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Abstract 
A deterministic technique for fast surrogate-assisted multi-objective design optimization of antennas in 
highly-dimensional parameters spaces has been discussed. In this two-stage approach, the initial 
approximation of the Pareto set representing the best compromise between conflicting objectives is 
obtained using a bisection algorithm which finds new Pareto-optimal designs by dividing the line 
segments interconnecting previously found optimal points, and executing poll-type search that involves 
Pareto ranking. The initial Pareto front is generated at the level of the coarsely-discretized EM model of 
the antenna. In the second stage of the algorithm, the high-fidelity Pareto designs are obtained through 
optimization of corrected local-approximation models. The considered optimization method is verified 
using a 17-variable uniplanar antenna operating in ultra-wideband frequency range. The method is 
compared to three state-of-the-art surrogate-assisted multi-objective optimization algorithms. 
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1 Introduction 
Complex geometry of modern antenna structures is a result of strict requirements imposed on their 

electrical and/or field performance figures, as well as small size of modern communication systems. 
Size reduction of ultra-wideband (UWB) antennas is often achieved as a result of various topological 
modifications such as ground plane slots and stubs that enlarge the current path within the structure (Li, 
Cheung et al. 2013), as well as feed line alterations that increase the impedance bandwidth (Bekasiewicz 
and Koziel, 2015). Band-notch functionality, on the other hand, is often realized using slots within the 
radiator or various resonators allocated in the vicinity (Li et al. 2012) or below the feed line (Nouri and 
DadashZadeh, 2011).  

Complex antenna structures are characterized by a large number of design parameters (Bekasiewicz 
and Koziel, 2015). Also, they can be accurately evaluated only by means of numerically expensive high-
fidelity electromagnetic (EM) solvers. For the sake of design reliability, environmental components such 
as connectors (Khan et al. 2016), housing (Alsath and Kanagasabai, 2015), or fixtures (Liu et al. 2012) 
are often included into EM models, which additionally increases their evaluation cost. These factors 
make EM-driven design of modern antennas a challenging task. Typically, it is handled manually by 
means of visual inspection of the structure response intertwined with sweeping of its parameters (usually 
one at a time). Although very laborious and unable to identify truly optimum designs, manual design is 
still considered as a reasonable compromise between computational feasibility and efficiency. On the 
other hand, conventional optimization driven by local (e.g., gradient-based, or derivative free, see: 
Nocedal and Wright, 2006; Conn et al. 2009) or global (e.g., genetic algorithms, or simulated annealing, 
see Ding et al. 2008; Martinez-Fernandez et al. 2007) methods are numerically prohibitive due to a large 
number of EM model evaluations required to complete the process. 

Antenna design normally involves several performance figures (e.g., maximization of in-band gain 
(Kuwahara, 2005), minimization of reflection (Bekasiewicz and Koziel, 2015), front-to-back ratio 
(Koziel and Bekasiewicz, 2015), or antenna size (Koziel and Ogurtsov, 2013)) that have to be 
simultaneously taken into account. These requirements often stay in conflict with each other meaning 
that improvement of one of them is not possible without degradation of the others. For the sake of 
simplicity, design requirements are often aggregated into a single-objective task using appropriate 
weighting factors which allows for solving the problem using conventional optimization algorithms. 
However, comprehensive information about trade-offs between various objectives (referred to as a 
Pareto front) may be only obtained by means of genuine multi-objective optimization (Deb, 2001). The 
most popular methods for solving multi-objective design problems are population-based metaheuristics 
(e.g., evolutionary, or firefly algorithms, see e.g., Koziel and Ogurtsov, 2013; Yang, 2013). Although 
metaheuristics allow for generating the entire Pareto set in a single algorithm run, they typically require 
thousands of model evaluations to complete the optimization process (Kuwahara, 2005). Thus, they are 
unsuitable for handling expensive high-fidelity EM simulation models of antenna structures. 

The cost of antenna design can be reduced using surrogate-assisted techniques, where the 
optimization is executed at the level of a coarsely-discretized EM model of the structure at hand. The 
optimized design is further corrected using occasionally acquired accurate EM model data. A variety of 
surrogate-based methods have been successfully utilized for rapid antenna design. These include, among 
others, space mapping (Koziel and Ogurtsov, 2013), manifold mapping (Koziel et al. 2013), shape 
preserving response prediction (Koziel et al. 2012), adaptive response correction (Koziel and Ogurtsov, 
2014), and, recently, utilization of response features (Koziel and Bandler, 2015). The mentioned 
approaches allow for obtaining optimal design solutions at a cost corresponding to a few dozens of high-
fidelity EM model simulations. 

Several surrogate-assisted methods for fast EM-driven multi-objective design of antenna structures 
have been proposed. In (Koziel and Ogurtsov, 2013), the Pareto set has been obtained by metaheuristic 
optimization of an auxiliary response surface approximation model constructed from the low-fidelity 
EM model data. The high-fidelity representation of the Pareto front has been subsequently obtained 

 

 

through space mapping correction of the selected designs. An alternative refinement strategy based on 
co-kriging has been proposed in (Koziel et al. 2014a). Moreover, design space reduction schemes have 
been proposed in (Koziel et al. 2014b; Koziel and Bekasiewicz, 2016a) to extend applicability of the 
approach to highly-dimensional problems. These techniques, however, exploit a stochastic algorithm at 
certain stage of the design process. A fully deterministic method for generating Pareto set, a so-called 
sequential domain patching algorithm has been proposed in (Koziel and Bekasiewicz, 2016a). Another 
approach that identifies the Pareto front representation in a point-by-point manner has been reported in 
(Koziel and Bekasiewicz, 2016c).  

Recently, a Pareto ranking bisection algorithm (PRBA) for multi-objective optimization of modern 
antennas has been introduced in (Koziel and Bekasiewicz, 2017). PRBA is a two stage method that 
generates initial approximations of the Pareto designs using bisection algorithm. The candidate solutions 
are then locally improved by means of a grid-restricted search involving Pareto ranking. Low cost of 
the design process is ensured by performing the search at the coarsely-discretized EM model level. The 
high-fidelity EM representation of the Pareto front is found, similarly as in (Koziel and Bekasiewicz, 
2016a), i.e., by optimization of local approximation surrogates generated around the designs found by 
PRBA. 

In this work, a numerical study concerning feasibility of PRBA for multi-objective optimization of 
a numerically expensive antenna models in highly-dimensional spaces is performed. The benchmark 
problem is a 17-variable uniplanar UWB structure optimized with respect to two conflicting design 
requirements, i.e., minimization of in-band reflection and size reduction. The method is extensively 
compared against state-of-the-art surrogate-assisted multi-objective optimization algorithms. This is the 
first attempt to investigate robustness of the PRBA approach for a design problem with over a dozen 
design variables. 

2 Multi-Objective Optimization Using PRBA 
In this section, we recall the details of the considered Pareto ranking bisection algorithm. Specifically, 

we discuss the multi-objective optimization problem formulation, as well as describe the PRBA approach. 
The section is concluded with a brief explanation of the utilized response correction approach. A design 
example and comparison of PRBA to benchmark algorithms is provided in Section 3. 

2.1 Multi-Objective Problem Formulation 
Let x denote a vector of the antenna design parameters and Rf(x) represent a response of its high-

fidelity EM simulation model. Then, let Fk(Rf(x)), k = 1, …, Nobj, be a kth design objective. Design 
objectives can be defined with respect to antenna in-band reflection, gain, phase stability, size, etc. If 
Nobj > 1, comparison of the solutions is realized using a dominance relation (Deb, 2001). We say that y 
 x (y dominates over x) if Fk(Rf(y))  Fk(Rf(x)) for all k = 1, …, Nobj, and Fk(Rf(y)) < Fk(Rf(x)) for at 
least one k. The goal of the multi-objective optimization is to find a Pareto set XP composed of non-
dominated designs so that for any x  XP there is no y for which y  x (Deb, 2001). The set XP represents 
the best possible compromise between the considered objectives. 

For the purpose of subsequent considerations, we also define a Pareto ranking concept. Let X = {x1, 
…, xn} be a set of designs. Pareto ranking of the design xk  X with respect to X is the number of designs 
from X that dominate over xk. 
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2.2 Pareto Ranking Bisection Algorithm 
The Pareto front normally resides in the very small region of the search space, allocation of which 

is unknown beforehand. Therefore, the first step of the considered multi-objective optimization 
procedure is identification of the extreme Pareto-optimal designs (Koziel et al. 2014b). These are 
obtained through sequential single-objective optimizations with respect to one design requirement at a 
time. Low computational cost of the process is ensured by identification of the extreme points at the 
coarsely-discretized EM model level of the antenna by solving  

 * arg min ( )
x

x R xk k cF                                 (1) 

for k = 1, …, Nobj (Koziel et al. 2014b). Depending on the number of antenna design parameters, the cost 
of solving (1) varies from a few dozens to over a hundred evaluations of the low-fidelity model Rc per 
objective.  

Initial approximation of the Pareto front is obtained using the PRBA method (Koziel and 
Bekasiewicz, 2017). The algorithm is formulted for bi-objective problems. The following notation is 
used (n is the design space dimensionality): 

 xc.0.1 = x1
* and xc.0.2 = x2

* – extreme Pareto designs; 
 xc.i.k – kth (approximate) Pareto design found in the ith algorithm iteration; the number of new 

designs found in iteration i is Ki = 2i–1; the total number of designs after ith iteration is Ni = 2i+1; 
 d = [d1 … dn]T – perturbation size (user defined parameter); 
 M – maximum number of PRBA iterations; 
 m = [m1 … mM]T – number of bisections in subsequent iterations. 
The algorithm flow is as follows: 

1. Set i = 1; 
2. Find initial approximations of the candidate Pareto designs by performing bisections xc.i.k = [xc.i–1.k + 

xc.i–1.k+1]/2, k = 1, …, Ki; 
3. Set m = 1; 
4. For each k = 1, …, Ki, evaluate 2n perturbations of the size d around xc.i.k; for each design, calculate 

its Pareto ranking and select the one with the lowest value as a new xc.i.k; 
5. Set m = m +1; if m  mi go to 4; 
6. Concatenate sets {xc.i–1.k}k = 1, …, Ki–1 and {xc.i.k}k = 1, …, Ki as follows {xc.i–1.1 xc.i.1 xc.i–1.2 xc.i.2 xc.i–1.3 … xc.i–

1.Ki–1 xc.i.Ki} and re-index designs accordingly; 
7. Set i = i + 1; if i  M go to 2; otherwise return the Pareto set (denoted as xc

(k), k = 1, …, NM); 

Conceptual illustration of PRBA is shown in Fig. 1. The algorithm generates the initial (low-fidelity) 
Pareto set composed of NM = 2M + 1 designs. Note that the poll-search involving Pareto ranking allows 
for local improvements (in multi-objective sense) of the candidate designs obtained through bisections. 
The initial Pareto front representation is further refined to the high-fidelity model level using local 
approximation models (cf. Section 2.3). 

As mentioned before, the perturbation size vector d is a user-defined parameter. Here, it is given as 
d = |x1

*– x2
*|/NM, with NM being the number of Pareto-optimal designs. Such a formulation ensures that 

the perturbation size in each dimension is constant and corresponds to the distance between the two 
neighboring Pareto designs found by PRBA. 

The numerical cost of PRBA is M(2n + 1) – M, where M = k = 1,…,M mk. Thus, for n = 15, M = 3 
(which corresponds to a 9-element Pareto set), and m = [3 2 1], PRBA requires 183 model evaluations 
to find the low-fidelity Pareto front representation. Note that mk gradually decreases because the 
expected relocations of designs due to Step 4 of the algorithm are getting smaller. The reason is that 
||xc.i–1.k – xc.i–1.k+1|| is approximately twice smaller in each iteration. 

 

 

2.3 Pareto-Set Refinement Using Local Surrogates 
The algorithm of Section 2.2 identifies Pareto set and the low-fidelity model level Rc. The high-

fidelity Pareto set is identified by refining the designs xc
(k), k = 1, …, NM, using the output space mapping 

(OSM) algorithm (Koziel and Ogurtsov, 2013). The refinement procedure is formulated as 
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Figure 1: Pareto ranking bisection algorithm: conceptual illustration for generation of the low-fidelity 
Pareto set (left- and right-hand side plots represent, the search and the feature spaces, respectively): (a) 
first algorithm iteration – bisection of the line segment between the extreme Pareto designs and 
subsequent improvement of the candidate point through poll-search involving Pareto ranking (two 
iterations of the process are shown), (b) second algorithm iteration – bisection of the line segments 
between available Pareto designs and Pareto-ranking-based improvement of candidates (results obtianed 
after one iteration), (c) final agorithm iteration – bisection of segments between obtained designs and 
improvement of the candidates, as well as the final Pareto set. 
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2.2 Pareto Ranking Bisection Algorithm 
The Pareto front normally resides in the very small region of the search space, allocation of which 

is unknown beforehand. Therefore, the first step of the considered multi-objective optimization 
procedure is identification of the extreme Pareto-optimal designs (Koziel et al. 2014b). These are 
obtained through sequential single-objective optimizations with respect to one design requirement at a 
time. Low computational cost of the process is ensured by identification of the extreme points at the 
coarsely-discretized EM model level of the antenna by solving  

 * arg min ( )
x

x R xk k cF                                 (1) 

for k = 1, …, Nobj (Koziel et al. 2014b). Depending on the number of antenna design parameters, the cost 
of solving (1) varies from a few dozens to over a hundred evaluations of the low-fidelity model Rc per 
objective.  

Initial approximation of the Pareto front is obtained using the PRBA method (Koziel and 
Bekasiewicz, 2017). The algorithm is formulted for bi-objective problems. The following notation is 
used (n is the design space dimensionality): 

 xc.0.1 = x1
* and xc.0.2 = x2

* – extreme Pareto designs; 
 xc.i.k – kth (approximate) Pareto design found in the ith algorithm iteration; the number of new 

designs found in iteration i is Ki = 2i–1; the total number of designs after ith iteration is Ni = 2i+1; 
 d = [d1 … dn]T – perturbation size (user defined parameter); 
 M – maximum number of PRBA iterations; 
 m = [m1 … mM]T – number of bisections in subsequent iterations. 
The algorithm flow is as follows: 

1. Set i = 1; 
2. Find initial approximations of the candidate Pareto designs by performing bisections xc.i.k = [xc.i–1.k + 

xc.i–1.k+1]/2, k = 1, …, Ki; 
3. Set m = 1; 
4. For each k = 1, …, Ki, evaluate 2n perturbations of the size d around xc.i.k; for each design, calculate 

its Pareto ranking and select the one with the lowest value as a new xc.i.k; 
5. Set m = m +1; if m  mi go to 4; 
6. Concatenate sets {xc.i–1.k}k = 1, …, Ki–1 and {xc.i.k}k = 1, …, Ki as follows {xc.i–1.1 xc.i.1 xc.i–1.2 xc.i.2 xc.i–1.3 … xc.i–

1.Ki–1 xc.i.Ki} and re-index designs accordingly; 
7. Set i = i + 1; if i  M go to 2; otherwise return the Pareto set (denoted as xc

(k), k = 1, …, NM); 

Conceptual illustration of PRBA is shown in Fig. 1. The algorithm generates the initial (low-fidelity) 
Pareto set composed of NM = 2M + 1 designs. Note that the poll-search involving Pareto ranking allows 
for local improvements (in multi-objective sense) of the candidate designs obtained through bisections. 
The initial Pareto front representation is further refined to the high-fidelity model level using local 
approximation models (cf. Section 2.3). 

As mentioned before, the perturbation size vector d is a user-defined parameter. Here, it is given as 
d = |x1

*– x2
*|/NM, with NM being the number of Pareto-optimal designs. Such a formulation ensures that 

the perturbation size in each dimension is constant and corresponds to the distance between the two 
neighboring Pareto designs found by PRBA. 

The numerical cost of PRBA is M(2n + 1) – M, where M = k = 1,…,M mk. Thus, for n = 15, M = 3 
(which corresponds to a 9-element Pareto set), and m = [3 2 1], PRBA requires 183 model evaluations 
to find the low-fidelity Pareto front representation. Note that mk gradually decreases because the 
expected relocations of designs due to Step 4 of the algorithm are getting smaller. The reason is that 
||xc.i–1.k – xc.i–1.k+1|| is approximately twice smaller in each iteration. 

 

 

2.3 Pareto-Set Refinement Using Local Surrogates 
The algorithm of Section 2.2 identifies Pareto set and the low-fidelity model level Rc. The high-

fidelity Pareto set is identified by refining the designs xc
(k), k = 1, …, NM, using the output space mapping 

(OSM) algorithm (Koziel and Ogurtsov, 2013). The refinement procedure is formulated as 
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Figure 1: Pareto ranking bisection algorithm: conceptual illustration for generation of the low-fidelity 
Pareto set (left- and right-hand side plots represent, the search and the feature spaces, respectively): (a) 
first algorithm iteration – bisection of the line segment between the extreme Pareto designs and 
subsequent improvement of the candidate point through poll-search involving Pareto ranking (two 
iterations of the process are shown), (b) second algorithm iteration – bisection of the line segments 
between available Pareto designs and Pareto-ranking-based improvement of candidates (results obtianed 
after one iteration), (c) final agorithm iteration – bisection of segments between obtained designs and 
improvement of the candidates, as well as the final Pareto set. 
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The process (2) aims at improving the first objective without degrading the second one. The initial 

approximation of the optimal design for the refinement process is xf
(k) = xc

(k). Typically, up to two 
iterations of the correction procedure are sufficient for convergence. It should be noted that the 
correction term Rs(x) + [Rf(xf

(k)) – Rs(xf
(k))] ensures zero-order consistency, i.e., Rs(xf

(k)) = Rf(xf
(k)) at the 

beginning of each iteration. The utilized surrogate model is a second-order polynomial constructed from 
the low-fidelity model evaluations at xc

(k) and star-distributed perturbations around it (with perturbation 
size set to d). The computational cost of the refinement process corresponds to 2n + 1 simulations of the 
low-fidelity model (for construction of the local approximation model) and only one evaluation of the 
high-fidelity per iteration (for OSM correction of the surrogate). 

3 Design Example 
This section provides numerical validation of the considered Pareto ranking bisection algorithm. The 

considered design example is a 17-variable uniplanar antenna operating in ultra-wideband frequency 
range. Discussion of the computational cost of the algorithm and its comparisons to the benchmark 
methods are also provided.  

3.1 Structure Description 
Consider the compact uniplanar antenna shown in Fig. 2 (Koziel and Bekasiewicz, 2016d). It 

consists of a fork-shaped driven element fed through a coplanar waveguide (CPW) and an open ground 
plane slot with tetragon-shaped planes allocated at both upper corners of the structure. The antenna is 
implemented on a 0.762 mm thick Taconic RF-35 dielectric substrate (εr = 3.5, tanδ = 0.0018). It is 
described by a 17-variable vector: x = [l0 l1 l3r l4r l5r lf1 lf2 lf3r lsr w1 wf1 wf2 wf3 wg wsr ws1r g]T. Parameters 
w0 = 3.5 and s0 = 0.16 remain fixed to ensure 50 ohm input impedance of the CPW feed. Relative 
dimensions are: l3 = (0.5w0 + s + w1)l3r, l4 = (l1 – g – lf1 – lf2)l4r, lf3 = (0.5lf2 – wf1)lf3r, ls = (w1 – wg)lsr, ws 
= (w1 – wg)wsr, l22 = max{(l1 – g – lf1 – lf2)l5r, (0.5w0 + s0 + w1)l5r}, and ws1 = l0ws1r. All dimensions are 
in mm. 

The high-fidelity EM model Rf of the antenna (~3,200,000 hexahedral mesh cells, average simulation 
time: 20 min) and the low-fidelity EM model Rc (~650,000 mesh cells, simulation time: 230 s) are both 
implemented in CST Microwave Studio and simulated using its time domain solver (CST, 2013). For 
the sake of reliable simulation results, both models include the SMA connector. 

The design objectives are: F1 – minimization of the antenna reflection within 3.1 GHz to 10.6 GHz 
frequency band, and F2 – reduction of antenna size defined as a A × B rectangle with A = 2(s0 + w1) + 
w0 and B = l0 + l1 (cf. Fig. 2). The antenna topology is consistent within the following lower and upper 
bounds: l = [4 13 0.2 0.25 0.1 4 8 0.2 0 5 0.2 0.2 0.2 0.2 0.1 0 0.1]T and u = [14 25 0.9 0.85 0.8 11 16 
0.8 0.45 15 2.5 2 2.5 1.5 0.45 0.45 2]T. 

3.2 Results and Discussion 
In the first step of the design process, the extreme Pareto designs x1

* = [4.94 15.75 0.74 0.84 0.67 
9.15 15.93 0.22 0 8.15 2.35 0.21 0.44 0.64 0.16 0.02 0.16]T and x2

* = [4 13.38 0.9 0.85 0.77 8.59 13.25 
0.2 0.04 5.57 2.02 0.2 0.2 0.2 0.14 0.45 0.1]T have been obtained using (1). Then, multi-objective 
optimization of the antenna has been performed using PRBA (setup: M = 3, m = [3 2 1]). Finally, the 
initial Pareto set has been refined using algorithm of Section 2.3. Comparison of the low- and the high-
fidelity trade-off designs is shown in Fig. 3. It should be noted that the high-fidelity Pareto set ranges 
along F1 from –13.3 dB to –9.9 dB. Moreover, the extreme Pareto design obtianed w.r.t. F1 is dominated. 
Detailed dimensions of the selected antenna designs are gathered in Table 1, whereas their 
corresponding reflection characteristics are shown in Fig. 4. 

 

 

The computational cost of the design process corresponds to 207 Rf model simulations (69 hours of 
CPU-time). The cost includes: 473 Rc and 207 Rc model simulations for identification of the extreme 
Pareto designs and PRBA-based optimization, respectively, as well as 245 Rc and 30 Rf model 
evaluations for refinement of the initial Pareto set. 

 

 
Figure 2: Geometry of the considered antenna. From left: top view and 3D view with SMA connector. 

 

 
Figure 3: Comparison of the low-fidelity Pareto set obtained using PRBA (○) and high-fidelity set after 
the refinement (□). 
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Table 1: Dimensions of the High-Fidelity Antenna Designs 

Objectives Design variables 
No F1 F2 l0 l1 l3r l4r l5r lf1 lf2 lf3r lsr w1 wf1 wf2 wf3 wg wsr ws1r g 
1 –12.9 419 4.85 16.02 0.72 0.84 0.68 9.22 15.75 0.22 0.00 8.13 2.37 0.21 0.47 0.69 0.16 0.07 0.16 
2 –13.3 397 4.82 15.59 0.74 0.84 0.69 9.05 15.42 0.22 0.01 7.83 2.34 0.21 0.44 0.61 0.16 0.12 0.15 
4 –12.9 359 4.69 14.89 0.81 0.84 0.71 8.77 14.80 0.21 0.01 7.25 2.25 0.21 0.38 0.48 0.15 0.19 0.15 
6 –11.9 312 4.34 14.24 0.87 0.85 0.76 8.71 14.22 0.21 0.03 6.48 2.11 0.20 0.29 0.36 0.15 0.35 0.12 
8 –10.8 276 4.19 13.92 0.88 0.85 0.78 8.63 13.65 0.20 0.03 5.70 2.04 0.20 0.23 0.22 0.14 0.36 0.11 

 

3.3 Comparisons with Benchmark Algorithms 
PRBA has been compared to surrogate-assisted multi-objective evolutionary algorithm (SAMOEA; 

Koziel et al. 2014b), sequential domain patching (SDP) algorithm (Koziel and Bekasiewicz, 2016b), 
and Pareto front exploration (PFE) algorithm (Koziel and Bekasiewicz, 2016c) in terms of the 
computational cost and the quality of the obtained Pareto set. It should be noted that the comparisons 
have been performed only at the low fidelity model level. The correction process has been neglected as 
it affects the shape of the final representation of the Pareto front (see e.g., Fig. 3) and its cost is the same 
for all considered methods. 

The SAMOEA-based optimization involves construction of the approximation model that is 
optimized by the metaheuristic algorithm. The model error constructed in search space defined by 
extreme designs obtained using method of Section 3.2 is 12% (2000 training samples) which makes it 
inappropriate for optimization. Therefore, model with acceptable an error of 3% (902 training samples) 
has been re-set in the region restricted using rotational space reduction method (Koziel and Bekasiewicz, 
2016a).  

The computational cost of multi-objective optimization by SAMOEA (setup: population size 500, 
number of iterations 50), SDP (setup: maximum number of intervals 16), PFE (setup: size threshold 20 
mm2) and PRBA is 1375, 1116, 825, and 680, respectively. The detailed cost breakdown is provided in 
Table 2. PRBA operation involves 17% less CPU-time compared to PFE. Moreover, the cost of the 
algorithm is almost 39% and over 50% lower compared to SDP and SAMOEA, respectively. Note that 
the cost of identifying the extreme designs for PFE is lower than for remaining methods, because it 
requires only one extreme point (here obtained with respect to minimum in-band reflection).  

The comparison of low-fidelity Pareto sets obtained using considered algorithms is shown in Fig. 5. 
The discrepancy between the obtained designs along F1 is below 1.5 dB, which is negligible from the 
practical point of view. Discontinuities of the set found using SAMOEA are a result of a narrow search 
space obtained using the rotational technique. As a consequence, part of the Pareto designs is allocated 
outside the approximation model and hence they cannot be identified. Notwithstanding, the results are 
in acceptable agreement. For the considered design structure, the PRBA not only features the lowest 
computational cost among compared algorithms but also if provides comparable approximation of the 
Pareto front. 

4 Conclusions 
In the paper, a Pareto ranking bisection algorithm has been utilized for rapid multi-objective 

optimization of a 17-parameter uniplanar UWB antenna structure. As demonstrated, a nine-element 
representation of the high-fidelity Pareto front has been obtained at a cost corresponding to only 207 

 

 

simulations of the EM antenna model. The computational cost of the procedure (excluding the CPU-
time required for the refinement of the initial Pareto set) is up to 50 percent lower compared to the state-
of-the-art surrogate-assisted multi-objective optimization algorithms while providing similar accuracy. 
The obtained numerical results prove usefulness of the Pareto ranking bisection algorithm for 
optimization of many-parameter antennas. Our further work will focus on implementation of the method 
for optimization of other numerically demanding microwave and antenna structures with many 
adjustable parameters. 
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Table 2: Multi-Objective Optimization: Cost Breakdown 

Algorithm Identification of  
extreme Pareto designs 

Multi-objective 
optimization 

Total  
cost [Rc] 

Total  
cost [Rf] 

CPU-time 
[h] 

SAMOEA 473 207 1375 263.5 87.8 
SDP 473 690 1116 213.9 71.3 
PFE 195 630 825 158.1 52.7 

PRBA (this work) 473 902 680 130.3 43.4 
 

 
Figure 5: Comparison of the low-fidelity Pareto sets obtained using SAMOEA (×), SDP (○), PFE (), 
and PRBA (□).  
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practical point of view. Discontinuities of the set found using SAMOEA are a result of a narrow search 
space obtained using the rotational technique. As a consequence, part of the Pareto designs is allocated 
outside the approximation model and hence they cannot be identified. Notwithstanding, the results are 
in acceptable agreement. For the considered design structure, the PRBA not only features the lowest 
computational cost among compared algorithms but also if provides comparable approximation of the 
Pareto front. 

4 Conclusions 
In the paper, a Pareto ranking bisection algorithm has been utilized for rapid multi-objective 

optimization of a 17-parameter uniplanar UWB antenna structure. As demonstrated, a nine-element 
representation of the high-fidelity Pareto front has been obtained at a cost corresponding to only 207 

 

 

simulations of the EM antenna model. The computational cost of the procedure (excluding the CPU-
time required for the refinement of the initial Pareto set) is up to 50 percent lower compared to the state-
of-the-art surrogate-assisted multi-objective optimization algorithms while providing similar accuracy. 
The obtained numerical results prove usefulness of the Pareto ranking bisection algorithm for 
optimization of many-parameter antennas. Our further work will focus on implementation of the method 
for optimization of other numerically demanding microwave and antenna structures with many 
adjustable parameters. 
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Table 2: Multi-Objective Optimization: Cost Breakdown 

Algorithm Identification of  
extreme Pareto designs 

Multi-objective 
optimization 

Total  
cost [Rc] 

Total  
cost [Rf] 

CPU-time 
[h] 

SAMOEA 473 207 1375 263.5 87.8 
SDP 473 690 1116 213.9 71.3 
PFE 195 630 825 158.1 52.7 

PRBA (this work) 473 902 680 130.3 43.4 
 

 
Figure 5: Comparison of the low-fidelity Pareto sets obtained using SAMOEA (×), SDP (○), PFE (), 
and PRBA (□).  
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