49]. For example, delta waves (2-4 Hz) are related to consciousness and
attention, theta (4-7 Hz) and alpha (8-15 Hz) reflect thinking, focus, and attention.
Moreover, by correctly positioned electrodes each functional part of the brain can be
monitored separately, e.g. motor cortex or visual cortex, thus providing spatial
partitioning of recorded signals, and in turn simplifying creation of dedicated pro-
cessing and classification for a given brain region and task (e.g. seizure detection,
motor imagery, emotion classification, mental tasks, sleep monitoring) [2].

The main principle for detection and classification of imaginary motor activity in
brain-computer interfaces is based on an observation that the real and imaginary
motions involve similar neural activity of the brain [26]. It was determined that main
phenomenon is alpha wave power decrease in a motor cortex in a hemisphere contra-lateral to
the movement side [25, 26, 33], usually registered by C3 and C4 channels [38, 41, 51]. It is
related to phenomena of event-related de-synchronization (ERD) [21, 30, 53]. Motion intent
can be also classified by linear discriminant analysis (LDA) [21, 25, 26, 31]. A recent presented
application of k-means clustering and Principal Component Analysis (PCA) for steering of a
simple robot [28] with a mental binary trigger, tested on 6 users. BCI was also applied in a
computer game scenario with biofeedback and classification based on Regularized Fisher’s
Discriminant (RFD) [22].
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Every EEG recording is contaminated with artefacts originating from muscular
activity of eye movements (e.g. involuntary saccades), eye blinks, and heartbeat.
Numerous methods are implemented in this domain to detect and to filter such
signals, as they are harmful for brain signals quality, and they overlap the useful
signals in the frequency domain. Thus a frequency filtration cannot be applied, hence
other approaches were developed to solve the problem. The common procedure is
Signal-Space Projection (SSP) [21, 43, 46], involving spatial decomposition of the
EEG signals for determining samples contaminated by the artefact. This method is
based on the fact that the artefact signal repeatedly originates from the same location,
e.g. from eye muscles, whereas all electrodes record it in the same manner every time,
with distinct amplitudes and phase shifts. Thus, a particular pattern can be determined
and removed from each recording. Similar results are achieved by the Independent
Component Analysis (ICA) method [20, 21, 27, 45].

Meanwhile, the research approach presented in this paper assumes a simple parametrization
of original signals, and a classification based on the rough set paradigm, without the necessity
of applying any complex pre-processing routines.

3 Dataset

For the experiment an EEG Motor Movement/Imagery Dataset was used [15]. EEG
recordings contained in this dataset were created by the authors of the BCI2000
instrumentation system [3, 37] and then they were made available on PhysioNet,
providing a forum dedicated to dissemination and exchange of biomedical signal
recordings and open-source physiological signals analysis software [15].

The dataset contains recordings obtained from 106 volunteers. Subjects were
instructed to perform trigger-dependent real or imaginary movement tasks, while their
brain activity was recorded with 64-channel BCI2000 system [37]. Electrodes were
located complying the international 10–20 system (Fig. 1).

Performed by the employed subjects 14 tasks were as follows:

1. one minute baseline (Brest^ state, denoted as event T0) with eyes open,
2. one minute baseline (Brest^ state, denoted as event T0) with eyes closed,
3. two-minute performance of resting and then and opening and closing left or right

fist, accordingly to a location of a target object presented on the computer screen,
denoted as event T1 and event T2, respectively (later on referred to as classifi-
cation scenario BA^),

4. as above, but imaginary motion was performed instead (classification scenario
BB^),

5. two-minute performance of resting and then opening and closing fists or moving
both feet, accordingly to a location of a target object presented on the top or on
the bottom of the computer screen, denoted as events T1 and T2 respectively
(classification scenario BC^),

6. as above, but imaginary motion was performed instead (classification scenario BD^),
7–14. next steps consist of three repetitions of the 3–6 cycle, namely: step 7 same as 3, step 8

same as 4, etc.
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Recorded 64 EEG signals were sampled at 160 Sa/s, then they were stored in the EDF+
format with an annotation channel containing timestamps with beginning and end related to
T0, T1, and T2 events.

In the presented research, for the purpose of monitoring of the motor cortex
activity, only respective 21 channels were considered for the further processing: FCi, Ci, CPi
(Fig. 1).

4 Data processing

Dataset was imported to and then pre-processed employing the Brainstorm software, where
segmentation and filtration of signals were performed [42]. Finally, numerous features were
extracted.

4.1 Segmentation

The EDF+ format stores EEG data from all electrodes as well as from the description channel,
with time spans of triggering events, thus allowing for segmentation of data into sections (so
called epochs) containing 120 s long recordings of performed tasks: 4.2 s (672 samples)
Brests^ (T0) followed by a 4.1 s-long (657 samples) event T1 or T2 selected randomly. This
resulted in 15 segments for T0, 8 segments for T1, and 7 segments for T2. All three repetitions
of the given task were treated as one task, thus tripling the number of cases in the particular
class. Summarizing: for each person, there are 45 T0 epochs, 24 T1 epochs, and 21 T2 epochs
registered by 21 electrodes located over motor cortex, resulting in 1890 recorded signals,
which are in later steps divided into training and testing sets for the rough set classifier.

Fig. 1 Names, channel numbers
and placement of electrodes.
Marked region denotes electrodes
used for motion classification –
capturing motor cortex activity
[15]
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4.2 Processing in the time-frequency domain

Every signal is decomposed into the time-frequency domain (TF): it is split into frequency
bands, following the standard EEG ranges: delta (2–4 Hz), theta (4–7 Hz), alpha (8–15 Hz),
beta (15–29 Hz), and gamma (30–59 Hz). The next step is extraction of filtered signals
envelopes using Hilbert transform [29], being the indication of the overall activity in the
particular frequency band.

4.3 Features extraction

The author proposes a parametrization of envelopes of band-filtered signals. 5 frequency
subbands for each of 21 sensors, are parametrized as follows:

1. For a particular subband j = {delta,…, gamma} from a sensor k = {FC1, FC2,…, CP6}, 5
activity features are extracted, reflecting the activity in the particular brain region: the sum
of squared samples of the signal envelope (1), mean (2), variance (3), minimum (4), and
maximum of signal envelope values (5).

2. For all 9 pairs of symmetrically positioned electrodes kL and kR (e.g. kL = C1,
and kR = C2) the signal envelopes differences are calculated and summed up (6),
supposedly reflecting asymmetry in hemispheres activities while performing unilateral
motion:

SqSumj j;k ¼ ∑N
i¼1 e j;k i½ �

� �2 ð1Þ

Mean j;k ¼ 1

N
∑N

i¼1 e j;k i½ �
� � ð2Þ

Var j;k ¼ 1

N
∑N

i¼1 e j;k i½ �−Mean j;k
� �2 ð3Þ

Minj;k ¼ min e j;k i½ �
� � ð4Þ

Max j;k ¼ max e j;k i½ �
� � ð5Þ

SumDiff j;kL;kR ¼ ∑N
i¼1 e j;kL i½ �−e j;kR i½ �� � ð6Þ

where, e j, k[i] is an envelope of the signal from particular subband j and electrode k.
As a result there are 615 features extracted for every epoch. The result decision table

includes also task number, person number and decision (T0, T1 or T2).
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This multidimensional problem of classifying EEG signal is not straightforward,
because personal biological and neurological features significantly influence values of
registered signals and extracted features thereof. For a pilot study of personal differ-
ences two features were selected: Meantheta,FCZ and Mingamma,FCZ, with their values
plotted for three persons as in Fig. 2. The first person results exhibit a good
separation of left and right motion classes, contrarily to two other with values in
different ranges, different variations, and overlapping classes, thus, revealing the
Meantheta,FCZ to be applicable for a person S053 but not for others.

In the following data classification (Section 5) every person is treated separately,
thus for every task a new classifier is created with a different subset of useful and
informative features.

5 Data classification procedure

Data classification was performed in R programming environment [13] with RoughSets
package [36]. It is a mathematical calculation environment similar to MATLAB, offering data
importing, scripted processing, and visualization, extensible by numerous additional libraries
and packages.

Rough set theory was created by Polish mathematician Zdzisław Pawlak [32]. It is used to
approximate a set by its upper and lower approximations: the first including objects that may
belong to the set, and the latter including objects that surely belong to the set. Both approx-
imations are expressed as unions of so called atomic sets containing indiscernible objects with
the same values of attributes (Fig. 3).

Fig. 2 Pilot study of attributes
Meantheta,FCZ(horizontal axis) and
MinFCZ,gamma (vertical axis) for
L/R classes separation (dots and
crosses accordingly): a person
S053 – good separation, wide
range of values, b person
S022 – poor separation, wide
range of values, c person
S021 – poor separation, narrow
range of values

Multimed Tools Appl

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Two objects x and y characterized by attributes P ⊆ A (P is a subset of all possible attributes
in A) are in the indiscernibility relation if: (x, y)∈IND(P), where IND(P) is the equivalence
relation defined as (7):

IND Pð Þ ¼ x; yð Þ∈U2j∀a∈P; a xð Þ ¼ a yð Þ� �
; ð7Þ

where a(x) is a value of attribute a of object x. In this work P is a set of 615 features
introduced in Section 4.3, and objects x are particular epochs (EEG signals) from a given
person performing a given task.

All objects in relation with x produce an equivalence class [x]P. If P contains attributes
sufficient for distinguishing between objects with different decision, then the class [x]P
contains only objects with the same decision as x – a lack of distinction between objects
inside equivalence class is not harmful for classification accuracy. Thus, the considered set of
attributes P generates a partitioning of the universe of discourse U into atomic sets – building
blocks for representing rough sets, e.g. decision classes.

A set of all objects with decision d = {T0, T1, T2}, is denoted as Xd. Then Xd can be
approximated by lower approximation PXd (8):

PXd ¼ xj x½ �P⊆Xd
� �

; ð8Þ

namely, a set of all objects x whose equivalence classes [x]P are included within the
decision class of interest Xd. It can be interpreted as a set of objects whose attributes values
allow for precise classification.

On the other hand the set of objects �PXd is called upper approximation and is defined as:

PXd ¼ xj x½ �P∩Xd
� �

≠∅
� �

; ð9Þ

whereas it includes all objects whose equivalence class has non-empty intersection with the
decision class Xd. It can be interpreted as a set of objects whose attributes values point to
objects with the decision of Xd but some equivalent object(s) can have other decision as well
(Fig. 3).

The given subset of attributes P can be sufficient enough to generate such a partitioning of
the universe of x∈U that decision classes are correctly approximated. The accuracy of rough set
approximation is expressed as:

αP X dð Þ ¼ P X dj j
�PX dj j ð10Þ

and αP(Xd)∈[0,1], where αP(Xd) = 1, is for a precisely defined crisp set.

Fig. 3 Partition of the universe based on attributes a1 and a2 into atomic sets, and approximation of the
decision set Xd
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Application of the rough sets theory in a decision systems often requires a minimal (the
shortest) subset of attributes RED ⊆ P, called reduct, resulting in the same quality of
approximation as P. Numerous algorithms for calculating reducts are available, and for this
work a greedy heuristic algorithm is applied [19].

The dataset is divided randomly into training and testing set, with a ratio of 65/35 chosen
arbitrarily after some pilot experiments. These sets contain 1228 and 662 signals for a single
person performing a particular task.

Usually, for attributes with continuous values, prior to reduct calculation a
discretization is performed. Maximum discernibility (MD) algorithm is applied, which
analyses attribute domain, sorts values present in the training set, takes all midpoints
between values and finally returns the midpoint maximizing the number of correctly
separated objects of different classes. It is repeated for every attribute. Discretization
limits the number of possible values – for attributes in this study there are 1 to 2
cuts, splitting the values into 2 to 3 discrete ranges, accordingly.

Once the reduct is obtained and attributes useful for particular classification task are known,
all cases in the training set are analysed, and decision rules are generated. Each object’s xi
attributes an∈RED are treated as an implication’s antecedent, and the decision as its conse-
quent. Rules in the form of logic sentences are obtained (11):

IFa1 xið Þ ¼ v1AND…ANDan xið Þ ¼ vnTHENd xið Þ ¼ di: ð11Þ
At the classification phase these rules are applied for every object in the testing set, and then

the decision is predicted, to be compared with the actual one.
As it was explained in Section 4, there is a need to treat each person and each task

separately, because personal characteristics differ significantly each from other. That was
proven by training a single classifier for L/R movement for all 106 persons, which resulted
in the classification accuracy of 0.5, equal to a random assignment to the class. Therefore, a
new classifier is trained for each person and each task.

With regards to the rough set methodology presented above, the classifier is created and
applied in following steps:

1. Data importing by selecting recordings of particular person performing given task
(classification scenarios A, B, C, and D introduced in Section 3).

2. Selecting subsets of objects xi for 12 classification scenarios based on type of the decision:

a. Aall, Ball, Call, Dall – for classification of all 3 events classes: XT0, XT1, XT2;
b. Amotion, Bmotion, Cmotion, Dmotion – for discerning between Brest^ (objects xi with

decision T0, constituting a decision set Xrest = {xi: d(xi) = T0}) and Bmotion^ (T1 and
T2 combined into one decision set Xmotion = {xi: d(xi) = T0 ∨ d(xi) = T1});

c. ALR, BLR, CUD, DUD – for discerning between left/right and up/down motion only
(only T1 and T2 classes in sets XL,XR, XU, XD).

3. Attributes an(xi) discretization by MD algorithm described above.
4. Splitting data randomly in proportions 65/35 into training and testing sets, as explained earlier.
5. Deriving a reduct RED ⊆ P based on attributes an of objects xi from the training set.
6. Calculating rules by using the reduct RED (11) and actual decisions from training set.
7. Classifying testing set by applying rules from previous step.
8. Employing cross-validation by repeating 20 times steps 4–7.
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This process is performed for all 106 persons for 12 classification scenarios, and 20 cross-
validation runs, resulting in 25,440 iterations.

In the described research three variants of parameters sets P were examined:

1. P615 with all 615 features.
2. P50 with parameters being most frequently used in classification rules from the first

variant. Reducts from all iterations of given classification scenarios were analyzed for
frequency of parameters and top 50 were used instead of 615 to repeat this experiment
(see: Appendix). Thus it is verified if limited number of parameters is sufficient for
accurate description of classes differences.

3. PC3C4 with 120 parameters obtained only from signals from electrodes C3 and C4, as these
were reported by other research to be the most significant for motion classification [25, 33,
41], verifying if limiting the region of interest to two regions on motor cortex decreases
accuracy.

6 Classification results

Aforementioned three variants of P were used in rough set classifiers, reducts RED were
calculated, rules derived and applied to testing sets. Accuracies in 20 cross-validations were
run for all 106 persons, then they were collected and shown in Fig. 4.

Obtained classification accuracies were grouped into quartiles and plotted as box-whiskers
Tukey plots [44], where boxes top and bottom denote first and third quartile, the thick line
inside the box represents the median (second quartile), ends of whiskers represent values
within the 1.5 inter-quartile range (IQR), i.e. IQR = Q3-Q1, lower whisker is Q1–1.5·IQR, and
upper is Q3 + 1.5·IQR. Values outside range of whiskers are treated as outliers marked with
circles.

It can be observed that applying P615 to classification (Fig. 4, white boxes) generally brings
the best results. Limiting the parameters set to P50 or PC3C4 (Fig. 4, gray boxes) results in
decrease of accuracy of ca. 0.1, without significant difference between these two. In numerous
cases PC3C4 is able to yield accuracy slightly higher than P50.

Fig. 4 Accuracy for 12 classification tasks and 3 parameters sets: white – P615 with 615 parameters, light gray –
P50 with top 50 parameters, dark gray – PC3C4 with parameters from electrodes C3 and C4
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Accuracy equal to 1.0 is rarely achieved in classification of three classes (scenarios
ABCDall). Classification scenarios ABCDmotion, aimed at distinction between rest
and any type of motion, result in significantly higher accuracy than for 3-classes
cases. Finally, results for scenarios ABCDLR are the highest, and accuracy often
equals to 1.0. Thus in real applications it is recommended to implement two classi-
fication stages: first recognizing presence of movement, and then determining either it
is left or right and up or down.

Real motion (scenarios A and C) is slightly easier to classify than imagined one
(scenarios B and D) with any type of proposed parameters sets. Than can be justified
by inability to perform this strictly mental task in a reproducible manner, and by
participants’ fatigue.

There is no significant difference in accuracy for left/right (scenarios A and B) comparing
to up/down motions (scenarios C and D), beside the case of scenario CUD (real up/down
motion) with highest accuracy for P615.

The decision rules generated by rough set classifiers involve reduct RED containing
various number of parameters from P set. The classification of three classes requires longest
rules (Fig. 5a) with 6 or 7 parameters. In motion detection (Fig. 5b) rules are shorter, and the
distinction between left and right motion requires the shortest rules. For P50 subset the number
of longer rules is larger than for P615 as the classification requires more detailed description of
every object.

It is not possible to define a universal set of parameters for all participants, as every
parameter appears in rules infrequently. The top parameters can be found in 3–5% of rules
(Fig. 6) often matching a single person.

7 Conclusions

The methodology of signal pre-processing, parametrization, feature selection and
creating a rough set-based classifier for recognition of real and imagined motion from

Fig. 5 Rule lengths for classification: a 3 classes by P615, b rest and motion by P615, c left and right and up and
down by P615, d) 3 classes by P50, e) rest and motion by P50, f) left and right and up and down by P50
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EEG signals were presented. For each person the training and classification process
must be repeated, because each case differs with electrodes placements, signal regis-
tration conditions, hair and skin characteristics, varying level of stress and fatigue,
varying manner of performing the imaginary motion, etc.

It can be observed that the task of accurate classification of motion is easier for
real motion than for imagined one. It can be justified by the fact that actual motion
performance is manifested in more consistent manner in the brain activity, compared
to a strictly mental activity of imagining the motion without any helpful feedback
(visual or sensory).

The total accuracy for classification scenarios ALR (real motion) is 0.87 and for
BLR (imaginary motion) is 0.88, which provides an improvement over other published
research, e.g. accuracy of 0.7 obtained in a left/right navigation employing comparison
of signals from electrodes C3 and C4 [41]; accuracy up to 0.77 in a virtual walking
task, achieved by extracting band powers of signals from C3, CZ, C4, and classifying
with LDA [25]; classification of motion imagery with accuracy up to 0.85 on the
same set of electrodes, but additionally employing author’s algorithm of iterative
Relief based on distance from center for feature selection, and applying classification
with SVM [38]; and accuracy up to 0.86 in a task of left/right hand movement,
employing feature selection with ANN and genetic algorithms [51]. Moreover, the
results were achieved without any dedicated statistical methods employment, such as
ICA, SSP described in literature, whereas blink and heartbeat artefacts elimination and
signal improvements methods were not required. The presented method can be
employed in a simple, yet practical system for motion classification by EEG signals
analysis. It opens a way to creating multimedia applications controlled by 5 states:
rest, left, right, up, and down motion intent. Then, the navigation would be limited to
for example changing the category (left, right), selecting a subcategory or confirming
an option (down), and going back in a hierarchy or cancelling the option (up). A
correct classification of the resting state provides the capability to work in the
asynchronous mode, where the user is allowed for switching between inaction and
actions at any moment.

The future work will focus on verifying this approach on other EEG sensor setups.
Employing a low number of sparsely positioned electrodes.

Acknowledgements The research is funded by the National Science Centre of Poland on the basis of the
decision DEC-2014/15/B/ST7/04724 (the project supervised by prof. Andrzej Czyżewski)

a) b)

0

1

2

3

4

5

6

1 51 101 151 201 251 301 351 401 451 501 551 601

Pe
rc

en
t o

f r
ul

es

Parameter rank

0
1
2
3
4
5
6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Pe
rc

en
t o

f r
ul

es

Parameter rank

All

Mo�on

LR

Fig. 6 Percent of rules including top parameters for: a P615 set, b P50 set

Multimed Tools Appl

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Appendix

Attachment A–most frequent parameters used for P50

Number of times a parameter appeared in reducts generated in classification procedure
employing P615 was used to create parameter raking, and to select 50 the most frequent
parameters (Table 1). These sets were applied as set P50 for each classification scenarios.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

Table 1 Top 50 parameters for classification rules in given scenarios. Number in parentheses denotes times of
appearance in rules

Scenarios Aall, Ball, Call , Dall Scenarios Amotion, Bmotion, Cmotion,
Dmotion

Scenarios ALR, BLR, CLR, DLR

Vartheta, FCZ (420), Mindelta, C1 (409),
Mindelta, FC5 (389), Meangamma,

C6 (388), Sumalpha, CP4 (378),
Mindelta, FCZ (367), Meandelta, FC5
(340), Mindelta, C4 (337), Maxbeta,
C1 (327), Mindelta, CP5 (326),
Sumdelta, FC6 (316), Vartheta, CP2
(310), Varalpha, FCZ (304),
Sumgamma, FC1 (299), Vartheta, CP6
(290), Mindelta, CP2 (288),
Mindelta, C6 (284), Maxgamma, C3

(279), Mindelta, C5 (277), Sumtheta,

FC3 (277), Mindelta, FC3 (276),
Vargamma, C6 (275), Minbeta, C1
(274), Mindelta, FC2 (273),
Sumbeta, FC4 (272), Sumgamma,

FC5 (269), Mindelta, C3 (268),
Varbeta, CZ (268), Mingamma, C4

(260), Sumtheta, FCZ (259),
Varalpha, FC3 (259), Maxgamma,

FCZ (258), Vartheta, C4 (258),
Mindelta, FC4 (254), Vartheta, FC6
(253), Maxbeta, C4 (252),
Maxgamma, FC2 (250), Mindelta,
CP4 (248), Mindelta, CPZ (248),
Maxtheta, FC1 (246), Sumbeta, FC2

(246), Maxgamma, C1 (245),
Sumalpha, CP2 (244), Sumgamma, C4

(239), Maxgamma, FC5 (238),
Mindelta, CP3 (238), Vartheta, CP1
(236), Meantheta, FC3 (231),
Maxalpha, FC6 (229), Vartheta, CZ
(229),

Vartheta, CZ (317), Sumtheta, FCZ

(304), Sumdelta, FC6 (298),
Sumgamma, FC5 (280), Meandelta,
FC6 (276), Meangamma, C6 (276),
Maxbeta, CP4 (274), Maxbeta, CP2
(266), meangamma, CPZ (263),
Maxgamma, FC2 (252), Maxgamma,

C1 (246), Maxbeta, C1 (245),
Vartheta, C1 (241), Maxdelta, FC6
(240), Sumbeta, CP4 (240),
Sumgamma, FC1 (240), Vartheta, CP2
(239), Mindelta, C3 (237),
Sumgamma, FC4 (233), Maxbeta,
CP3 (231), Sumbeta, C5 (230),
Vartheta, CP5 (224), Mindelta, FC5
(223), Maxgamma, FC3 (222),
Mindelta, CZ (221), Meandelta, FC5
(220), Sumbeta, CP5 (220),
Sumalpha, CP5 (219),
SumFC3-FC4_gamma (215), Vartheta,
FC4 (213), Varalpha, FCZ (209),
Mindelta, FC3 (208), Varalpha, FC3
(207), Sumalpha, C6 (203),
Mindelta, CP1 (202), Mindelta, CP2
(201), SumFC1-FC2_gamma (200),
Sumgamma, C4 (200), Sumgamma,

FC2 (200), Meangamma, CP1 (198),
Minalpha, FC4 (198), Sumalpha, CP6

(198), Sumbeta, FC4 (194),
Meanbeta, CZ (193), Mindelta, C5
(193), Varalpha, FC6 (191), Vartheta,
C4 (191), Sumalpha, C3 (190),
Maxbeta, CZ (189), Maxbeta, C2
(188)

Vartheta, FCZ (378), Sumtheta, FC3

(258), Vartheta, C2 (232), Mindelta,
CZ (220), Sumtheta, FC5 (219),
Maxbeta, C1 (219), Mintheta, FC5
(218), Varalpha, FC4 (210),
Sumalpha, CP5 (205), Sumbeta, FC3

(202), Meantheta, FC1 (198),
Mindelta, C5 (197), Minbeta, C1
(194), Meanbeta, CZ (194), Vartheta,
CP4 (193), Mindelta, FC4 (190),
Mindelta, FC5 (189), Vartheta, C4
(187), Sumbeta, CZ (180),
Mingamma, C4 (180), Vargamma, C6

(180), Meangamma, C6 (179),
Vartheta, CPZ (175), Meantheta, FC5
(169), Maxgamma, C4 (163),
Mindelta, CP5 (162), SumCP1-CP2,

alpha (159), Vartheta, CP2 (157),
Sumbeta, FC1 (153), Varalpha, FC2
(152), Maxgamma, FC2 (148),
Vartheta, CZ (143), Vartheta, CP5
(140), Sumtheta, FC1 (139),
Minalpha, FC6 (139), Mindelta, FC6
(138), Mindelta, CP6 (138), Vartheta,
FC1 (138), Maxbeta, CP2 (137),
Meangamma, C4 (137), Vartheta, C3
(135), Maxgamma, C1 (135),
Sumbeta, FC6 (134), Meangamma,
CP5 (132), Mindelta, FC1 (131),
Mindelta, C6 (131), Minalpha, FC4
(129), Vartheta, FC4 (127), Vartheta,
C1 (127), Meanbeta, C1 (127)
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