
Noname manuscript No.
(will be inserted by the editor)

Parallelization of large vector similarity

computations in a hybrid CPU+GPU environment

Paweª Czarnul

Received: date / Accepted: date

Abstract The paper presents design, implementation and tuning of a hybrid
parallel OpenMP+CUDA code for computation of similarity between pairs of
a large number of multidimensional vectors. The problem has a wide range
of applications and consequently its optimization is of high importance, es-
pecially on currently widespread hybrid CPU+GPU systems targeted in the
paper. The following are presented and tested for computation of all vector
pairs: tuning of a GPU kernel with consideration of memory coalescing and us-
ing shared memory, minimization of GPU memory allocation costs, optimiza-
tion of CPU-GPU communication in terms of size of data sent, overlapping
CPU-GPU communication and kernel execution, concurrent kernel execution,
determination of best sizes for data batches processed on CPUs and GPUs
along with best GPU grid sizes. It is shown that all codes scale in hybrid en-
vironments with various relative performances of compute devices, even for a
case when comparisons of various vector pairs take various amounts of time.
Tests were performed on two high performance hybrid systems with: 2 x Intel
Xeon E5-2640 CPU + 2 x NVIDIA Tesla K20m and latest generation 2 x
Intel Xeon CPU E5-2620 v4 + NVIDIA's Pascal generation GTX 1070 cards.
Results demonstrate expected improvements and bene�cial optimizations im-
portant for users incorporating such types of computations into their parallel
codes run on similar systems.

Keywords hybrid parallelism · OpenMP · CUDA · parallel programming ·
optimization

P. Czarnul
Dept. of Computer Architecture
Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology,
Poland
E-mail: pczarnul@eti.pg.gda.pl

2 Paweª Czarnul

1 Introduction

In the high performance computing landscape, more and more modern com-
pute devices appear, including multicore CPUs such as Xeon series v4 devices
with even 24 physical and 48 logical cores in the Intel Xeon E7-8894 v4 CPU,
Pascal series GPUs and Knight Landing Xeon Phi many core coprocessors.
Consequently, hybrid systems including these devices have become widespread.
For instance, in the TOP500 list, two of the �rst three most powerful sys-
tems include an Intel Xeon+Xeon Phi system and Opteron+NVIDIA GPUs.
CPU+GPU hybrid architectures are now also widespread among workstations
and home PCs, many of which include multicore CPUs and GPUs capable of
running CUDA and/or OpenCL codes.

The goal of this paper is to design a parallelized algorithm and present
an e�cient OpenMP+CUDA implementation for computation of similarity
between pairs from a large set of multidimensional vectors, for the aforemen-
tioned hybrid CPU+GPU systems. This task is a challenge because of vari-
ous performances of compute devices and consequently need for proper data
partitioning, need for load balancing and management of computations on
CPU cores and GPUs, potential optimizations such as minimization of host
to device (GPU) communication across PCI Express, minimization of GPU
memory allocation, overlapping CPU-GPU communication and computations
on the GPU, concurrent kernel execution. This research follows consideration
of the same problem for a hybrid CPU+Xeon Phi coprocessor environment
presented in [5]. In comparison, this work dives into details of an environ-
ment with GPUs which require a di�erent programming model and ways of
optimization.

2 Related work

Applications of similarity computations are very broad and are often based on
comparison of components such as images, words, text excerpts, documents
(text, web pages) and various objects [24,22]. These components can be en-
coded as multidimensional vectors. Hence, the problem of �nding similarities
between a large number of multidimensional vectors using desired similarity
metrics is of high importance, especially in areas where drawing conclusions
from big data sets has become possible through emergence of new high per-
formance computing devices as multicore CPUs and GPUs.

There are numerous applications of similarity computations including: pro-
viding hints to the user during web searching [22], �nding data related to the
current clinical case in medicine [17], disambiguation of entities [18], document
clusterization [25], audio recognition [19], handwritten word image retrieval
[23], linguistic information classi�cation [21]. Paper [16] discusses bene�ts from
parallelization of chemical similarity calculation and presents an algorithm for
all-vs-all Tanimoto matrix calculation and nearest neighbor search using GPUs
demonstrating considerable bene�ts over CPU based approaches.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of large vector similarity computations ... 3

In many papers, the problem of all pair similarity search is analyzed which
is to obtain such pairs for which the value of a similarity metric is above a
given threshold which is often implemented by algorithm level optimizations
[4,9,1,3,27,15].

Various environments were considered for execution and optimization of
similarity related research� typically this includes CPUs [4,15]. MapReduce
has been used for computing similarity between words or objects on the Web
[20,9,1]. Several works discuss using CPU and GPU environments. Paper [13]
discusses parallelization of link based similarity measure computations on a
GPU in comparison to a CPU based approach. Because of GPU memory
limitations, matrix tiling is applied so that sub-matrices �t into GPU global
memory. For optimization of data transfer between RAM and GPU memory,
Doubly Compressed Sparse Row (DCSR) is used. For SimRank, rvs-SimRank
and Inter-connection computations, CPU is better for a small number of it-
erations, but falls behind a GPU for larger numbers of iterations. Tiling is
also used in paper [10] for parallel comparisons of bug reports in the context
of automated bug triaging. 8192 reports are compared to 8192 reports after
which results are transferred back to the system memory. A sequential CPU
based version is compared to a parallel GPU version with the latter showing
of up to over 80x speed-up compared to the former for parallel cosine simi-
larity computations. Regression lines are found for tested data points to �nd
projected results for even higher numbers of reports. Tesla K40 was used and
compared to an Intel Xeon E5-2660v3 CPU. Paper [14] presents an approach
for hybrid CPU/GPU parallel processing of similarity search in the context
of content-based multimedia retrieval. Speci�cally, Signature Quadratic Form
Distance is used. A CPU and GPU equipped workstation outperforms a 48-
node NUMA server. In terms of implementation, a GPU is used mainly for
computation of similarity between a query and a database entry. A block is
sent to a GPU with the query and N signatures. Launching a kernel is asyn-
chronous which allows spawning work on the CPU side as well. Furthermore,
computation of a distance is also performed in parallel with use of local mem-
ory within a GPU. Combined CPU/GPU parallel similarity computations are
also discussed in paper [12] in the context of ontology matching. The authors
consider and address issues such as limited data types on the GPU side as
well as limited memory. The former is solved using arrays and the latter by
partitioning ontologies into smaller parts. An implementation uses a job queue
from which work is distributed over a GPU and a CPU. The authors presented
smaller execution times for a GTX660 compared to an Intel i5-2500 CPU and
further improvement in a hybrid environment using both the GPU and the
CPU. Next, distance computations can also be found in works in the context
of content based medical image retrieval. In paper [26] authors present approx-
imately 10x smaller execution times of a parallel GPU code on an NVIDIA
GeForce 9500GT compared to an Intel E5500 CPU for X-ray images with sizes
from 32x32 up to 800x800.

The problem considered in this work was also analyzed previously in [8] in
the context of models of the processing algorithm and the hardware on which

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4 Paweª Czarnul

the algorithm was run. Both were created in the MERPSYS environment that
allows simulation of parallel application execution on large scale cluster and
volunteer based systems and returns predicted application execution time, en-
ergy consumption and probability of successful execution. In [8] simulation
results were validated against real execution times obtained in a parallel set-
ting. Then, after proper calibration, the simulator allows to predict times for
systems with larger numbers of nodes.

Implementation of parallel similarity measure computations between vec-
tors in a hybrid CPU/Xeon Phi environment was optimized by the author
previously and described in detail in paper [5]. Speci�cally, best sizes of vec-
tor batches sent for computations were obtained experimentally including dy-
namic second vector batch size, optimizations including setting MIC_USE_2MB

_BUFFERS and overlapping communications were implemented and veri�ed as
giving bene�ts in a parallel hybrid environment.

Compared to the aforementioned works, this paper contributes by opti-
mization of computing similarities for pairs of multidimensional vectors in
a hybrid CPU+GPU environment with speci�c performance oriented opti-
mizations including: overlapping communication and computations, memory
management optimizations, data partitioning and best GPU grid size deter-
mination. As such, conclusions found in this paper are directly useful for a
considerable number of programmers using such modern hardware for appli-
cation of vector similarity search in many applications.

3 Problem statement and approach to parallelization

The problem considered in this paper can be stated as follows: design, im-
plement and optimize a parallel code for computation of a similarity measure
between every pair of a large number of high dimensional vectors such that the
code scales in a hybrid environment with compute devices such as CPUs and
GPUs of various relative performances. Similarly to [5], a testbed similarity
measure was a square root of the sum of di�erences of values in corresponding
dimensions power 2. All similarities across vector pairs can then be reduced
to a single value according to a given operator. For the following tests, except
those in Section 4.3.7, the maximum operator is used which requires all pair
similarity computations.

The code should also scale in a case in which pairs of vectors that meet
certain criteria are considered. The latter makes load balancing more di�cult
because computations required for some pairs of vectors are di�erent than for
the others. This is the case for the considered scenario when the goal is to
consider pairs for which similarity exceeds a given threshold.

Parallelization of the problem involves the following steps:

1. Partitioning � how data and computations should be broken into data
packets for processing by available compute devices. Compute devices in a
hybrid environment di�er in performance.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of large vector similarity computations ... 5

2. Assignment � how data packets are assigned to particular compute devices
in the system.

3. Execution � actual launching computations and running code on compute
devices.

It should be noted that partitioning and assignment can be performed
either statically i.e. before computations start or dynamically, at runtime.

3.1 Partitioning

For partitioning of input data, the following algorithm is applied, which is de-
picted in Figure 1. The �gure presents the result space represented by a matrix
in which each vector is paired with each other vector for comparison. Along
each side of the square there are the input vectors lined up. Consequently,
the shaded triangle (excluding the diagonal) represents a result space. Rect-
angles of prede�ned size are generated and aligned to cover the triangle of
results. Each rectangle has <�rst vector batch size> × <second vector batch
size> size. The order in which the result space is covered is shown in the �g-
ure. Because of various performances of compute devices, faster devices would
compute more result rectangles than slower ones in the same amount of time.
A su�cient number of rectangles is needed to balance load. The su�cient
number of rectangles is the smallest number that allows the rectangles to be
distributed among compute devices so that execution times of the rectangles
on various devices di�er by no more than a prede�ned threshold. The greater
di�erences in compute performances between devices the larger number of
rectangles is required.

Fig. 1: Partitioning of the result space

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6 Paweª Czarnul

3.2 Assignment and execution

Execution of computations corresponding to each rectangle can be regarded
as spawning a computational kernel, in terms of technological terms in APIs
such as CUDA. Similarly, running a local function in a separate thread on a
multicore CPU can also be regarded as launching such a kernel. This is similar
to o�oading computations to a coprocessor such as Xeon Phi using OpenMP's
constructs which can also be regarded as such.

Finally, then, assignment and execution requires proper management of the
rectangles and it is accomplished similarly to the approach in [5] i.e.: within a
node a number of top level threads is launched each of which is responsible for
running a kernel on a compute device. Note that each kernel is parallel within
itself:

� a CUDA kernel on a GPU,
� a number of threads running on cores of a multicore CPU.

4 Code optimizations and results

4.1 Testbed environments

For the following tests, two hybrid parallel environments described in Table 1
were used that di�er mainly in CUDA capabilities of cards and their target:
desktop and server as well as di�erent relative CPU/GPU performances. Inter-
estingly, it is the newer desktop GTX 1070 card in system 1 that o�ers higher
CUDA compute capability than the Tesla K20m in system 2. Both systems
feature 2 multicore Intel Xeon family CPUs apart from 2 NVIDIA GPUs in
each.

4.2 Testbed application

The testbed problem was described in previous sections of the paper. Its im-
plementation needs to consider, among others, storage of arrays, allocation
of space for arrays on a device and further code optimizations, described in
subsequent sections. Speci�cally, the testbed application uses/assumes that
vectors are allocated as a single array with vectors stored one after another.

At a high level, pseudocode of the initial implementation executed on the
host can be presented as follows:

1 enable nested p a r a l l e l i sm in OpenMP;
(. . .)
// generate input data
generatedata (&data , vectorcount , v e c t o r s i z e) ;
(. . .)

6 for (i =0; i<reques teddev i cecount ; i++) {
a l l o c a t e memory on host correspond ing to given dev i ce i ;
cudaSetDevice (i) ;
a l l o c a t e memory on dev i ce i ;
c r e a t e stream for dev i ce i ;

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of large vector similarity computations ... 7

Table 1: System con�gurations

System 1 2
CPUs 2 x Intel Xeon CPU

E5-2620v4 @ 2.10GHz
2 x Intel(R) Xeon(R)
CPU E5-2640 @
2.50GHz

CPUs � total num-
ber of physical/log-
ical cores

16/32 12/24

System memory
size (RAM) [GB]

128 64

GPUs 2 x NVIDIA GTX 1070 2 x NVIDIA Tesla
K20m

GPUs � total num-
ber of CUDA cores

2 x 2048 2 x 2496

GPU Compute ca-
pability

6.1 3.5

GPU memory size
[MB]

2 x 8192 2 x 5120

Operating system Ubuntu Linux version
4.4.0-57-generic

CentOS Linux
version 2.6.32-
642.6.2.el6.x86_64

Compiler/version CUDA compilation
tools, release 8.0,
V8.0.44, gcc 6.2.0

CUDA compilation
tools, release 8.0,
V8.0.44, gcc 4.4.7

11 }

#pragma omp p a r a l l e l <data scop ing and reduct ion c lause s> num_threads (
r eques teddev i cecount +((cputhreadcount >0) ?1 : 0))

{
(. . .)

16 int i=omp_get_thread_num () ;
i f (i<reques teddev i cecount) { // threads managing execut ion on GPU(s

)
(. . .)
cudaSetDevice (i) ;
do {

21 f i n i s h =0;
#pragma omp c r i t i c a l
{

i f ((f i r s t ba t chcoun t e r <vectorcount) && (secondbatchcounter<
vectorcount)) {

determine next batches for computations ;
26 } else

f i n i s h =1;
}
i f (f i n i s h==0) {

copy data to dev i ce ;
31 // s t a r t computations on the GPU using par t i cu l a r streams (use

dynamical ly a l l o ca t ed shared memory)
s lavegpu<<<block s ing r i d , threads inb lock , th r eads inb lo ck ∗ s izeof (

double) , stream [i] >>>(...) ;
copy r e s u l t s from a GPU to the host ;
wait for complet ion o f p ro c e s s i ng on the GPU;
// and merge r e s u l t s

36 gpuresu l tmergecpufunct ion (. . .) ;
(. . .)

}

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

8 Paweª Czarnul

} while (! f i n i s h) ;
} else { // p a r a l l e l execut ion on CPU(s)

41 do {
f i n i s h =0;
#pragma omp c r i t i c a l
{

i f ((f i r s t ba t chcoun t e r <vectorcount) && (secondbatchcounter<
vectorcount)) {

46 determine next batches for computations ;
} else

f i n i s h =1;
}
i f (f i n i s h==0) {

51 // s t a r t computations on the CPU(s)
s lavecpu (. . . , cputhreadcount) ;
merge r e s u l t s ;

}
} while (! f i n i s h) ;

56 }
}
r e l e a s e r e s ou r c e s ;

It uses:

1. OpenMP for top level threads, each of which is responsible for management
of input data, launching computations and fetching results from a compute
device � either a GPU � one management thread per GPU or CPU(s) �
one management thread per all cores. Each management thread fetches new
batches of input data from the input array in a critical section denoted by
#pragma omp critical. The initial implementation does the following, in
terms of management of computations on GPUs: before input data is sent
to a GPU, memory is allocated for input vectors, output results (one double
per thread block), input data is sent, kernel is launched and output data
is copied back to the host memory.

2. CUDA for launching computations on a GPU. The initial implementation
uses one stream per device, optimized versions described below use two
streams per device to allow overlapping of data/result copying and pro-
cessing of another kernel at the same time.

3. OpenMP nested parallelism for launching and parallelization of computa-
tions within CPU cores. The thread responsible for management of CPU
cores uses #pragma omp parallel for for parallelization of an outer loop
that iterates over vectors in the �rst batch. Each iteration then goes over
second batch vectors. Since we calculate only results for pairs of vec-
tors denoted by the shaded triangle in Figure 1, various �rst batch vec-
tors may have various numbers of results and iterations of the outer loop
may take various amounts of time. In this case it is important to note
that schedule(dynamic,1) is used for e�cient assignment of iterations to
threads.

In order to balance load among compute devices that potentially di�er in
performance, the number of similarly sized (di�erences can arise at the end of
batches of vectors) batches must be considerably larger than the number of
compute devices.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of large vector similarity computations ... 9

For subsequent tests, the application was compiled with the -O3 �ag for
high optimization. Three runs per each test con�guration, unless otherwise
noted, were run with selection of best results.

4.3 Tests, results and discussion

4.3.1 Determination of CPU-GPU thread management con�guration

Firstly, for a selected �rst and second batch sizes as well as grid size con�g-
uration we aim at determination of how many computing threads on CPUs
should be launched apart from top level threads in charge of GPU manage-
ment. It should be noted that 2 threads are used for high level management
of launching computations on two GPUs. Figure 2 presents results for various
numbers of additional computing threads on CPUs on system 1. The �rst batch
size equal to 512, second batch size equal to 256 and 1024 threads per block
were used as an example at this point for an initial parallel implementation.
Optimization of the latter as well as parameter tuning is performed in sub-
sequent sections, in particular in Section 4.3.5. The reason for the observed

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100 110 120 130

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

number of computing threads on CPUs

10000 vectors, dim size=10000
5000 vectors, dim size=20000

20000 vectors, dim size=10000

Fig. 2: System 1: Execution time [s] vs the number of computing threads for
CPUs; 2xGPUs used

increase in execution time from 30 to 32 threads computing on the CPUs is

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

10 Paweª Czarnul

that they need to share cores with the two threads managing computations on
the GPUs i.e. launching host to device communication, kernel and device to
host communication. Consequently, based on the previous results, the num-
ber of computing threads for CPUs was selected as <the number of logical
processors-2>. This formula also turned out to be the best for system 2. Such
values are used for subsequent tests, for the two platforms, both with 2 GPUs.

4.3.2 Optimization of the GPU kernel

The initial kernel followed the CPU implementation i.e. each thread was as-
signed a pair of vectors for which a similarity measure was to be computed.
While this approach works correctly, on a GPU several threads of a single
block would be computing pairs for which obviously one of the threads would
be di�erent and thus would be accessing very dispersed locations in the global
memory. In order to improve this implementation, the author proposed and
implemented the idea shown in Figure 3.

The main steps and logic of this solution are as follows:

1. As before, each thread is assigned a pair of vectors. That is, each thread
is responsible for a di�erent pair of vectors from the rectangle of <�rst
vector batch size> × <second vector batch size> size. This is determined
using the thread's id blockIdx.x ∗ blockDim.x + threadIdx.x considering
the rectangle size. However, in this solution, threads in a thread block
compute a similarity measure of each of the pairs assigned to this block's
threads in parallel. This means that x threads of a thread block (x ≤ 1024
in CUDA) are assigned x pairs of vectors and parallel computation of each
of these pairs is performed one by one.

2. A loop iterates over pairs of vectors. In each iteration j following from 0
to blockDim.x− 1 it is determined which pair would be computed i.e. the
pair for which the j-th thread in a block is responsible. This information
is put into shared memory before __syncthreads() so that each thread in
a block knows the pair to be compared.

3. An internal loop (executed in each thread) allows each thread to compute
(ai − bi)

2 elements in parallel. Each thread uses stride blockDim.x which
optimizes memory access (memory coalescing).

4. A parallel reduction sum is run for all threads in a block using shared
memory (like in [11]) with log complexity (the number of steps in terms of
the number of threads).

5. A square root of the result of the previous step is stored in a cell of another
shared memory array at the index to which the pair of vectors was initially
assigned.

6. After the outer loop has �nished, the latter shared memory array contains
results for the x pairs of vectors. Now, another parallel reduction is run
with the given operator.

The new kernel was compared to the initial one for selected numbers of
vectors and dimension sizes, for the two systems. Results, shown in Figures

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of large vector similarity computations ... 11

Fig. 3: Improved kernel algorithm

4 and 5 clearly indicate bene�ts of the improved solution, relatively better
for Tesla. The following con�gurations were used � for system 1: �rst batch
size=1024, second batch size=64, 128 threads per block and for system 2: �rst
batch size=2048, second batch size=128, 256 threads per block. These con�g-
urations are best con�gurations obtained for the two systems according to the
analysis of batch and grid sizes shown in Section 4.3.5. Such con�gurations,
unless otherwise noted are used for following tests as well.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

12 Paweª Czarnul

 0

 5

 10

 15

 20

initial version improved kernel

E
xe

cu
tio

n
tim

e
[s

]

10000 vectors dimsize=10000
5000 vectors dimsize=20000

Fig. 4: System 1: gain from the improved kernel implementation

 0

 10

 20

 30

 40

initial version improved kernel

E
xe

cu
tio

n
tim

e
[s

]

10000 vectors dimsize=10000
5000 vectors dimsize=20000

Fig. 5: System 2: gain from the improved kernel implementation

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of large vector similarity computations ... 13

4.3.3 Optimization of GPU memory allocation and CPU-GPU

communication

In this step, compared to the allocation scheme of the initial implementa-
tion described in Section 4.2, the following optimizations were introduced and
tested in the code:

1. There is no need for recurrent memory allocation on the GPU side. It can
be done once and reused later if only large enough bu�ers are allocated.
This is known from prede�ned �rst and second vector batches. It can also
be noted that memory allocation optimization has been found important
in a GPU implementation for speech recognition [2].

2. According to the partitioning scheme outlined in Figure 1, a host thread
iterates �rst through �rst batch vectors and then through second batch
vectors. Consequently, it is often the case in subsequent kernel invocations
that the �rst vector batch does not change and there is no need for sending
it again. This is detected through keeping track of which �rst vector batch
was sent last time. If the current to be analyzed �rst vector batch is the
same, it is not sent as it is already in the GPU memory and can be reused.

Gains from these code changes are clearly visible and shown in Figure 6, for
the two con�gurations, compared to the previous improved kernel version.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

System 1
 10000 vectors,
 dim size 10000,

 2xGPUs+2xCPUs (30 threads)

System 2
 10000 vectors,
 dim size 10000,

 2xGPUs+2xCPUs (22 threads)

E
xe

cu
tio

n
tim

e
[s

]

improved kernel
improved kernel+

 improved memory allocation
 and optimized CPU-GPU communication

 for first vector batch

Fig. 6: Gain from optimized GPU memory allocation and CPU-GPU commu-
nication, 10000 vectors, dim size = 10000

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

14 Paweª Czarnul

4.3.4 Overlapping communication and computations as well as concurrent

kernel execution on GPUs

In the initial implementation, a host thread manages host to device copying,
kernel execution on the device and device to host copying. It is possible to
overlap copying and kernel execution in two streams or even kernel execution
is supported by the card. Because of that in the next step, the previous imple-
mentation was modi�ed in such a way that the host thread creates two streams.
Subsequently it puts host to device communication, kernel launch, device to
host communication into the �rst stream, the same sequence of commands
for a new second vector (and possibly �rst vector) batches into the second
stream, all launched asynchronously. This results in overlapping of communi-
cation and kernel execution in the two streams as well as concurrent kernel
execution. Analysis of GPU execution in the NVIDIA Visual Pro�ler proved
the intended overlap. Overlapping also required allocation of host side bu�ers �
vector data (through cudaHostRegister(...) for previously allocated data)
as well as output result bu�ers through cudaHostAlloc(...) as pinned mem-
ory. Allocation as pinned memory may take more time than regular allocation
but later results in performance gains through the proposed implementation.
These improvements require more memory allocated for the two streams �
which is important especially on the GPU side. Figure 7 presents visible im-
provements from the optimizations for two selected cases for the two analyzed
systems. For system 1, 30 CPU threads and 2 threads for GPU management
were used. For system 2, 22 CPU threads and 2 threads for GPU management
were used.

4.3.5 Optimization of vector batch sizes and GPU grid size con�guration

In the next step, using a version with all the aforementioned improvements,
we ran performance tests in order to evaluate how batch sizes as well as the
number of threads per block impact performance.

Figures 8 and 9 present execution times for a given �rst vector batch size,
second vector batch size for the number of threads per block giving the best
execution time (tests were run for 64, 128, 256, 512 and 1024 threads per
block for each con�guration), for the two systems. There is a trade-o� be-
tween potential imbalance among compute devices (for large batch sizes) and
performance cli� for very small batch sizes which result in a very small number
of blocks and under-utilization of a GPU.

It turns out that the best con�gurations for the two platforms were similar
� the �rst batch either 1024 or 2048, second batch size 64 or 128 (multiples
of 2 were tested so that numbers of threads divided by 32 � the number of
threads in a warp). It can be noticed that these are very similar to best batch
sizes obtained for the same problem benchmarked by the author on a di�erent
hybrid system with 2 multicore CPUs and 2 Xeon Phi cards [5].

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of large vector similarity computations ... 15

 0

 2

 4

 6

 8

 10

 12

 14

 16

System 1
 10000 vectors,
 dim size 10000,

 2xGPUs+2xCPUs

System 2
 10000 vectors,
 dim size 10000,

 2xGPUs+2xCPUs

E
xe

cu
tio

n
tim

e
[s

]

single kernel execution
concurrent kernel execution

 and overlapping CPU-GPU communication and GPU computations

Fig. 7: Gain from overlapping CPU-GPU communication and GPU computa-
tions and concurrent kernel execution

4.3.6 Results for various con�gurations

Based on the previous assessment, a con�guration with �rst batch size=1024,
second batch size=64, number of threads per block=128 was used for sys-
tem 1 and �rst batch size=2048, second batch size=128, number of threads
per block=256 for system 2. Tests were performed for various hardware con-
�gurations i.e.: 2xCPU, 1xGPU, 2xGPU and 2xCPU+2xGPU. Results are
presented in Figures 10 and 11 for systems 1 and 2 respectively. In compari-
son, the 2xCPU+2xGPU execution times shown in the �gures are up to 8.4%
larger compared to theoretical times computed analytically from measured
performance of 2xCPU and 2xGPU cases assuming perfect load balancing.

The following conclusions can be drawn from these results:

1. The code scales well i.e. can e�ectively use more resources for computations
of vector similarities on the two platforms.

2. There is a visible di�erence in GPU to CPU performance for the two sys-
tems. On system 1, GPUs are considerably more powerful than CPUs for
this code which in turn results in relatively lower gain from 2xGPU to
2xCPU+2xGPU con�guration.

3. Gain is visible for various input data sizes, in particular various ratios of
the number of vectors to dimension size. This proves that the code scales
well for various input data con�gurations.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

16 Paweª Czarnul

 10

 100

 1000

 10000

first vector batch size
 10

 100

 1000
second vector batch size

 0

 2

 4

 6

 8

 10

Execution time [s],
best number of threads

per block

 5.5
 6
 6.5
 7
 7.5
 8
 8.5
 9
 9.5
 10

Fig. 8: System 1: Execution time [s], best number of threads per block for
each tuple of �rst batch size and second batch size, 10000 vectors, dim size =
10000, 2 GPUs, 30 computing CPU threads, all optimizations deployed

 1000

 10000

first vector batch size
 10

 100

 1000
second vector batch size

 12
 12.5

 13
 13.5

 14
 14.5

 15
 15.5

 16

Execution time [s],
best number of threads

per block

 12

 12.5

 13

 13.5

 14

 14.5

 15

 15.5

 16

Fig. 9: System 2: Execution time [s], best number of threads per block for
each tuple of �rst batch size and second batch size, 100000 vectors, dim size
= 10000, 2 GPUs, 22 computing CPU threads, optimized memory allocation
and CPU-GPU communication

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of large vector similarity computations ... 17

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

2 x CPU 1 x GPU 2 x GPU 2 x CPU
 + 2 x GPU

E
xe

cu
tio

n
tim

e
[s

]

20000 vectors, dim_size=10000
10000 vectors, dim_size=30000
15000 vectors, dim_size=10000
10000 vectors, dim_size=10000
5000 vectors, dim_size=20000

Fig. 10: System 1: results for various con�gurations for the optimized code,
�rst batch size=1024, second batch size=64, number of threads per block=128

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

2 x CPU 1 x GPU 2 x GPU 2 x CPU
 + 2 x GPU

E
xe

cu
tio

n
tim

e
[s

]

20000 vectors, dim_size=10000
10000 vectors, dim_size=30000
15000 vectors, dim_size=10000
10000 vectors, dim_size=10000
5000 vectors, dim_size=20000

Fig. 11: System 2: results for various con�gurations for the optimized code, �rst
batch size=2048, second batch size=128, number of threads per block=256

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

18 Paweª Czarnul

It can be noticed that the code scales for hybrid systems with increasing
computational power, with di�erences in times more visible for systems for
which additional resources (such as CPUs in the 2xCPU+2xGPU environ-
ment) that are of higher computational power compared to the already in-
cluded devices � GPUs, such as for system 2. Additionally, Figure 12 presents
execution times for various numbers of vectors and dim size=10000 and anal-
ogous growth for various hardware con�gurations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 10000 15000 20000

E
xe

cu
tio

n
tim

e
[s

]

number of vectors

2 x CPU system 1
1 x GPU system 1
2 x GPU system 1

2 x CPU + 2 x GPU system 1
2 x CPU system 2
1 x GPU system 2
2 x GPU system 2

2 x CPU + 2 x GPU system 2

Fig. 12: Execution times vs number of vectors, dim size=10000, optimized
code, system 1: �rst batch size=1024, second batch size=64, number of threads
per block=128, system 2: �rst batch size=2048, second batch size=128, number
of threads per block=256

4.3.7 Scaling for all pairs above a threshold

Finally, the implementation was checked in terms of scalability for a case when
we search for vectors for which the similarity value exceeds a certain threshold.
This results in smaller execution times compared to full search but actually
makes load balancing harder because computations for a given pair of vectors
can be stopped at the moment when a partial sum exceeds a threshold. In this
case, the minimum operator is used.

Firstly, it was implemented in the code in the following way. The loop
iterating through vector indices was split into two loops � an outer one and

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of large vector similarity computations ... 19

an inner one � the latter adding a number of elements (the same in the GPU
and CPU implementations) after which a check was performed whether the
sum exceeded a threshold. This did not involve too much overhead which was
important because in the GPU case, checking against a threshold had to be
preceded by a parallel reduction over threads in a block.

Figure 13 �nally shows that the code scales for such a case, in which pro-
cessing of various pairs of vectors may require checking various numbers of
elements before reaching the threshold.

 0

 2

 4

 6

 8

 10

 12

 14

 16

2 x CPU 1 x GPU 2 x GPU 2 x CPU + 2 x GPU

E
xe

cu
tio

n
tim

e
[s

]

System 1
System 2

Fig. 13: System 1 and 2, times for a version that searches for all vector pairs
above a given threshold, 10000 vectors, dim size = 20000

5 Summary and future work

The paper presented and discussed a parallel OpenMP+CUDA implementa-
tion for parallel computation of similarity between pairs of a large number
of multidimensional vectors. It allows e�cient parallelization and scaling for
hybrid CPU+GPU systems that was proved through experiments on two real
systems, each with 2 x Xeon CPU + 2 x NVIDIA GPUs, each with a dif-
ferent relative performance of CPU/GPU. Several code improvements were
proposed, tested and proved bene�cial through experiments, including: kernel
tuning by engaging threads for optimized memory access and utilization of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

20 Paweª Czarnul

shared memory, minimization of data sent between CPU and GPU, minimiza-
tion of memory allocation on the GPU side, overlapping CPU-GPU communi-
cation and GPU kernel execution, concurrent kernel execution, determination
of best vector batch sizes for which computations are requested and best grid
con�guration on GPUs.

Future work includes taking up other important algorithms for such hybrid
systems as well as tuning for the latest Xeon Phi Knight Landing systems, as
continuation of research presented in [5] and in this paper. Furthermore, the
author plans to incorporate power consumption and energy usage models [6,
7] into optimization of these computations.

References

1. Alabduljalil, M.A., Tang, X., Yang, T.: Optimizing parallel algorithms for
all pairs similarity search. In: S. Leonardi, A. Panconesi, P. Ferragina,
A. Gionis (eds.) WSDM, pp. 203�212. ACM (2013). URL http://dblp.uni-
trier.de/db/conf/wsdm/wsdm2013.html#AlabduljalilTY13

2. Amodei, D., Anubhai, R., Battenberg, E., Case, C., Casper, J., Catanzaro, B., Chen,
J., Chrzanowski, M., Coates, A., Diamos, G., Elsen, E., Engel, J., Fan, L., Fougner,
C., Hannun, A.Y., Jun, B., Han, T., LeGresley, P., Li, X., Lin, L., Narang, S., Ng,
A.Y., Ozair, S., Prenger, R., Qian, S., Raiman, J., Satheesh, S., Seetapun, D., Sen-
gupta, S., Wang, C., Wang, Y., Wang, Z., Xiao, B., Xie, Y., Yogatama, D., Zhan, J.,
Zhu, Z.: Deep speech 2 : End-to-end speech recognition in english and mandarin. In:
M. Balcan, K.Q. Weinberger (eds.) Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, JMLR

Workshop and Conference Proceedings, vol. 48, pp. 173�182. JMLR.org (2016). URL
http://jmlr.org/proceedings/papers/v48/amodei16.html

3. Awekar, A., Samatova, N.F.: Fast matching for all pairs similarity search. Web Intelli-
gence and Intelligent Agent Technology, IEEE/WIC/ACM International Conference on
1, 295�300 (2009). DOI http://doi.ieeecomputersociety.org/10.1109/WI-IAT.2009.52

4. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: Pro-
ceedings of the 16th International Conference on World Wide Web, WWW '07, pp.
131�140. ACM, New York, NY, USA (2007). DOI 10.1145/1242572.1242591. URL
http://doi.acm.org/10.1145/1242572.1242591

5. Czarnul, P.: Benchmarking performance of a hybrid intel xeon/xeon phi system for
parallel computation of similarity measures between large vectors. International Jour-
nal of Parallel Programming pp. 1�17 (2016). DOI 10.1007/s10766-016-0455-0. URL
http://dx.doi.org/10.1007/s10766-016-0455-0

6. Czarnul, P., Kuchta, J., Ro±ciszewski, P., Pro�cz, J.: Modeling energy consumption of
parallel applications. In: 2016 Federated Conference on Computer Science and Infor-
mation Systems (FedCSIS), pp. 855�864 (2016)

7. Czarnul, P., Ro±ciszewski, P.: Optimization of Execution Time under Power Consump-
tion Constraints in a Heterogeneous Parallel System with GPUs and CPUs, pp. 66�80.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014). DOI 10.1007/978-3-642-45249-
9_5. URL http://dx.doi.org/10.1007/978-3-642-45249-9_5

8. Czarnul, P., Ro±ciszewski, P., Matuszek, M., Szyma«ski, J.: Simulation of paral-
lel similarity measure computations for large data sets. In: 2015 IEEE 2nd In-
ternational Conference on Cybernetics (CYBCONF), pp. 472�477 (2015). DOI
10.1109/CYBConf.2015.7175980

9. De Francisci, G., Lucchese, C., Baraglia, R.: Scaling out all pairs similarity search with
mapreduce. Large-Scale Distributed Systems for Information Retrieval p. 27 (2010)

10. Dunn, T., Banerjee, N.K., Banerjee, S., unde�ned, unde�ned, unde�ned, un-
de�ned: Gpu acceleration of document similarity measures for automated

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Parallelization of large vector similarity computations ... 21

bug triaging. 2016 IEEE International Symposium on Software Reliabil-
ity Engineering Workshops (ISSREW) 00(unde�ned), 140�145 (2016). DOI
doi.ieeecomputersociety.org/10.1109/ISSREW.2016.27

11. Harris, M.: High performance computing with cuda. optimizing cuda. In: SC07 (2007).
Http://gpgpu.org/static/sc2007/SC07_CUDA_5_Optimization_Harris.pdf

12. Hartung, M., Kolb, L., Groÿ, A., Rahm, E.: Optimizing Similarity Computations
for Ontology Matching - Experiences from GOMMA, pp. 81�89. Springer Berlin
Heidelberg, Berlin, Heidelberg (2013). DOI 10.1007/978-3-642-39437-9_7. URL
http://dx.doi.org/10.1007/978-3-642-39437-9_7

13. Jo, Y., Bae, D., Kim, S.: E�cient computations of link-based similarity mea-
sures on the GPU. In: 3rd IEEE International Conference on Network In-
frastructure and Digital Content, IC-NIDC 2012, Beijing, China, September 21-
23, 2012, pp. 261�265. IEEE (2012). DOI 10.1109/ICNIDC.2012.6418756. URL
http://dx.doi.org/10.1109/ICNIDC.2012.6418756

14. Kruli², M., Skopal, T., Loko£, J., Beecks, C.: Combining cpu and gpu architectures
for fast similarity search. Distributed and Parallel Databases 30(3), 179�207 (2012).
DOI 10.1007/s10619-012-7092-4. URL http://dx.doi.org/10.1007/s10619-012-7092-4

15. Lam, H.T., Dung, D.V., Perego, R., Silvestri, F.: An incremental pre�x �ltering ap-
proach for the all pairs similarity search problem. In: W.S. Han, D. Srivastava, G. Yu,
H. Yu, Z.H. Huang (eds.) APWeb, pp. 188�194. IEEE Computer Society (2010). URL
http://dblp.uni-trier.de/db/conf/apweb/apweb2010.html#LamDPS10

16. Ma, C., Wang, L., Xie, X.: GPU accelerated chemical similarity calculation for com-
pound library comparison. Journal of Chemical Information and Modeling 51(7), 1521�
1527 (2011). DOI 10.1021/ci1004948. URL http://dx.doi.org/10.1021/ci1004948

17. Mabotuwana, T., Lee, M.C., Cohen-Solal, E.V.: An ontology-based similarity measure
for biomedical data � application to radiology reports. Journal of Biomedical Infor-
matics 46(5), 857 � 868 (2013). DOI http://dx.doi.org/10.1016/j.jbi.2013.06.013. URL
http://www.sciencedirect.com/science/article/pii/S1532046413000889

18. McInnes, B.T., Pedersen, T.: Evaluating measures of semantic similarity and relat-
edness to disambiguate terms in biomedical text. Journal of Biomedical Informat-
ics 46(6), 1116 � 1124 (2013). DOI http://dx.doi.org/10.1016/j.jbi.2013.08.008. URL
http://www.sciencedirect.com/science/article/pii/S1532046413001238. Special Section:
Social Media Environments

19. Obin, N., Roebel, A.: Similarity search of acted voices for automatic voice casting.
IEEE/ACM Transactions on Audio, Speech, and Language Processing 24(9), 1642�
1651 (2016). DOI 10.1109/TASLP.2016.2580302

20. Pantel, P., Crestan, E., Borkovsky, A., Popescu, A.M., Vyas, V.: Web-scale distributional
similarity and entity set expansion. In: Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 2 - Volume 2, EMNLP '09, pp. 938�
947. Association for Computational Linguistics, Stroudsburg, PA, USA (2009). URL
http://dl.acm.org/citation.cfm?id=1699571.1699635

21. Phong, P.H., Son, L.H.: Linguistic vector similarity measures and applications to lin-
guistic information classi�cation. International Journal of Intelligent Systems 32(1),
67�81 (2017). DOI 10.1002/int.21830. URL http://dx.doi.org/10.1002/int.21830

22. Pushpa, C., Girish, S., Nitin, S., Thriveni, J., Venugopal, K., Patnaik, L.: Computing
semantic similarity measure between words using web search engine. In: D.C. Wyld,
D. Nagamalai, N. Meghanathan (eds.) Third International Conference on Computer
Science, Engineering & Applications (ICCSEA 2013), pp. 135�142. Delhi, India (2013).
ISBN : 978-1-921987-13-7, DOI: 10.5121/csit.2013.3514

23. Rodriguez-Serrano, J.A., Perronnin, F., Llados, J., Sanchez, G.: A similarity measure
between vector sequences with application to handwritten word image retrieval. In:
Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
pp. 1722�1729 (2009). DOI 10.1109/CVPR.2009.5206783

24. Szymanski, J.: Mining relations between wikipedia categories. In: Networked Digital
Technologies - Second International Conference, NDT 2010, Prague, Czech Republic,
July 7-9, 2010. Proceedings, Part II, pp. 248�255 (2010)

25. Szymanski, J.: Comparative analysis of text representation methods using classi�cation.
Cybernetics and Systems 45(2), 180�199 (2014)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

22 Paweª Czarnul

26. Yadav, K., Mittal, A., Ansari, M.: Parallel implementation of similarity measures on gpu
architecture using cuda. Indian Journal of Computer Science and Engineering (IJCSE)
3(1) (2012). ISSN: 0976-5166

27. Zadeh, R.B., Goel, A.: Dimension independent similarity computation. Journal of Ma-
chine Learning Research 14(1), 1605�1626 (2013). URL http://dl.acm.org/citation.cfm?
id=2567715

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

