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Abstract
We show that the well-known theory for classical ordinary differential equa-

tions with separated variables is not valid in case of equations on time scales.
Namely, the uniqueness of solutions does not depend on the convergence of ap-
propriate integrals.
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1 Introduction
Dynamic equations on time scales have become very interesting for many mathemati-
cians in recent years (see [2, 3, 5], and references for others).

The main aim of this paper is to verify how the theory of dynamic equations with
separated variables (see [6]) changes if we generalize classical equations to equations
on time scales. We show that classical theorems are not true even under some additional
assumptions.

We introduce some basic definitions (see [2]).
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Definition 1.1. A time scale is an arbitrary nonempty closed set of the real numbers.

Let T be a time scale. We denote IT := I ∩ T for an arbitrary I ⊂ R.
Now we define some operators.

Definition 1.2. We define the forward jump operator σ : T→ T by

σ(t) = inf {s : s ∈ T, s > t} ,

σ(maxT) = maxT if supT <∞, and the backward jump operator ρ : T→ T by

ρ(t) = sup {s : s ∈ T, s < t} ,

ρ(minT) = minT if inf T > −∞.

Definition 1.3. Assume that f : T→ R and let t ∈ Tκ = T\ {supT}. Then we define
f∆(t) to be the number (provided it exists) with the property that for any given ε > 0,
there is a neighborhood U of t such that

|[f(σ(t))− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s|, for all s ∈ UT.

If f∆(t) = g(t) for every t ∈ [a, b]T, then we denote

f(b) = f(a) +

∫ b

a

g(t)∆t.

Let us introduce some special class of time scales that are the most important for
this paper.

Definition 1.4. If there exists a sequence {tn}∞n=1 ⊂ T such that tn ↘ 0 and σ(tn) > tn,
then we say that T is a DNC time scale at 0 (dense not classical).

In this paper, we assume that T means a DNC time scale and let, for simplicity,
minT = 0. Moreover, we fix the symbol {tn} for a sequence that has the property
mentioned in the above definition. We study the uniqueness of solutions of the following
initial value problem for equations with separated variables{

x∆(t) = f(t)g(x(t)), t ∈ T,
x(0) = 0,

(1.1)

where f : T→ R and g : R→ R.
We say that a function z : T→ R is a solution of the problem (1.1) if z(0) = 0 and

z∆(t) = f(t)g(z(t)) for all t ∈ T.
Rewriting from [6] the uniqueness of the zero solution of (1.1) (if g(0) = 0) in the

classical case depends on divergence of the integral∫ ε

0

dx

g(x)
.

Concerning solutions of the problem (1.1) in a local sense, all time scales can be
generally divided into three following classes:
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(i) [0, a] ⊂ T for some a ∈ R;

(ii) σ(0) > 0;

(iii) T is a DNC time scale at 0.

In the first case (i), we are dealing with the classical theory of ordinary differential
equations with separated variables. In the second case (ii), regardless of the time scale,
the problem (1.1) has always exactly one solution in a local sense.

The DNC time scales are very wide class of different time scales. In this paper, we
find different examples of the problem (1.1), where independently from any DNC time
scale and from convergence of appropriate integral it may have exactly one solution or
it may have more than one solution. In some cases it may even have no solution at all.

The following closed sets are some examples of DNC-time scales:

• {0} ∪ {τn : n ∈ N} , τn ↘ 0;

• {0} ∪
⋃
n∈N

[ 1

n
,

1

n
+

1

n2

]
;

• {0} ∪
{

1

n
: n ∈ N

}
∪
{

1

n
+

1

nk
: n, k ∈ N, k > n

}
;

• the Cantor set.

In the theory of equations x∆(t) = F (t, x(t)) on time scales it is natural to con-
sider not necessarily continuous but so called rd-continuous functions F . It means such
functions F that for any continuous x : T → R the function ϕ(t) = F (t, x(t)) has the
following property:

ϕ is continuous at t ∈ T if σ(t) = t and lim
s→t

ϕ(s) is finite if ρ(t) = t < σ(t) (see [2]).

Unfortunately, the Peano type theorem is not valid for equations with rd-continuous

right-hand-side (see [1, 4] for counterexample on time scale {0} ∪
{

1,
1

2
,
1

3
, . . .

}
).

We present below that for every DNC time scale T there exists a problem (1.1)
without any solution, however the right-hand-side of the equation is an rd-continuous
function with separated variables.

Namely, for any DNC time scale T, we find an rd-continuous function of the form
f(t)g(x) such that the problem (1.1) has no solution.

Example 1.5. Let us define f : T→ R and g : R→ R by the formulas

f(t) =

{
t, for t = tn,
0, otherwise,
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g(x) =

{
1, for x = 0,
0, for x 6= 0.

It is not difficult to verify that the function given by the product of functions f and
g as follows F (t, x) = f(t)g(x), is rd-continuous. Suppose that x(0) = 0, x∆(t) =
f(t)g(x(t)) for all t ∈ [0, δ)T and some δ > 0. Then x(t) ≥ 0 on [0, δ)T since x∆(t) ≥
0. Moreover, x(t) > 0 for t > 0, because if x(tn) = 0, then x∆(tn) > 0. Hence for
t > 0, we have x∆(t) = 0, and therefore x is a constant positive function on [0, δ)T. It
means that x(0) > 0. We obtain the contradiction to the assumption that x(0) = 0.

We are able to prove only the following result corresponding to the classical theory
of equations with separated variables.

Theorem 1.6. Assume that the integral∫ ε

0

dx

G(x)

is divergent for ε 6= 0, the function g : R → R is continuous, f is ∆–integrable and
nonnegative on T, xg(x) > 0 for x 6= 0 and

G(x) =

{
max {g(y) : y ∈ [0, x]} , for x > 0,
min {g(y) : y ∈ [x, 0]} , for x < 0.

Then the problem (1.1) has only a trivial solution.

Proof. Suppose that z : [0, δ]T → R is a nonzero solution of (1.1), then the function z
does not change the sign. Assume that z(T ) > 0 for some T ∈ (0, δ]T, then there exists
t0 ∈ [0, T )T such that z(t) > 0 for t ∈ (t0, T ]T and z(t0) = 0.

Let us assume, that σ(t0) > t0. Since g(0) = 0, we have z∆(t0) = f(t0)g(z(t0)) =
f(t0)g(0) = 0. Consequently z(σ(t0)) = 0. This contradicts the definition of t0. If
[t0, h] ⊂ T for some h ∈ (t0, T ], then we obtain z ≡ 0 on [t0, h] from a well-known
theorem for equations with separated variables (see [6], page 45) and from the fact, that∫ ε

0

dx

g(x)
≥
∫ ε

0

dx

G(x)
=∞

for ε > 0. The above result means that there exists a sequence {sn} ⊂ T such that sn ↘
t0 and σ(sn) > sn (T is DNC at t0). Let us define z̄ : convT → R and ρ̄ : convT → T
by the formulae

z̄(t) =

 z(t), for t ∈ T,
z(s)(σ(s)− t) + z(σ(s))(t− s)

σ(s)− s
for t ∈ (s, σ(s)), s ∈ T,

ρ̄(t) = max {s ∈ T : s ≤ t} .
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For each τ ∈ T such that σ(τ) > τ , we have∫ σ(τ)

τ

z∆(s)

g(z(s))
∆s =

∫ σ(τ)

τ

z̄∆(τ)

g(z(τ))
∆s =

∫ σ(τ)

τ

z̄′(s)

g(z(ρ̄(s)))
∆s =

∫ σ(τ)

τ

z̄′(s)

g(z(ρ̄(s)))
ds,

because z̄′ is a constant function on the set (τ, σ(τ)).
Suppose that y : T → R is an integrable function. Let us define a new function

ȳ : convT→ R by ȳ|T = y and

ȳ(s) = y(t) for s ∈ (t, σ(t)), t ∈ T.

Then ∫ t

t0

y(s)∆s =

∫ t

t0

ȳ(s)ds, t ∈ T.

Indeed, we put

F̄ (t) =

∫ t

t0

ȳ(s)ds, t ∈ convT,

F (t) =

∫ t

t0

y(s)∆s t ∈ T,

and F̃ = F̄

∣∣∣∣
T
.

For t ∈ T, we have

F̃∆(t) = F̄
′

+(t) = ȳ(t) = y(t) = F∆(t),

where F̄
′

+ means the right-hand-side derivative of the function F̄ .
Of course F̃ (t0) = 0 = F (t0), so we can conclude that

F̄ (t) = F (t), for t ∈ T.

Now put

y(s) =
z∆(s)

g(z(s))
for s ∈ T,

and

ȳ(s) =
z̄
′
+(s)

g(z(ρ̄(s)))
for s ∈ convT.

Now we have ∫ t

t0

z∆(s)

g(z(s))
∆s =

∫ t

t0

z̄
′
+(s)

g(z(ρ̄(s)))
ds =

∫ t

t0

z̄
′
(s)

g(z(ρ̄(s)))
ds.
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The last equality follows from the fact, that z̄′(s) can be not defined only for s ∈ T such
that ρ(s) 6= s or s 6= σ(s). The set of such s is countable. Therefore, the value of the
integrand on that set does not affect the value of the Riemann integral. Then∫ t

t0

f(s)∆s =

∫ t

t0

z∆(s)

g(z(s))
∆s =

∫ t

t0

z̄′(s)

g(z(ρ̄(s)))
ds ≥

≥
∫ t

t0

z̄′(s)

G(z(ρ̄(s)))
ds ≥

∫ t

t0

z̄′(s)

G(z̄(s))
ds =

∫ z̄(t)

0

dx

G(x)
=∞

for t ∈ (t0, T ], which contradicts the integrability of function f . Analogously, we obtain
a contradiction if z(T ) < 0 for some T > 0.

2 Results
We show that in general there is no correspondence of the uniqueness of solutions of

(1.1) with integrability of the function
1

g(x)
and the sign of xg(x) for x 6= 0.

Proposition 2.1. There exists a ∆-integrable function f , such that
∫ δ

0

f(t)∆t > 0 for

any δ > 0, f(t) ≥ 0, a continuous function g, such that g(x) > 0 for x 6= 0,∫ ε

0

dx

g(x)
<∞

for ε 6= 0, and the problem (1.1) has only trivial solution.

Proposition 2.2. There exists a continuous function g such that g(x) > 0 for x > 0 and∫ ε

0

dx

g(x)
=∞

for ε > 0, but the problem (1.1) has a positive solution on T\ {0} for f(t) ≡ 1.

Remark 2.3. One may prove an analogous result for negative solutions in a similar
manner.

Proposition 2.4. There exists a continuous function g such that xg(x) < 0 for x 6= 0
and the integral ∫ ε

0

dx

g(x)

is divergent for ε 6= 0, but the problem (1.1) for f(t) ≡ 1 has a nontrivial solution.
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3 Proofs
Proof of Proposition 2.1. Let

f(t) =

 0, for t 6= tn,
sn−1 − sn
σ(tn)− tn

, for t = tn,

where s1 =
1

2
, sk = s2

k−1. Then

∫ tn

0

f(t)∆t =
∞∑

j=n+1

f(tj)(σ(tj)− tj) =

=
∞∑

j=n+1

(sj−1 − sj) = sn > 0.

Suppose that x(0) = 0, x∆(t) = f(t)
√
|x(t)| and x(t) 6≡ 0 on [0, δ) for any δ > 0.

Then x(t) > 0 for t > 0. Moreover, the function x is constant on any set [σ(tn), tn−1)T,
since f(t) = 0 for t ∈ [σ(tn), tn−1)T.

Let us define the time scale

T0 = {0} ∪ {sn}∞n=1

and function z : T0 → R by the formula z(0) = 0, z(sn) = x(tn). We can see, that

z∆(sn) =
x(tn−1)− x(tn)

sn−1 − sn
=
x(σ(tn))− x(tn)

sn−1 − sn
=

=
x∆(tn)

f(tn)
=
√
z(sn),

hence
z(sn−1) = z(sn) + (sn−1 − sn)

√
z(sn).

Let us substitute yn =
√

4z(tn). Then we obtain

yn =
√

(sn−1 − sn)2 + y2
n−1 − (sn−1 − sn) < yn−1,

from the fact, that
√
a2 + b2 < a+ b for a, b > 0. Moreover

yn − yn+1 = yn + sn − sn+1 −
√

(sn − sn+1)2 + y2
n < sn − sn+1,

hence

yn =
∞∑
j=n

(yj − yj+1) <
∞∑
j=n

(sn − sn+1) = sn.
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Consequently
z(sn) < s2

n.

Suppose that
z(sn) < sαn (3.1)

for all natural n and some α ≥ 2. Since sn+1 = s2
n, we have

z(sn) = z(sn+1) + (sn − sn+1)
√
z(sn+1) < sαn+1 + (sn − sn+1)s

α/2
n+1 =

= s2α
n + (sn − s2

n)sαn = sα+1
n (sα−1

n + 1− sn) ≤ sα+1
n .

This implies that (3.1) is satisfied for every α ≥ 2 and z(sn) = 0, so x(tn) = 0. We
obtain that x(t) ≡ 0 on [0, δ]T for some δ > 0, and then we see, that x(t) ≡ 0 on T.

It is obvious that if T = T0, then the function f is continuous, namely f(t) ≡ 1.

Proof of Proposition 2.2. Let z : T→ R be an arbitrary ∆-differentiable function such
that z(0) = z∆(0) = 0, and z∆ is a strictly increasing and continuous function, for
example

z(t) =

∫ t

0

s∆s.

Let us define

Z = z(T) ∪
⋃
n∈N

{
z(tn) + z(σ(tn))

2

}
∪
{
x ∈ R : x > sup

T
z∆(t)

}
.

For x /∈ Z, x > 0, let us define

a(x) = max {y ∈ Z : y < x} ,

b(x) = min {y ∈ Z : y > x} .
We define function g : R→ R as follows

g(x) =



0, for x = 0,
z∆(t), for x = z(t), t ∈ T,

zn, for x =
z(tn) + z(σ(tn))

2
,

g(sup
T
z∆(t)), for x ≥ sup

T
z∆(t),

g(a(x))(b(x)− x) + g(b(x))(x− a(x))

b(x)− a(x)
for x /∈ Z, x > 0,

−g(−x), for x < 0.

Of course, z∆(t) = g(z(t)), t ∈ T, z(0) = 0. Let us suppose that zn > 0. Then for
x 6= 0, we have xg(x) > 0, and we can choose {zn} such that the integral∫ ε

0

dx

g(x)

is divergent for every ε 6= 0.
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Proof of Proposition 2.4. Let a1 = 1 and

ak+1 =
1

k + 1
min {ak, σ(tk)− tk, σ(tk+1)− tk+1} ,

xk = (−1)kak.

If σ(tk+1) = tk, then yk = xk+1, but if σ(tk+1) < tk, then yk is close enough to xk+1 in
a such way, that

A =
tk − σ(tk+1)

yk − xk+1

· xk − xk+1

σ(tk)− σ(tk+1)
≥ 2,

and
ak+3 < (−1)k+1yk < ak+1.

We prove that there exists a continuous function z : [0, t1]T → R, such that z(0) =
z∆(0) = 0, and

z(tk) = yk, z(σ(tk)) = xk

for k ∈ N. Furthermore, if σ(tk+1) < tk, then z∆ is a continuous, monotonic and a sign
constant function on [σ(tk+1), tk]T. Let

t = stk + (1− s)σ(tk+1),

y(s) =
z(t)− z(σ(tk+1))

z(tk)− z(σ(tk+1))
.

(3.2)

Constructing the definition of the function z on [σ(tk+1), tk]T ∪ {σ(tk)}, where σ(tk) =
s0tk + (1− s0)σ(tk+1), comes down to finding a function y : [0, 1]T′ ∪ {s0} → R, such
that y(0) = 0, y(1) = 1, y∆(1) = A, where T′

is the image of T with the above change
of variables (3.2). The following conditions for the function y are needed: the function
y∆ is continuous, monotonic, and a constant sign function on [0, 1]T′ .

If the point 1 is left-scattered in T′
(it means that tk is left-scattered in T), then

y(s) = s for s ∈ [0, 1], y(s0) = A(s0 − 1) + 1. Suppose that point 1 is left-dense in T′
.

Then

lim
n→∞

∫ 1

0

τn∆τ = 0.

Let n ∈ N be, such that ∫ 1

0

τn∆τ <
1

A
.

The function y satisfying the necessary assumptions is the following

y(s) =
1− A

∫ 1

0
τn∆τ

1−
∫ 1

0
τn∆τ

s+
A− 1

1−
∫ 1

0
τn∆τ

∫ s

0

τn∆τ.

Let us define

Z = {0} ∪
⋃
k∈N

conv {xk+1, yk} ∪
⋃
k∈N

{
xk+3 + yk

2

}
∪ (−∞, x1] ∪ [x2,∞),
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and
a(x) = max {y ∈ Z : y < x} ,

b(x) = min {y ∈ Z : y > x}

for x /∈ Z. Now we define g : [x1, x2]→ R as

g(x) =



z∆(z−1(x)), for x ∈ conv {xk+1, yk} ,
0, for x = 0,

zk, for x =
xk+3 + yk

2
,

g(a(x))(b(x)− x) + g(b(x))(x− a(x))

b(x)− a(x)
for x /∈ Z,

where zkyk > 0, lim
k→∞

zk = 0. Moreover, we put g(x) = g(x1) for x ≤ x1, and

g(x) = g(x2) for x ≥ x2. Of course, the function g is continuous on R\ {0} and

z∆(t) = g(z(t)), t ∈ T\ {0} .

We can choose {zn}, such that the following integral∫ ε

0

dx

g(x)

is divergent for every ε 6= 0. Moreover, for all x 6= 0, we have xg(x) < 0. It remains to
show that z∆(0) = 0, and that z∆ is continuous at 0. If k →∞, then from the fact, that

|z∆(tk)| =
|xk − yk|
σ(tk)− tk

=
ak + |yk|
σ(tk)− tk

<
ak + ak+1

σ(tk)− tk
≤ 2

k
→ 0,

we obtain
lim
t→0
|z∆(t)| ≤ lim

k→∞
|z∆(tk)| = 0.

Moreover

|z∆(0)| = lim
t→0
|z(t)

t
| ≤ lim

k→∞
| xk
σ(tk)

| ≤ lim
t→∞

ak
σ(tk)− tk

= 0.

Consequently, functions z and x ≡ 0 are solutions of the problem{
x∆(t) = g(x(t)), t ∈ [0, t1]T,
x(0) = 0.
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Boston 2001;

[3] M. Bohner, A. C. Peterson, Advances in Dynamic Equations on Time Scales,
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