Int J Theor Phys (2017) 56:1364—-1381 c
rossMark
DOI 10.1007/s10773-017-3278-x

If Gravity is Geometry, is Dark Energy just Arithmetic?
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Abstract Arithmetic operations (addition, subtraction, multiplication, division), as well as
the calculus they imply, are non-unique. The examples of four-dimensional spaces, Ri
and (—L/2, L/2)*, are considered where different types of arithmetic and calculus coexist
simultaneously. In all the examples there exists a non-Diophantine arithmetic that makes
the space globally Minkowskian, and thus the laws of physics are formulated in terms of
the corresponding calculus. However, when one switches to the ‘natural’ Diophantine arith-
metic and calculus, the Minkowskian character of the space is lost and what one effectively
obtains is a Lorentzian manifold. I discuss in more detail the problem of electromagnetic
fields produced by a pointlike charge. The solution has the standard form when expressed
in terms of the non-Diophantine formalism. When the ‘natural’ formalsm is used, the same
solution looks as if the fields were created by a charge located in an expanding universe,
with nontrivially accelerating expansion. The effect is clearly visible also in solutions of the
Friedman equation with vanishing cosmological constant. All of this suggests that phenom-
ena attributed to dark energy may be a manifestation of a miss-match between the arithmetic
employed in mathematical modeling, and the one occurring at the level of natural laws.
Arithmetic is as physical as geometry.
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1 Introduction

The idea of relativity of arithmetic follows from the observation that the four basic arith-
metic operations (addition, subtraction, multiplication, division) are fundamentally non-
unique, even if one assumes commutativity and associativity of ‘plus’ and ‘times’, and dis-
tributivity of ‘times’ with respect to ‘plus’. The ambiguity extends to calculus and algebra
since even the most elementary notions, such as derivatives or matrix products, involve
arithmetic operations, sometimes accompanied by limits (‘to zero’, say). A ‘zero’, the neu-
tral element of addition, inherits its ambiguity from the ambiguity of addition. The same
concerns a ‘one’, the neutral element of multiplication.

The freedom of choosing arithmetic and its corresponding calculus is a universal sym-
metry of any mathematical model, but we are still lacking its physical understanding. For all
that, treated just as a mathematical trick, the idea has found concrete applications in fractal
theory [1-4].

In the paper, I discuss a situation where there is a miss-match between the arithmetic
employed at the level of mathematical principles, and the one that is naturally ‘employed’
by Nature. We will see that consequences of the miss-match can be similar to those of dark
energy.

In natural sciences there exists at least one example of such a miss-match, and we expe-
rience it in our everyday life. This is the Weber phenomenon known from neuroscience [5,
6]. Namely, it is an experimental fact that the increment x — x + kx of intensity of a stim-
ulus (sound, light, taste, etc.) is perceived by our nervous system as being independent of
x. k depends on the type of stimulus and is known as a Weber constant. The Weber law
Ax/x =k =~ const is valid in a wide range of stimulus parameters.

From a mathematical point of view the Weber law appears as the solution of the following
problem [7]: Find a generalized subtraction © such that

(x+kx)yox = f (f(x +kx) — f(x) =x (1

is independent of x. The solution f is unique and is given by a logarithm, as shown by
G. Fechner in 1850 [8]. This is the reason why decibels correspond to a logarithmic scale.
We hear, see, taste and feel the world outside of us though a logarithmic channel of our
neurons, although we are typically as unaware of it, as we are unaware of experiencing
curvature of space when we feel our weight.

The Fechner problem extends to any natural science. In order to appreciate it, consider
the function f(x) = x3, and define

x@y = @)+ FO) = Jx3 +)3, )
x0y = L) = fO) = a3 =3, 3)

x0y = O fB) = xy, 4)
xQy = /) =x/y. )

Here multiplication is unchanged.

Mathematicians would generally say that we have introduced two types of field, related
by the field isomorphism f, but I prefer the terminology of Burgin [9, 10] where formulas
such as (2)—(5) occur in arithmetic contexts. A terminology involving ‘fields’ or ‘relativity
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of fields” would be very confusing in the context of physics, especially in relativistic field
theory. An arithmetic involving a non-trivial f is termed by Burgin a non-Diophantine one,
as opposed to the Diophantine case of f(x) = x. I will also stick to this distinction, although
one should bear in mind that it is largely a matter of convention which of the two arithmetics
is Diophantine.

The non-Diophantine derivative

DA(x)
Dx

lim (A(x®h) © A(x)) @ h (6)

satisfies all the basic rules of differentiation (the Leibnitz rule for ®, the chain rule for
composition of functions, linearity with respect to @...). The solution of

DA(x)
Dx

=Ax), A0 =1, @)
is unique, but it comes as some surprise, at least when one first encounters it, that
A) =" P, ®)

as one can verify directly from definition (6). Had one replaced f(x) = x3 by f(x) = x°,
one would have found A(x) = eX’l5 = F~1(ef ™), as the reader has probably already
guessed.

Notice that the change of f is not a change of variables. The differential equation (7)
remains linear in spite of non-linearity of f. The change of f cannot be regarded as a
change of gauge either, with covariant derivative D/ Dx, since the corresponding connection
would be trivial, in spite of non-triviality of f. The change of arithmetic operates at a more
primitive level than a change of variables or gauge.

Of course, one can denote g = f~! and rewrite (2)-(3) as

rhy =g e = (Vxe ). )
x—y=glgx) oy =(xo ). (10)

Now comes the fundamental question: Which of the two additions, + or @, is more
natural or physical? Which of them is Diophantine, and which is not? Clearly, & and @, ©
coexist in the same set, and it is hard to say why (2)—(3) should be regarded as less simple,
or more weird, than (9)—(10).

Put another way, what kind of a rule is responsible for the implicit preference of f(x) =
x over any other one-to-one f'? The Ockham razor?

Expressing it yet differently, let us assume that it is indeed the ‘natural’ (whatever it
means) arithmetic with £ etc. that we should employ in practical computations. What kind
of a rule guarantees that the laws of physics (variational principles, say) are formulated in
terms of the same arithmetic and calculus, and not by means of &, ®, D/Dx, and the like,
for some unknown f?

I believe the questions are open.

It is not completely unrelated to mention that the case of a linear f was extensively
studied by Benioff [11] in a somewhat different context. Here, the departure point was
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the observation that natural numbers N can be identified with any countable well-ordered
set whose first two elements define O and 1. For example, the set N = {0,2,4,...} of
evennatural numbers may be regarded as a representation of N. The value function f(x) =
x/2 maps a natural number x € N, into its value, but to make the structure self-consistent
one has to redefine the multiplication: x @ y = £~ (f(x) f(¥)) = xy/2. So, in Benioff’s
approach numbers themselves are just elements of some formal axiomatic structure, while
their values are determined by appropriate linear value maps, which are simultaneously used
to redefine the arithmetic operations. The idea was then extended by Benioff to real and
complex numbers, and generalized in many ways, including space-time dependent fields of
value functions [12, 13].

From the Burgin perspective it is essential that one can also encounter nonlinear func-
tions f (Fechner’s logarithms, Cantor-type functions for Cantor sets [1-3], Peano-type
space-filling curves in Sierpifiski-set cases [4]...). Whenever one tries to apply a Burgin-type
generalization to a physical system, one immediately encounters the problem that nontrivial
f's typically require dimensionless arguments in f(x). Still, physical xs are dimensional.
One has to associate with a physically meaningful x a dimensionless number, and we return
to the problem described by Benioff. Indeed, a dimensionless x is obtained for the price of
including a physical unit (of length, say), and units can be chosen arbitrarily. The choice
of units effectively introduces a value map, and a change of scale changes this map. Bur-
gin’s f, when employed in a way proposed in [1], can be an arbitrary bijection, so can
be composed with any value map with no loss of bijectivity of the composition. Benioff’s
value maps are thus intrinsically related with Burgin’s f's, but are not necessarily equiva-
lent to them. The problem of dimensional vs. dimensionless x was discussed in more detail
in [2].

The goal of the present paper is to illustrate these problems on concrete examples from
relativistic physics, and to contemplate the possibility of detecting a non-trivial f by means
of physical observations. We will see that phenomena of dark-energy variety may suggest
the presence of some f between the universe of our mathematical formulas, and the physical
Universe.

We will consider two spaces, ]Ri and (—L/2, L/2)*, which become Minkowski space-
times when appropriate arithmetic is selected. We will then consider the problem of
electromagnetic fields produced by pointlike sources, but the Maxwell field will be for-
mulated in terms of this concrete arithmetic &, ©, ©®, @, which will make the space
Minkowskian. However, when we switch back to the ‘standard’ arithmetic the geome-
try becomes locally Lorenzian, with a non-Minkowskian global structure. Static charges
will appear moving toward event horizons of the space, thus creating an impression of an
expanding universe, with accelerating expansion. All of this happens in spite of the fact that
the spaces are static, no matter which arithmetic one works with.

The paper is organized as follows. In the next section, two types of real numbers,
equipped with their own arithmetic and calculus, are introduced. The two types of reals
are related by a bijection f. In Section III, the two types of reals are employed in con-
struction of two types of Minkowski spaces. Sections IV and V discuss in detail the two
concrete examples of Minkowski spaces: Ri and (—L/2, L/2)*. Section VI discusses elec-
tromagnetic fields produced by a pointlike charge, with Maxwell equations formulated in
terms of a non-Diophantine formalism defined by some f. The formalism is implicitly
non-Diophantine since an observer who employs in his observations and calculations the
arithmetic defined by the same f will never discover that some nontrivial f is implicitly
involved. However, in case there is a miss-match, i.e. two different fs come into play, the
conflict of arithmetics can have observational consequences. This is discussed on explicit
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examples in sections VII and VIII. Finally, in section IX, an example of a non-Diophantine-
calculus Friedman equation is discussed. We observe accelerated expansion with vanishing
cosmological constant.

2 ‘Lower’ and ‘Upper’ Reality

Consider real numbers R equipped with the ‘standard’ arithmetic operations of addition
(+), subtraction (—), multiplication (-), and division (/). Let us term these real numbers
the ‘lower reals’, and denote them by lowercase symbols. As usual, ‘-’ can be skipped:
a - b = ab. Neutral elements of addition and multiplication in R are denoted by 0 and 1.
Now, let us assume that there exist some ‘upper reals’, whose set is denoted by d. By
assumption, A is related to R by some bijection, f : d — R. Those upper reals are equipped
with their own arithmetic and calculus. The arithmetic operations in d will be denoted by
®, O, ©, ©. We use the convention that elements of A are denoted by upper-case fonts.
The arithmetic in i is non-Diophantine in the sense of Burgin [9, 10],

Xov ="+ 1), (11
Xev =X - ), (12)
XoY =T (fx)fx), (13)
XoY = (X)), (14)

Both arithmetics are commutative, associative, and multiplications are distributive with
respect to (appropriate) additions. Neutral elements of addition and multiplication in I are
denoted by 0’ and 1’, which implies 0’ = £~1(0), I’ = f~1(1).

A negative in ¥ is defined by 6X = 0’ © X = f~! (- f(X)). Multiplication by zero
yields zero in both arithmetics, in particular 0’ © X = 0'.

Multiplication is equivalent to repeated addition in the following sense. Let N € N and

X' = f1(X) € ¥ Then

NaeX = WN+X), (15)
N oX = NNX) (16)
=X'®  -oX. (17)

Ntimes

A power function A(X) = X © --- © X (N times) will be denoted by XN/, since
XNV o xM = x(N+M) _ yN'eM’ (18)
A derivative of a function A : i — ¥ is defined by

DA(X)
DX

Hlimo/ (AX®H)SAX)0H, (19)
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as contrasted with the derivative of a function a : R — R, defined with respect to the
lowercase arithmetic,
da(x)
dx

= ’}inh (a(x +h) —a(x)) /h. (20)

Nowlet A= f~loao f.Then,

DA(X) 1 (da(f(X))> @1
DX af(x) )
Y e
/ AXDX = f~ / a(x)dx |, (22)
X X
satisfy
X
By—ylMX)DX = A(X), (23)
*DAX)
ﬁ lvax_ﬂumeAwy (24)

Formula (21) follows directly from the definitions of D/DX and d/dx. As stressed in the
introduction, (21) is not the usual formula relating derivatives of A = f~'oao f with those
of a. Indeed,

DA | da
— = fo—of 25
px =1 @t >
so that D/DX behaves like a covariant derivative, but with a trivial connection for any
bijection f : d — R. The standard approach, employed in differential geometry or gauge
theories, would employ the arithmetic of R, and one would have to assume differentiability
of f and f~!. Here bijectivity is enough since no derivatives of either f or f~! will occur
in (21) and (25). This is why this type of calculus is so useful and natural in fractal theory
[1-4].

Partial derivatives and multidimensional integrals are defined analogously.

3 Lower and Upper Minkowski Space-times
Consider a point x in Minkowski space R* and assume
(o ) = (£, 7Y, 7)) (26)

where (xO, xb x2, x3) € R* and (XO, x!, x2, X3) € ¥*. The two spaces are Minkowskian
in the sense that the invariant quadratic forms are defined by

gapxx” = (x*? — 1?2 — H? — ()% 27
GupX'X" = (X 6 (X1 e (x?)? & (x3)?. (28)
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Since
P (garxx") = £ (PO = F XD = FDT - FOO?) @9)

£ (fGa f XD £ (X)) (30)
= Gap XX, 31

the two quadratic forms are related by f, and g,, = f(Ggp). Covariant and contravariant
world-vectors are defined in the usual way,

Xy = GapX® (32)
3
=/ (Z f(Gab)f(X”>> (33)
b=0

3
=/ (Z gabx”) = /"' (xa). (34)
b=0

The quadratic forms are invariant with respect to Lorentz transformations,

3
X, = Aalxp = Zkabxb, (35)
b=0
X, = A"Xp = Bj_oAd” © X, (36)
3
=5 (Z f(Aa”)f(Xb)> : (37)
b=0

This type of Lorentz transformation, but for f representing a Cantor set, was explicitly used
in [1, 2] to construct fractal homogeneous spaces.
We will later need an explicit boost,

Cosh¢ ©Sinh¢ 0 O/
©Sinh¢ Cosh¢ 0 O

Aab = 0/ 0/ 1/ 0/ ’ (38)
0 0 or

where Sinh¢ = f_1 (sinh f(¢)), Cosh¢ = f~! (cosh f(¢)) satisfy

CoshZ¢ © Sinh?¢ = 1. (39)
The four-velocity
Cosh ¢
vr= | S| (40)
0/

is mapped by (38) into (1’,0’, 0/, 0').

@ Springer


http://mostwiedzy.pl

A\ MOST

Int J Theor Phys (2017) 56:1364-1381 1371

4 Minkowski Space-time R%

Now let us make the analysis more explicit. Let the Fechner function f(X) = ulnX + v,
u > 0, be the bijection f : R — R. Accordingly, ¥ = Rp. f~1(x) = e®* /% and thus
0= =em =11 =el"m

4.1 Arithmetic

Let us begin with the explicit form of arithmetic operations. Addition and subtraction
explicitly read

XeY =1 (fX)+ f(1)

= XYe"/H, 41)
Xoev = (fX) - f(r)

= ¢ V/1hX)Y. (42)

The arithmetic operations occurring at the right sides of (41) and (42) are those from R and
not from ¥ (the latter occur at the left sides of these formulas). For example, X @ 0 =
Xe Vkev/n = X,

Note that although X > 0in f(X) = ulnX + v, one nevertheless has a well defined
negative number ©X = 0' © X = ¢ 2V/#*/X € ¥ = R, which is positive from the point
of view of the arithmetic of R. Let us cross-check the negativity of ©X:

OX®X = (0X)Xe'/" (43)
= (e X)Xe M (44)
=e V=0, (45)

@, ®) = (R4, @) is a group, as opposed to (R4, +). In consequence, the Minkowski space
]Ri is invariant under the non-Diophantine Poincaré group.
The multiplication in ¥ is explicitly given by

XoY = LX) f(r)

_ eulnXlnY+v1nX+vlnY+u2/u—v/,u’ (46)
XoY = 1 (fX)/f)

= InX+v/w)/(uinY+v)—v/p 47)

Again the expressions at the right-hand sides of (46) and (47) involve the arithmetic of R.
4.2 Light cone

The light cone in Ri consists of vectors satisfying

GarX* X" = 71 (£(Gan) F(X) (X)) (48)
= 7" (g s X F(XD) 49)

=0 =70 =" (50)
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This is equivalent to f(X%)2 = f(X1)2 + f(X®)? + f(X3)?, ie.

X0 = g (i\/ FOXOP 4 F(X2P + f(X3)2> (51)

1 2 2 2 3 2_
_ (VX X 17 X 0] 12—/ ) 52)

Figure 1 shows the light cone G, X*X? = 0/ in 1 4 2 dimensional Minkowski space Ri.
An arbitrarily located light cone

Ga(X* Y (X" oY) =0 (53)
corresponds to
gan (F XD = Fr) (FX") = f(rh) =0, (54)
that is
X0 — YOe:I:\/lnz(Xl/Y1)+ln2(X2/Y2)+1n2(X3/Y3). (55)
ForY?=... = Y3 =0 = e~"/* we reconstruct (52).

Figure 2 shows the light cones (55) in small neighborhoods of various ori-
gins Y“. The plots suggest that a Lorentzian geometry is typical of both the stan-
dard ‘lower-case’ space-time R3, and of the ‘upper-case’ ¥°. Recall that the lat-
ter is also globally Minkowskian, but with respect to the non-Diophantine calculus.
Interestingly, when we employ in ¥® the miss-matched formalism taken from R3,
the formulas are locally Lorentzian. The further away from the ‘walls’ of Ri the
observation is performed, the more Minkowskian the geometry appears, provided one
does not observe objects that are too far away from the observer, as we shall see
later.

Fig. 1 Light cone X,X% = 0" in 1 + 2 dimensional Minkowski space Rﬂ_, for u = 10, v = =20, and its
close-up (right) in the neighborhood of (0, 0/, 0'), where 0/ = e™"/#* = ¢% ~ 7.39
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b 10050

5050

10050 10050

Fig. 2 Minkowskian correspondence principle in 1 + 2 dimensional Fechnerian space-time. Light
cone (Xq © Y)(X* © Y% = 0 for (A) (¥° v, Y% = (10000,10001,10002), (B) (YY,
Y, Y% = (10000, 5000, 10000), (C) (¥°, ¥',¥?) = (10000, 10000, 5000), and (D) (Y°,Y' ¥?) =
(5000, 10000, 10001). The further away from the boundaries of Ri, the more Minkowskian-looking the light
cones are

To prove the local Lorentzian structure analytically, let X¢ = Y“ 4 €“. Here ‘4’ is from
R since the observer is assumed to perform his analysis in the ‘wrong’ formalism. Then, for

le?/ Y] < 1,

gap [/ (YD f1(YP)e? = §up(Y)ee” ~ 0 (56)
where
Bab = gab ' (Y") f'(Y?)  (no sum) (57)
= diag ()2, —(r) 2 —r) 2 —(r)?) (58)
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Fig. 3 Light-cone with the origin at (Y 0 y! ¥%) = (0, 0.4, —0.2) in 1 + 2 dimensional Minkowski space
(—0.5,0.5)3 (L = 1). (A) The global picture, and (B) the close-up of the origin of the cone

is the Lorentzian metric. g,, becomes just a conformally rescaled Minkowskian g, if Y0 =
Yl=y2=y3
The same effect occurs for general hyperboloids G, (X% © Y4)(X? © Y?) £ 0.

5 Minkowski Space-time (—L/2, L/2)*

Let ¥ = (—L/2,L/2) and f(X) = tan(zX/L), f~'(x) = (L/m)arctanx.
f : d — R is a possible bijection, with 0’ = 0 and 1’ = L/4 (Figs. 3 and 4).

-0.0190

Fig. 4 The same as in the previous figure, but with (YO, vyl Y2) = (0.01, —0.02, —0.03)
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5.1 Light Cone

The light cone G, (X & YOHXPoevh) =0 corresponds to

X0 = ! (f(YO) P =F )+ (F XD — FrD) + (f(x3)—f<Y3))2) (59)
L ( 7y0 \/( X! nYl>2 < X2 ny2>2 ( X3 ny3)2)
= —arctan | tan — =+ tan —tan — ) +|(tan —tan — | +[(tan —tan —— .
b4 L L L L L L L
(60)
Now let X¢ = Y% 4 €%, where |¢?/L| <« 1. The effective Lorentzian metric in a

neighborhood of Y reads
2 0 1 2 3
T Y nY Y Y
g (Y) = — diag [ cos™ —,—00574—,—00{4 —,—00574— . (61
8an(¥) 72 diag ( 2 i3 2 2 (61)

Another example of a bijection f : d — R is provided by f(X) = arctanh(2X/L),
F~'(x) = (L/2) tanh x.

6 Field Produced by a Pointlike Charge

The above two examples show that several different types of arithmetic may coexist in the
same space-time. Let us try to find a phenomenon where a nontrivial f can be detected.

I propose to concentrate on Maxwell equations, but formulated in terms of this form of
arithmetic that makes the geometry globally Minkowskian. Consider the d’ Alembertian

D D

0 = Gup—— ——
“’pxa pxb

(62)

defined with respect to non-Diophantine partial derivatives. Letd 3 S — X9(S5) € a
be a world-line of a pointlike charge, and let J¢(X) be the current associated with the
world-line. The Maxwell equations can be taken in the form

OAYX) = J4X). (63)

The procedure of finding A“(X) is standard [14], but we only have to take care of
appropriate definitions of non-Diophantine arithmetic and calculus. The end result is

(64)

AYX) = f! ( FOf WYY ) |

ghe f (UP ) (f(XO) = f(Y9)

Here C is a constant, U%(X) is the four-velocity of the charge, and X” © Y? is future-
pointing and null. We say that X@ < ¥* is future-pointing if x* = f(X¢) € R* is future-
pointing. The summation convention is applied unless otherwise stated.

The four-velocity is normalized by U,U?® = 1’ (where I’ = f~!(1) is the neutral
element of multiplication), which is equivalent to

ganf (U ) £ (UPN) =1, (65)
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The four-potential is a world-vector gauge field and thus under the action of a Lorentz
transformation A transforms by A%(X) — A%(X) = (AA)*(A™!X), up to a gauge
transformation. In standard notation

e AU(Y)
AT = Up(Y) (A~1X)P — YP) (66)
=C AUCY) : 67)

(AD)B(Y) (XP — (AY)P)

Now consider a Y-independent U¢ of the form (40) and let A%, be given by (38). To sim-
plify further analysis let us take the point of observation at the origin X* = (0/, 0/, 0/, 0') =
0’ and the source at Y¢ = (Y%, ¥',0/,0)). Y¢ is null and past-pointing, which implies
F(¥% = —| (Y'Y (notice that in our examples we assume that f is increasing and there
exist various arguments why this is important for physical consistency of the formalism).
Accordingly,

(AY)? = Y © Coshgp o Y' © Sinh, (68)
1
7 (an®) =~ (coshf(¢>) + s 1nhf(¢)>
f
— 1@, 69)
The only non-vanishing component of the potential reads
A®(0) = Co (eAY)° (70)
o £(C)
=f (f(O’)—f((AY)O)) (71)
c
= f! f(f()yl) (72)
| jeiron !

In order to continue we have to make f more concrete. Let us begin with the Minkowski
space (—L/2, L/2)*.
7 Fields in (—L/2, L/2)*

f(X) =tan(r X /L) implies

A0 = garctan F© ) (73)

ltan(xY!/L)le @
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Let us first consider the case of |7 Y!/L| « 1, but with Y'! sufficiently far from the singu-
larity at the origin 0’ = 0, so that the arguments of both tan and arctan are small. The field
is then approximately Coulombian

L (O

ARy ~ - (74)
|77Y1/L|6Wf(¢)
L? 1~ f@)
= f(C)—e I . 75
R )IYle (75)

Notice that up to this point we have worked with linearized forms of f and f~! since for
small distances and small potentials it is enough if one replaces exact nonlinear f by its
linear approximation.

Let us concentrate on a charge at rest, i.e. with f(¢) = 0, and denote ¢ = L2 f(C) /x>
We conclude that a source placed in a neighborhood of the origin produces the Coulomb
field whose value at the point of observation is

q
AP0 ~ (76)
1Y
where |Y| is the distance from the source.
Now, let us increase |Y| so that tan cannot be anymore approximated by its argument.

The argument of arctan is even smaller, so here the approximation is still valid. The result is

0/0/\ ~ £ f(C)
A0~ 2 ltan(xY1/L)]| an
g wY'/L
~ Y| tan(xY!/L) 78
1
- %J&Tﬂwl)) (79)

So, in spite of our assumption that in the neighborhood of the origin the charge is at rest,
at large distances the charge looks like moving with the four-velocity determined by certain
(Y1), defined by

e%f'(qﬁ(ﬂ)) _ tan(zY'/L)

7Yl/L (80)
The velocity 8 = tanh f (q’)(Yl)) is
/i (tan(n)/l/L))2 _q
YT/L
p=—~ LT (81)
Y (tan(z¥!/L) +1
aYT/L

B is the velocity deduced by the observer located at X¢ = 0’ who analyses his data on
the basis of the ‘standard’ Diophantine arithmetic, whereas the physical non-Diophantine
arithmetic, employed in Maxwell’s equations, is given by ©, @, etc. The observer is related
with the physical Universe by means of an ‘information channel’ f, but is unaware of it.
The miss-match of mathematical structures leads to unexpected behavior of distant objects.
Had the observer decided to employ Einstein’s general relativity, a similar miss-match
would have occurred. A solution would produce an expanding universe whose behavior
would be consistent with the Hubble law at small distances, but very distant objects would
acquire an unexplained acceleration. We will demonstrate this explicitly in section IX.
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As our second example consider

L c
A0 = 5 tanh ZACY 5 (82)
larctanh(2Y! /L) e )
With the same approximations as before
yl
a0y ~ L SO @ 83)
2 2Y1/L|
yb
= e (84)

where ¢ = L?f(C)/4 and Y is in a neighborhood of the origin. For Y further away from
the origin and with f(¢) = 0 we get

L C
IO A — (85)
2 |arctanh(2Y1/L)|
2vl/L
_a_ L 6)
|Y| arctanh(2Y!/L)
Repeating the remaining calculations we obtain
/i (arctanh(ZYl/L)>2 1
2vl/L
B=—t L/ (87)
|Y'| (arctanh(2Y!/L) +1
2Y1/L

Figure 5 compares (81) with (87). In both cases the charge looks as if it moved toward
the boundaries ¥! = £L /2, where it approaches the velocity of light. The motion is non-
trivially accelerated.

0.5

—T T

-1.01

Fig. 5 The plot of (81) (full) and (87) (dashed) for L = 1. The velocity has the same sign as ¥! so the
motion is toward the horizons ¥ = £1/2
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8 Fields in R}

It is instructive to consider explicitly also the case of R‘_‘,_ since 0 = e~"/** and thus cer-
tain counterintuitive elements of a non-Diophantine arithmetic and calculus become more
visible. The example will make further generalizations easier to understand.

Here f(X) = ulnX+4v, 1w > 0, f~1(x) = e®=/1 x o7/ (14x /) = O +xe " /pu.
Setting Y! = 0/ +r, f(0' +r) = uln[0’(1 + r/0")] + v = puln(l + r/0’), and assuming
|r| < 1, we obtain

c
A0 = | — L (88)
| FrYleirani’” @
(C)e™"/1/u?
~ 04— ,/( L (89)
lIn(1 + r/0) el
(S ICREIING
~ /
~ 0 + —|r|eﬁf(¢’ (90)
We identify g = f(C)(e~"/"*/u)?. For f(¢) = 0 and larger r
y g
f(C)e™ "M/
A0y ~ 0+ L 91
© + [In(1 + r/0")] Ob
=0+ " 1n(1+r/0’)" 92)
70

An observer located at 0 will conclude that the field is produced by a charge which satisfies

- In(1 4+ r/0")
e/ @ — 7r/0// : 93)
hence
(1n(1+r/o’))2 1
r r/0
LA L 94
7] (ln(1+r/0’))2+1 ©4)
r/0

Figure 6 shows that 8 given by (94) is always negative: The charge moves toward the
horizon Y!' = 0. Fields produced by charges located between the observer and the hori-
zonwould be red-shifted. However, an observer located between the horizon and the charge
would detect a blue-shifted field.

9 Friedman Equation

Taylor expansions of (81), (87) in a neighborhood of ¥ = 0 begin with third order terms
~ (Y'/L)3. The effect is small. However, when we switch to non-Diophantine generalized
Einstein equations, the correction should become visible at large distances.

So, let us consider the Friedman equation for a flat, matter dominated FRW model
with exactly vanishing cosmological constant [15]. In matter dominated cosmology (£2,, =
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| L | L L | L L | L L | L L | r/O’
-1.0 ~0.5 : 0.5 1.0 15 2.0
_02 .
—041

-0.6 [

-0.8

-1.0+

Fig. 6 The plot of (94): B as a function of r/0/

1, Q, = 0), with no dark energy (2, = 0), the scale factor is given by a(t) = (t/t9)*/>. In
the non-Diophantine notation the solution reads

A(T) = (T @ T0)*®" (95)
= 7 (@R, (%)

To make (96) more explicit, let us experiment with some f. For example, the choice of
A = (=L/2,L/2) and f(X) = tan(wX/L), f~1(x) = (L/m)arctanx leads to the scale
factor depicted at Fig. 7, where (96) is compared with the standard (z/ 10)%/3, for L = 20,
To = 1/, and 1y chosen in a way guaranteeing a reasonable fit of the two plots.

10

Fig. 7 The plot of (96) (full) as compared with (t/£)*/ for f(X) = tan( X/L). Both models involve no
dark energy, ie. 2, =0=0
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The curve bends up in a characteristic way, typical of dark-energy models of accelerating
Universe. The effect is of purely arithmetic origin, with no need of dark energy. Arithmetic
becomes as physical as geometry.

10 Conclusions

Gravity is geometry. Is dark energy just arithmetic? Is dark energy dark, because it is always
darkest under the lantern, and we are so accustomed to ‘plus’ and ‘times’ that we overlooked
the fundamental ambiguity of these operations? Is there a physical law that determines the
form of arithmetic, a kind of Einstein equation for f?

The questions are relatively well posed. We can change the paradigm and do physics
with unspecified f, leaving determination of f to experimentalists. Perhaps one day we
will understand which arithmetic is physical, and why.
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