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Abstract The aim of this paper is to evaluate performance of new CUDA
mechanisms � Uni�ed Memory and Dynamic Parallelism for real parallel ap-
plications compared to standard CUDA API versions. In order to gain insight
into performance of these mechanisms, we decided to implement three appli-
cations with control and data �ow typical of SPMD, geometric SPMD and
divide-and-conquer schemes, which were then used for tests and experiments.
Speci�cally, applications tested include veri�cation of Goldbach's conjecture,
2D heat transfer simulation and adaptive numerical integration. We experi-
mented with various ways of how Dynamic Parallelism can be deployed into
an existing implementation and further be optimized. Subsequently we com-
pared best Dynamic Parallelism and Uni�ed Memory versions to respective
standard API counterparts. It was shown that usage of Dynamic Parallelism
resulted in improvement of performance for heat simulation, better than static
but worse than an iterative version for numerical integration and �nally worse
results for Golbach's conjecture veri�cation. Uni�ed Memory in most cases
results in decrease in performance. On the other hand, both mechanisms can
contribute to simpler and more readable codes. For Dynamic Parallelism, it
applies to algorithms in which it can be naturally applied. Uni�ed Memory
generally makes it easier for a programmer to enter the CUDA programming
paradigm as it resembles the traditional memory allocation/usage pattern.
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1 Introduction

Recently, it can be noticed that heterogeneous computer systems have gained
more and more popularity. Almost every user of a personal computer, beyond
the standard CPU device, has an additional compute device with signi�cant
computing power which is the GPU. Because of such popularity and tremen-
dous potential of such devices, it is crucial to be able to make the most of
them and be able to assess how bene�cial new features of the technology are.
Especially important is the fact, that the GPU architecture makes it ideal
for parallel processing of huge data sets. An example can be, very popular
nowadays, deep learning. Usage of GPU can even save days, during neural
network training [26]. For these reasons new tools and platforms are released,
to provide better and simpler ways to create applications and programs. It is
particularly important for people whose main profession is not programming
i.e. domain specialists.

NVIDIA is one of the main players in the HPC market. Not so long ago
NVIDIA introduced new mechanisms into the CUDA API � Uni�ed Memory
(UM) and Dynamic Parallelism (DP).

Typically, �rst CUDA based applications would allocate memory and ini-
tialize data in RAM, allocate memory on a GPU device, copy input data to
a GPU global memory via PCI Express, run a kernel function on the GPU
and copy results from the GPU back to the RAM on the host. This may be
repeated several times as multiple kernels are invoked. Typical optimizations
include overlapping communication between a host and a device and compu-
tations on the GPU and possibly the host, using streams. Uni�ed memory,
available in CUDA 6 and later versions, introduced the concept of managed
memory, visible from both a host and a GPU, without the need for manual
copying between memories of the two sides [20]. Migration of pages is per-
formed by an underlying runtime system, transparently to the programmer.
As a result, the programming model has been greatly simpli�ed and requires
just allocation in managed memory using cudaMallocManaged(...), invoca-
tion of a kernel and synchronization upon kernel termination.

Dynamic parallelism, on the other hand, is a new mechanism introduced
in CUDA 5 (for devices with compute capability 3.5+) that allows launching
kernels from within kernels [20]. Recursive calls may continue up to 24 lev-
els. This solution is well suited for divide and conquer applications [4] as no
explicit synchronization through the host is needed before next kernel calls.
Speci�cally, this allows recursive deepening in certain algorithms to increase
resolution in computations in geometric SPMD applications [19], numerical
applications such as adaptive integration [6] and others.

Currently there are some works which are focused on performance evalua-
tion of these new CUDA APIs, either UM or DP. Compared to these works,
described in Section 2, this paper analyzes three parallel applications, falling
into either geometric SPMD [7], general SPMD [28] and divide-and-conquer
[28,4] processing paradigms and compares e�ects of UM and DP for each of
these applications. It is possible that one of the mechanisms does not bring
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Performance evaluation of uni�ed memory and dynamic parallelism ... 3

measurable bene�ts while the other does. This paper contains results of sev-
eral experiments that allow to draw conclusions. We decided to implement the
following three parallel programs, in various versions with and without the
proposed mechanisms:

1. Heat transfer simulation in 2D space � an example of a geometric SPMD
application.

2. Adaptive integration which uses a trapezoidal rule � an example of a divide
and conquer approach.

3. Veri�cation of Goldbach's Conjecture � requires checking a hypothesis for
a set of even numbers i.e. an SPMD problem in its nature.

The outline of the paper is as follows. Section 2 includes related work re-
garding both Uni�ed Memory and Dynamic Parallelism and how these a�ected
performance and code readability of speci�c applications. Section 3.1 outlines
methodology used during comparisons for UM and DP for testbed applications
which are described next with basic and optimized versions along with com-
parison of performance, discussion of best settings and comments on how these
a�ect readability of the code. Parallel applications include: heat distribution
in Section 3.2, adaptive numerical integration in Section 3.3 and Goldbach
Conjecture veri�cation in Section 3.4. Finally, Section 4 includes a summary
based on previously obtained results with conclusions on how applications
might bene�t from UM and/or DP.

2 Related Work

2.1 Uni�ed memory

The Uni�ed Memory mechanism might impact performance, compared to a
standard implementation without it. Typically, solutions that increase �exi-
bility and ease of programming impose a certain performance overhead.

The authors of [13] thouroughly tested the UM mechanism. They incor-
porated several benchmarks, both those written by the authors but also the
Rodinia benchmark set. The latter is a set targeted for testing heterogeneous
environments. The authors modi�ed selected tests so that the latter use UM.
Unfortunately, results of experiments revealed that typically UM would yield
worse results compared to the standard approach, with manual management of
memory. However, for individual tests it was demonstrated that application of
UM may bring performance bene�ts. Speci�cally, if a subset of data is queried
by multiple kernels multiple times before some other data is accessed. The au-
thors state that in such a case the UM mechanism can place data favourably
which brings bene�ts compared to the standard API. As data size is increased
this bene�t decreases. Furthermore, it was stated that for most applications
complexity of code does not change considerably. For complex data structures,
however, UM may make programming easier.
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In paper [18] authors focused on solving systems of sparse linear equations
and the algorithm implemented in the SPIKE::GPU library. The �rst step
of the algorithm changes columns and rows of a matrix which makes further
processing easier. It is composed of a few steps a part of which are executed
on a GPU and a part on a CPU. Speci�cally there are 4 steps two of which are
executed on a host. UM was deployed at this step. According to the authors,
application of UM made the code clearer. Out of more than 120 large matrices,
for more than a half the UM based version exhibited better performance.

Article [23] describes how to use UM along with parallelization using the
OpenACC API for codes such as Jacobi iteration. Using the PGI compiler it
just requires a compilation option to enable UM. The article shows the speed-
up of around 30 on an NVIDIA K40 GPU over a single threaded CPU run on
Intel Xeon E5-2698 v3 and around 7 over a CPU run using 8 threads.

Paper [15] evaluated UM by comparing a selected set of applications with-
out and with UM run on NVIDIA K40 and Jetson TK1. The applications
tested were: Di�usion3D Benchmark, Parboil Benchmark Suite and Matrix
Multiplication. The UM enabled codes exhibited around 10% worse perfor-
mance coming from additional memory transfers. This turned out to be the
cost for an easier programming model.

In work [12] authors evaluated performance of UM on NVIDIA Tegra K1.
They wrote code for Gauss-Seidel relaxation and a benchmark that increments
data in bu�ers. Apart from that they ported path�nder, needle, srad_v2, gaus-
sian and lud Rodinia benchmarks to use UM. The authors concluded that if
time spent in a kernel was smaller than 60% (which means that communica-
tion was a signi�cant part) gains from UM were visible given the architecture
of Tegra K1.

2.2 Dynamic Parallelism

In the case of DP it might be expected that, at least for a selected class
of problems such as divide-and-conquer ones, lack of need for synchronization
with the host between kernel invocations would result in performance bene�ts.

Two clustering algorithms: K-means and hierarchical clustering were in-
vestigated in work [8]. The K-means algorithm, due to dependencies between
data, requires synchronization between iterations. On the other hand, hierar-
chical clustering can be naturally mapped to the divide and conquer scheme.
In the case of the K-means implementation, a slight drop in performance was
observed in the DP version. However, for hierarchical clustering a DP enabled
version demonstrated considerable speed-up compared to a standard version
without DP. Additionally, DP resulted in much clearer code. As a conclusion,
DP is well suited for algorithms processing tree-like arranged data sets.

In publication [1] DP was used for generation of Mandelbrot fractals. In
a �rst approach threads are assigned to individual points in space. This may
result in loss of computational power as some points may require fewer or more
computations. In a second approach, based on a Mariani-Silver algorithm,
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Performance evaluation of uni�ed memory and dynamic parallelism ... 5

space is divided adaptively within threads using DP. As a result speed-up
with this solution was between 1.3 and 6 times depending on space size with
higher speed-ups for larger space sizes.

Furthermore, demonstration of DP bene�ts is included in publication [11]
for the quicksort algorithm. In this case, it allowed doubling performance with
decreasing the code size at the same time. Again it resulted in clearer code,
similarly to previous works.

Papers [21,22] investigated performance of DP based implementations of a
tree search algorithm with irregular workloads, based on the N queens problem.
As the authors concluded, after tests for this application using NVIDIA K20x,
overheads for kernel invocations and dynamic memory allocation resulted in
overall higher execution times for a few DP enabled codes compared to times
for a basic, reference GPU implementation.

In paper [2] authors demonstrated bene�ts of a DP enabled version for a
Conjugate Gradient (CG) method for iterative solving of sparse linear systems.
It has been shown that a DP enabled version resulted in savings of around 3.6%
in execution time and 14.2% in energy consumption compared to previous
implementations. Tests were performed on an NVIDIA K20c GPU.

In paper [29] authors analyzed performance of a DP enabled algorithms
for Breadth First Search (BFS) and Single-Source Shortest Paths (SSSP) al-
gorithms compared to other existing implementations showing performance
better than some but not the best (compared to algorithms with advanced
queueing for SSSP) results.

Authors of [14] state that they obtained over 2.6 speed-ups for SSSP and
over 1.4 for Sparse Matrix-Vector Multiplication (SpMV) codes compared to
basic implementations without DP. Tests were run on an NVIDIA K20 GPU.

In paper [17] authors presented comparison of a CPU, naive GPU, tiled
GPU and DP enabled GPU implementation of an Inverse Distance Weighting
(IDW) interpolation algorithm. Results show that the DP enabled version
performed consistently worse than the best tiled GPU implementation for this
problem.

In paper [27] authors analyzed performance, overheads and memory foot-
print of DP enabled codes with a variety of benchmarks such as Adaptive Mesh
Re�nement, Barnes Hut Tree, Breadth-First Search, Graph Coloring, Regular
Expression Match, Product Recommendation, Relational Join, Single-Source
Shortest Path. The authors performed benchmarking that allowed to compute
potential speed-ups of DP enabled codes by �rst calculating ideal execution
times by subtracting kernel launch overheads. A conclusion is that there is a
speed-up potential between 1.13 and 2.73 but current kernel launch overheads
would result in average execution times slower than around 1.2 of implemen-
tations without DP.

Work [16] focuses on CUDA DP for low power ARM based prototypes
demonstrating 20% savings in energy consumption on a Pedraforca prototype.

Work [25] focuses on normalization of Gene Expressions using a GPU with
DP and comparison of such an implementation run on NVIDIA K20c compared
to Intel Xeon E5650. The �nal version including CPU-GPU communication
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and all steps of the procedure amounted to the speed-up of around 4.8. It is
noted that the speed-up for quicksort, which is a part of the whole procedure,
is over 22.5 for the DP enabled implementation on a GPU compared to a
CPU.

3 Evaluation of Uni�ed Memory and Dynamic Parallelism

3.1 Methodology

We implemented each application with and without the DP and UM mech-
anisms. Then we compared standard versions using the standard API with
the other two applications. The next chapter contains short descriptions of
each program and performed experiments. Each section, beyond test results,
contains respective conclusions and discussion.

3.1.1 Test platforms

A workstation with an Intel Core i5-4690K @ 3.50GHz, 8 GB RAM memory
and an NVIDIA GTX 970 was taken as the �rst test platform. We used the
latest CUDA 7.5 platform. A second test device was a server with two Intel
Xeon E5-2640 CPUs at 2.50GHz, 64 GB RAM and two NVIDIA Tesla K20m
(compute capability 3.5).

3.2 Parallel Heat Distribution Application � Experiments

Jason Sanders and Edward Kandrot in their book 'CUDA by example' [24]
used simulation of heat transfer to demonstrate how a texture memory can be
used. In fact, the physical model was signi�cantly simpli�ed. In that work the
most important aspect was to show how texture memory works. In this work
we ran simulation based on a similar, simpli�ed model and focused our work
on testing UM and DP mechanisms.

Our benchmark is a simulation based on thermal conduction [10]. It takes
place in a two-dimensional space which is divided into a number of small,
square cells. At selected areas sources of heat with constant temperatures
were placed. During simulation, cells become warm due to heat conduction
from neighbours. To model heat loss through a wall, we can write a formula
for the rate of conduction heat transfer as follows:

Q

t
=
λA

δ
∆T (1)

where: Q - heat transferred in time t, λ - thermal conductivity, A - area, δ -
thickness of the wall, ∆T - temperature di�erence on both sides of the wall.
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Performance evaluation of uni�ed memory and dynamic parallelism ... 7

Hence, between simulation time frames we update the temperature in each
cell according to the formula:

TN = TO +
∑

neighbours

k · (Tneightbour − TO) (2)

where k is a constant which controls the speed of heat transfer. It can be
identi�ed with λA

δ from above.
A simulation loop is split into two parts. At the beginning, the temperature

in every cell is updated. The next step involves renewing temperatures in heat
sources. Finally, we compute proper colors for display and draw these on the
screen. We perform drawing once per a prede�ned number of iterations/frames.

3.2.1 Dynamic Parallelism

As mentioned above, before drawing the simulation grid, the application per-
forms a �xed number of loops, e.g. 90. In the non-DP version kernels responsi-
ble for computing iterations were called from the CPU side, which potentially
involved considerable time spent on communication and synchronization. Af-
ter each iteration temperatures for heat sources need to be updated. In a DP
version, the whole loop was moved to the GPU and all kernel launches were
executed from the GPU. In the DP version, CPU's only task was to draw the
map after GPU computations. It means, that we needed to perform only one
memory transfer, from GPU to CPU with results after a number of iterations.

The described implementation was tested with various sizes of the simula-
tion space. During testing for one drawing 90 simulation loops were performed.
We measured the time taken to generate a single heat map or the time of the
90 loops. Compared to the standard version we observed a slight performance
gain � 2-3%.

In order to con�rm a hypothesis, that moving the simulation loop to the
GPU results in performance gains, we performed an additional test. With the
same implementation we measured time taken to generate a single heat map for
various numbers of simulation iterations. The greater the number of simulation
iterations, the more time the application spends on the GPU side. We observed
that with an increasing number of simulation iterations the ratio of the time
for the DP version to the time for the non-DP version was dropping. Results
are presented in Figure 1. Again the performance gain �uctuated around 2-3%
for up to 100 simulation iterations.

Heat sources temperature update

To improve performance gains we took a look at simulation steps separately. As
described above, the �rst part included an update of heat source temperatures.

The initial version of that kernel worked for the whole simulation grid. For
every cell a thread would check whether it was a heater cell. Such cell tem-
peratures were renewed. It can be easily seen that it causes work redundancy,
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Fig. 1: Time needed to generate simulation frame depending on the number
of iterations. Time measured for Dynamic Parallelism version is normalized to
standard API version.

especially if the heater's area is relatively small compared to the whole grid.
A possible solution could be to call the kernel only for the areas occupied by
heaters, e.g. in a for loop. Another approach can be a single kernel that could
use DP to call child kernels each for every heat source.

In order to benchmark various possibilities, we implemented the following
5 versions:

� std-cpConst � a kernel works on the whole simulation grid. For every cell
that is a part of a heater renew its temperature.

� std-for� an application uses the standard CUDA API and invokes a kernel
in a for loop from a CPU. Each kernel invocation renews temperature only
for one heater.

� dp-cpConst � a kernel uses a similar approach as for std-cpConst. The
di�erence is that we shifted the kernel invocation to the device side.

� dp-for � on the device side in a for loop we call the kernel for each heater.
It is similar to std-for but the loop is on device side.

� dp-cpHeaters � we call a kernel that calls nested kernels for each heater
on the device side.

These kernels were tested for various numbers of heat sources. The simula-
tion grid size was 1024x1024px and we performed 90 loops for every drawing.
Each heater takes a 50x50px area. The percentage of area taken by heaters is
shown in Table 1.

Measured times for each version are presented in Figure 2. It turned out
that for fewer than 20 heaters better approaches were those that copy indi-
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Table 1: The percentage of area taken by heaters

number 2 3 4 5 6 7 8 9 10 20 30
area [%] 0.48 0.72 0.95 1.19 1.43 1.67 1.91 2.15 2.38 4.77 7.15

vidual heaters in loops. Depending on the number dp-for version (up to 10)
or dp-cpHeaters was best (30 heaters). However, if the number of heaters
exceeded 20, better versions were those working on the whole simulation area.
Both solutions (std-cpConst and dp-cpConst) exhibited similar results. The
most universal approach was the std-for version. It worked well both with
small and bigger number of heat sources. In the following experiments we use
the dp-for approach.
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Fig. 2: Time to generate one frame based on the number of heaters

We also compared the chosen kernel version dp-for to the dp-cpConst

in a separate chart to better show performance gains. Detailed results are
presented in Figure 3. It can be seen that for 2 heaters the dp-for approach
is almost 40% faster.

Calculation of temperature

The second step of simulation is computing a new temperature for each cell.
In the initial version we computed it for all cells. With DP we can naturally
change the code to update it only in cells where it is really necessary. In
the simulation grid we can �nd places where, especially at the beginning of
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Fig. 3: Comparison of dp-cpConst and dp-for kernels. Time is normalized to
measurements of dp-cpConst kernel

simulation, there is no activity. Heat will reach those parts only after several
iterations.

We divided the grid into smaller, square parts � tiles. In each tile we detect
whether temperature changes are big enough to update the tile. Detection is
performed by adding temperatures of cells in the tile. If the sum exceeds a
threshold we mark that tile and in the future iterations such detection will
not be performed again. For marked tiles we compute temperatures as in
standard version. It should be noted that this approach allows to speed up
computations at the cost of slightly decreased simulation accuracy which is
not visible in visualization though.

Additionally we distinguish two versions of this approach. In the �rst im-
plementation we perform detection in every loop (marked as dp). The sec-
ond version checks each tile one per visualization, e.g. once per 90 iterations
(marked as dp-heur).

Obtained results, presented in Figure 4, show that the dp-heur version has
improved performance 2 times. With time, when the simulation overtakes a
greater area of the grid performance becomes similar to the standard version.

3.2.2 Uni�ed Memory

In the tested application memory management is fairly standard. After initial-
ization of the simulation only transfers between host and device occur before
drawing. We copy only a bitmap ready for visualisation. Using UM required
only replacing a memory allocation function and removing explicit data trans-
fers.
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Fig. 4: Time needed to generate one frame depending on the duration of the
simulation

We measured times for di�erent sizes of the simulation grid. We observed
minor di�erences in execution times (1-2%) which is negligible (Figure 5). More
interesting was a second test. In that case we measured times for di�erent
numbers of iterations performed between drawings. The smaller that value,
the more frequently a memory transfer is performed. Results for that test
are presented in Figure 6. It turned out that frequent transfers resulted in
larger (percentage wise) execution times for the UM version (almost 10% for
10 iterations).

3.2.3 Summary

Heat transfer simulation created an opportunity to gain an advantage from
utilizing the Dynamic Parallelism (DP) mechanism. We obtained an interesting
performance gain even for a simpli�ed physical model.

On the other hand Uni�ed Memory caused a visible performance drop. For
this application, in which case memory management is fairly simple, UM does
not bring bene�ts.

3.3 Parallel Adaptive Numerical Integration � Experiments

For the purpose of testing DP and UM we decided to implement an adaptive
numerical integration algorithm. An original range is divided into a number of
small subranges. Within each subrange the area is calculated as an area a1 of a
trapezoid which is compared to the sum a2 of areas of two smaller trapezoids.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


12 �ukasz Jarz¡bek, Paweª Czarnul

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

1024 1152 1280 1408 1536 1664 1792 1920 2048

UM is worse if above line

n
o
rm

a
liz

e
d
 t
im

e

length of the side of the simulation grid

Fig. 5: Time needed to generate one frame for Uni�ed Memory version com-
pared to standard API version depending on grid size
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Fig. 6: Time needed to generate one frame for Uni�ed Memory version com-
pared to standard API version depending on number of iterations

Those two are created by splitting the subrange into two subranges of equal
width. If |a1 − a2| is greater than a given ε, then the procedure is performed
again, for every half of the subrange.
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Parallelization of the described algorithm is intuitive. Every CUDA thread
is responsible for one subrange. After computations have been completed it
writes a result into a vector prepared earlier. The last step of the algorithm
is vector reduce in order to obtain the �nal integration result. It is performed
by a well known and optimized reduction algorithm.

The aforementioned approach was implemented in three ways:

1. The �rst version, which will further be called static, splits the initial
range into subranges each of width δ. Then, in every subrange a trapezoid
area is calculated. There are no nested procedure calls nor testing accuracy
of the calculations for a subrange. It is intuitively clear that in some cases
(e.g. for a linear function) this method may result in signi�cant redundancy
of calculations compared to what could be done with a knowledge of the
function.

2. The second implementation uses an adaptive approach. However, it is an
approach still without recurrent calling for ranges that need more accuracy
of calculations. For a subrange there is indeed checking of accuracy but
calculations for smaller subranges are performed in an iterative way. This
approach does not need Dynamic Parallelism (DP) to work.

3. The last algorithm �nally utilizes the DP mechanism. Similarly to the
previous approach there is accuracy checking but now we use recursive
calls using DP to achieve the desired accuracy.

The main goal was the most fair comparison of the presented approaches.
For this reason the algorithm in every version should be as similar as possible
to other versions. In the static version the most important is δ parameter.
It should be as small as the smallest subrange in an adaptive version.

Another important consideration is the size of a vector prepared for results
of subranges. For big ranges it can be necessary to split the input range into
smaller parts, because a vector would be too big for device memory. Because
accuracy of a result is important the double type is used which requires 8 bytes
for every subrange. Therefore, for large ranges additional transfers between the
device and the host may occur.

3.3.1 Test functions

During experiments the following functions were used:

f(x) = sin(x)cos(x) (3)

f(x) = xsin(x)cos(x) (4)

f(x) =


xsin(x)cos(x) x ≤ b− a

2

2x x >
b− a
2

(5)
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To test application behaviour in di�erent cases we selected various func-
tions. Adaptive algorithms should perform fewer computations than a static
version which will perform redundant calculations in this case. The last test
function is an arti�cial benchmark which in one half of the range is a linear
function and in the second half �uctuates greatly.

Next sections contain results of experiments. For adaptive versions an ad-
ditional comment is required. It is well known that on a device running threads
are grouped into warps (each warp contains 32 threads). With this in mind,
when we split a subrange and call children kernels, it might be more e�cient
to split not into 2 but into 32 parts. We marked implementations with proper
numbers to also check that hypothesis. To be fair, in the iterative version we
also distinguish two versions of splitting. Each approach are marked as follows:

� static � a static version of the application,
� adaptive32 � an adaptive version, without Dynamic Parallelism with split-
ting into 32 parts,

� adaptive2 � an adaptive version, without Dynamic Parallelism with split-
ting into 2 parts,

� dp32 � an adaptive version, using Dynamic Parallelism with spliting into
32 parts,

� dp2 � an adaptive version, using Dynamic Parallelism with splitting into 2
parts.

3.3.2 Dynamic Parallelism

We ran tests with di�erent lengths of the initial range for tested functions. Pa-
rameter δ was set to the width of the smallest subrange in an adaptive version.
Obviously, the value of that parameter was set separately for every function.
Additionally, we assumed that the result vector will contain 108 numbers. It
means that every kernel call can integrate that number of subranges. If the
range is split into more parts, there is a need for additional kernel call(s).

For sinusoidal functions the most interesting results were obtained for func-
tion 4 and are presented in Figure 7. That function �uctuates more than func-
tion 3. It means that recursive calls are more nested and a subrange is shorter.
Integration results were more accurate for the static version (di�erence at the
second digit after the dot). It is probably caused by rounding errors during
adding areas for nested parts. Version adaptive32 was signi�cantly worse
compared to other versions. The static version was slower than Dynamic
Parallelism versions but at the same time it had a slightly better accuracy as
mentioned above. However, adaptive2 was the fastest version.

The biggest advantage of the adaptive algorithm is the ability to control
subrange width depending on the accuracy. In practice, the static approach
would not be very useful, because it is di�cult to determine a correct subrange
width to obtain a good result and reasonable execution time.

In order to compare both static and DP solutions fairly we created an
arti�cial function 5, mentioned earlier. Measured execution times can be seen
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Fig. 7: Integration time depending on range width - function 4

in Figure 8. As before, we set the subrange width to the smallest width in
adaptive version. The di�erence arises due to integrating the linear fragment
with those small subranges. Other implementations were signi�cantly faster.
Again, the best results were achieved by adaptive2 version.

It turned out that in this case the iterative implementation is slightly faster
and at the same time more �exible. In almost every case that version behaved
best. What is more, the application code was much more readable compared
to a DP version. However, the implementation with recursion is still e�cient
and more �exible than the static approach.

3.3.3 Uni�ed Memory

Memory management is di�erent for particular versions. As mentioned before,
we integrate a �xed number of subranges and write results into a previously
prepared vector. Then the vector elements are reduced into a �nal result. For
static and adaptive (iterative) approaches we transfer only that sum to the
host. When the range is split into several parts we will sum those partial
sums. The Dynamic Parallelism algorithm will only transfer one number with
a �nal result. Partial sums are obtained on the device side.

Utilization of Uni�ed Memory will a�ect e�ciency of this part of the appli-
cation. We measured execution times for di�erent numbers of transfers. As a
test function we used function 3 which was integrated from 0 to 100. We tested
each implementation, i.e. we measured time with and without Uni�ed Memory
utilization. Uni�ed Memory resulted in worse execution times for each tested
version. An example is shown in Figure 9.
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Fig. 8: Integration time depending on range width - function 5
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Fig. 9: Integration time depending on number of memory transfers - function 3

The last experiment was focused on comparison of two adaptive approaches.
In this case, however, algorithms are compared in the context of time spent on
memory transfers. As we wrote before Dynamic Parallelism will only transfer
the �nal result of integration. In contrast, the iterative version must transfer
partial sums which are added on the host side. It generates additional tra�c
between the host and the device. We compared algorithms for various numbers

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Performance evaluation of uni�ed memory and dynamic parallelism ... 17

of memory transfers. Results for each tested device can be found in Figures 10
and 11.
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Fig. 10: Comparison of execution time for adaptive algorithms depending on
number of memory transfers on GTX 970 - function 3
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Fig. 11: Comparison of execution time for adaptive algorithms depending on
number of memory transfers on Tesla K20m - function 3
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For versions with a split into 2 parts the iterative approach was faster. The
reason is that the split into 2 parts causes deeper nesting of recursion. In that
case the overhead for an additional kernel call is more expensive than iterative
execution. What is more, execution of only 2 threads is not optimal in terms
of warp utilization.

Results for 32 versions are somewhat more interesting. On GTX 970 the
approach utilizing Dynamic Parallelism was better. In turn on Tesla K20m the
iterative version was faster. Additionally, we measured time of a kernel call.
It turned out, that it is almost 4 times longer on the Tesla device. As a result
the time which is saved on avoiding memory transfer is covered by kernels call
times.

Table 2: Kernel call time on tested devices [ms]

Time [ms]
Tesla K20m 30.95
GTX 970 8.39

3.3.4 Summary

The �rst obvious conclusion is that Uni�ed Memory does not improve appli-
cation e�ciency. In the case of the testbed implementations it did not improve
code quality nor readability.

More interesting were results obtained for versions with Dynamic Paral-
lelism. For the integration problem the mechanism worked well, especially
for functions with �uctuating trends. However, we managed to implement a
slightly more e�cient iterative version of the adaptive algorithm.

3.4 Parallel Goldbach Conjecture Application � Experiments

The last application is connected with one of the most famous and oldest
mathematical problems. More than 270 years ago Leonhard Euler and Chris-
tian Goldbach formulated a hypothesis which is now known as Goldbach's
Conjecture.

Conjecture 1 Every even number greater than 2 can be expressed as a sum

of two primes.

Today there is still no formal proof that the hypothesis is true. Modern
mathematicians believe that it is true, the more that by using supercomputers
proved the hypothesis for numbers smaller than 4 · 1017 [3,9].

A simple approach could be to check if for given interval the hypothesis
is true. For each number a single thread looks for a sum of two primes. We
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modi�ed this idea. Instead of working on the whole range, we prepare numbers
to check as an input for the program. During primality test we do not repeat
tests on same numbers (which would be the case if we worked on numbers
from a sequence). We prepared inputs for each test with randomly generated
numbers with a given order of magnitude.

The key element of the program is the primality test. In the application
a straightforward approach is used that checks divisibility of a number by
another dividers. In order to improve this process we prepared an array of
1000 boolean values. For numbers smaller than 1000 the program easily checks
primality by testing a value from a proper index.

3.4.1 Dynamic Parallelism

The approach using Dynamic Parallelism works slightly di�erently from the
base reference version. Each thread utilizes child threads to �nd a sum of
proper prime numbers. In order to stop the algorithm when that pair is found,
the parent calls a nested kernel in a loop, for packets of numbers. If for a given
packet prime numbers are found the thread ends its work.

We tested the described approach to �nd an optimal number of child
threads. We ran tests for numbers in the order of 1010. Among pools of 32,
64, 128 and 256 threads the best execution time was obtained for a version
with the 128 thread pool. Results were compared to the standard version of
the algorithm and are presented in Figure 12. It turned out that use of the
Dynamic Parallelism caused a signi�cant performance loss.
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Fig. 12: Comparison of execution time Dynamic Parallelism version to stan-
dard API version
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Such a result raises the question what is the cause for that e�ciency loss.
The �rst thing we should consider is the way CUDA parallelism works. CUDA
threads are 'light' and work best for simple tasks, when they execute same
instructions on di�erent data. Such parallelism was discussed in the case of
both previous applications. The described problem forces more work on each
single threads. Often threads go through di�erent paths of program execution.
It means that some threads end computations before others (eg. during the
primality test) which can be particularly expensive in terms of warp execution.
As a result it can result in performance loss.

Goldbach's Conjecture problem could possibly be parallelized better using
a di�erent framework and hardware. In this case, it could be better to use
threads working on cores of a standard CPU or possibly Intel Xeon Phi [5].
For example on a computing cluster each node could work on its numbers
package. Such an environment works well in case of di�erent execution paths
of threads. As can be seen, a problem does not always �t the CUDA platform
well. Similarly, Dynamic Parallelism does not always result in a performance
gain.

3.4.2 Uni�ed Memory

The described algorithm has two sets of data which are transferred between the
host and the device. The �rst is the array with boolean values. Another data
set is taken from the input and is sent to the device to verify the conjecture.
We implemented Uni�ed Memory in both previous versions, the standard and
the one with Dynamic Parallelism.

Measured execution times are very similar for both versions (the standard
and with Uni�ed Memory) as shown in Figure 13.

As mentioned before, an important part of the algorithm is the boolean
vector. It is calculated and copied to the device memory. We decided to com-
pare 4 approaches in terms of access to that vector. We based on the standard
version of the application (without Dynamic Parallelism):

� std-constant - version with standard memory management, the vector is
stored in constant memory,

� std-global - version with standard memory management, the vector is
stored in global memory,

� um-constant - version with Uni�ed Memory, the vector is stored in con-
stant memory,

� um-global - version with Uni�ed Memory, the vector is stored in global
memory (marked as __managed__).

We ran tests with 10000 numbers as an input but we changed their range
from 108 to 1012. The collected results are shown in Figure 14. Again, dif-
ferences between versions were negligible. It can be concluded that in this
case the memory management method is not important. The programmer can
choose the most handy method.
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Fig. 13: Uni�ed Memory version execution time normalized to standard API
version time
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Fig. 14: Execution time for di�erent memory management versions depending
on input numbers range

3.4.3 Summary

The tested application is an example of a problem which cannot be easily and
e�ciently parallelized using the CUDA platform. Especially Dynamic Paral-
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lelism caused performance loss compared to the standard API version. On the
other hand, Uni�ed Memory tests showed that sometimes it does not a�ect
application performance in a negative way. Despite the fact that the applica-
tion does not work faster, a programmer can choose it as a more convenient
solution, which would slightly improve code readability.

4 Conclusions and Future Work

Within this paper, Dynamic Parallelism and Uni�ed Memory mechanisms
available in the CUDA API and platform were compared for three di�er-
ent applications, representative of: geometric SPMD processing � applications
such as heat transfer simulation in 2D space and ver�cation of Goldbach's
conjecture, as well as divide and conquer processing � adaptive numerical in-
tegration of a function over a given range. Detailed analysis was presented
for each application with several optimization applied and compared with and
without DP and UM. Results can serve as guidelines on whether to use DP
and/or UM for other applications of similar type.

For DP, depending on an application, bene�ts varied. For heat distribution
and an approach in which no redundant computations are performed in some
areas of the domain, a performance gain was obtained. For adaptive integra-
tion a DP enabled algorithm was similar but slightly worse in performance
than a version using the standard API. Finally, for ver�cation of Goldbach's
conjecture, a DP enabled version could not match the version with the stan-
dard API because the type of the problem is not well suited for codes with
thread divergence. In all of these cases, incorporation of DP into the code was
not trivial and increased code complexity. In some cases, an approach had to
be changed in order to apply DP to the problem.

Application of UM resulted, in case of all applications, in either perfor-
mance drop or times very close to the times of versions using the standard
API. In case of selected tests for heat distribution, we obtained slightly better
results with UM, but in the order of 1-3%.

The aforementioned results allow us to draw the following conclusions. DP
can bring considerable bene�ts for recursive algorithms or algorithms that
use hierarchically arranged data. In such cases, code also becomes much more
readable. It seems that it should be used when it applies naturally and not in
cases where it is not directly applicable. It should also be taken into account
that generally recursion involves an overhead compared to an iterative solution.
UM is a mechanism that allows to enter the CUDA programming world fast
as a program with UM resembles very much standard programs written for a
CPU.
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