
A fast time-frequency multi-window analysis
using a tuning directional kernel

Krzysztof Czarnecki, Dominique Fourer, François Auger, Mirosław Rojewski

K. Czarnecki is with the Gdansk University of Technology,

Faculty of Electronics, Telecommunications and Informatics, Poland

krzycz@eti.pg.gda.pl, czarnecki.krzysiek@gmail.com

D. Fourer is with UMR STMS (IRCAM - CNRS - UPMC),

Paris, France

F. Auger is with LUNAM University, IREENA,

Saint-Nazaire, France

M. Rojewski is with the Gdansk University of Technology,

Faculty of Electronics, Telecommunications and Informatics, Poland

In this paper, a novel approach for time-frequency analysis and detection, based on

the chirplet transform and dedicated to non-stationary as well as multi-component sig-

nals, is presented. Its main purpose is the estimation of spectral energy, instantaneous

frequency (IF), spectral delay (SD), and chirp rate (CR) with a high time-frequency reso-

lution (separation ability) achieved by adaptive fitting of the transform kernel. We propose

two efficient implementations of this idea, which allow to use the fast Fourier transform

(FFT). In the first one, referred to as “self-tuning”, a previously proposed CR estimation

is used for a local fitting of the chirplet kernel over time. For this purpose, we use the

CR associated with the dominant (prominent) component. In the second one, we define a

new measure for evaluating at each time-frequency point, how the used analyzing window

is matched to the signal. This measure is defined as the absolute difference between the

estimated CR and the CR parameter associated to the used analysis window. Our method

is able to produce combined time-frequency distributions of the spectral energy, IF, SD,

and CR. They are obtained using several classical chirplet transforms with analysis win-

dows of various CRs. The compositions are made by finding the lowest fitting measure for

every time-frequency points over all transforms. Finally, we assess the robustness of the
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methods by a detection application and time-frequency localization, both in the presence

of high additive white Gaussian noise (AWGN) as well as we present many TF images of

synthetic and real-world signals.

Keywords: time-frequency analysis; chirp rate estimation; short-time Fourier transform;

STFT; adaptation; reassignment; matching pursuit; flute sound; sonar signal.

1 Introduction

Our world is full of non-stationary and multicomponent signals. We say “everything

flows” (gr. panta rei) after Heraclitus of Ephesus. In a signal processing context, this

statement also concerns parameters which describe the signals that surround us. This

is the reasons why the development of new methods dedicated to analyze non-stationary

and multi-component signals, has a substantial practical importance. Simultaneously,

it is commonly known, that time-frequency analysis is one of the most important and

powerful approach designed to study real-world signals [1]. In fact, these signals are often

non-stationary and consist of numerous components, including noise [2]. Despite many

existing approaches [3–10], this paper focuses on well known tools such as the short-time

Fourier transform (STFT) and one of its variants, the chirplet transform (CT) [11, 12].

This choice is motivated by results of our recent researches [13,14] which allow to directly

use the STFT in order to locally estimate the chirp rate (CR) in the time-frequency (TF)

domain. The resulting distribution can shortly be called “TF phase accelerogram”. Our

main idea is to use the accelerogram to locally fit the kernel of the CT for each TF point.

This adaptive approach can be considered as a contribution to the “matching pursuit”

trend [15], since its main purpose is to locally improve the TF resolution (separation

ability). Moreover, this approach can be applied iteratively in order to improve the

estimation reliability.

Unfortunately, this idea has one fundamental drawback, which is a high computa-

tional cost, if the estimated phase accelerogram has different values – which must be

assumed for non-stationary signals. Then, the FFT algorithm cannot be applied and the

discrete Fourier transform (DFT) has to be directly computed according to its definition

for every TF point independently. This can significantly increase the computational cost

of the analysis. Therefore, we propose two efficient solutions, which allow a FFT-based

implementation. The first one uses a CR-related analysis window adjusted over time.

The considered CR should be prominent for a considered analyzed instant or/and can be

established by a statistical analysis of a previously computed phase accelerogram with
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its corresponding spectral energy distribution. Both are estimated using STFT whose

analyzing window has CR equal to zero. This solution should be suitable for signals with

a single dominant component or such, whose components are characterized by a similar

time-varying CR, for example, speech. In a second solution, initially, several (or more)

CTs, their energy distributions, and accelerograms using FFT for different window CRs

have to be computed. Then, we define a simple indicator of “mismatch”, and based on

it, we introduce a new TF energy distribution directly computed from the CT. The final

composed energy distribution can contain energy from the different transforms, however a

single TF point represents only one, for which the measure is the smallest over all consider

transforms in this point. These implementations can also be used to compute other signal

parameters such as instantaneous frequency (IF), spectral delay (SD), and CR.

To summarize this, we try to join two main trends of signal analysis: estimation of local

CR in the TF domain and local fitting of the kernel of a time-frequency analyzer [8,16,17]

which is the chirplet transformation [11]. Both topics are not new. Many authors proposed

interesting methods of CR estimation. Here, we list only selected papers [18–23]. However,

we base on our original study and fast estimators introduced in [13,14], which operates in

the time-frequency domain directly on STFT (especially on CT) and have evolved since

the reassignment approach [24–26]. We can also find some proposition to use the CR for

adjusting the analysis window width [27, 28]. However, the CR estimation based on CT

is presented here the first time.

Hence, this paper is organized as follows. In Section 2, the chirplet transform is intro-

duced with several local CR estimators. In this section, we also define the reassignment

operators of the CT and its reassigned time-frequency representation. Then, the new pro-

posed self-tuning chirplet method and multi-window chirplet-based TF distributions are

introduced respectively, in Sections 3 and 4. Conclusions are then presented in Section 5.

D first-order differentiation
T multiply by time ramp
T 2 multiply by time ramp squared
F Fourier transformation
S statistical analysis
A phase accelerograph
< real part
= imaginary part
| |2 squared absolute value
| | absolute value

e() exponential functor

real-valued signal
complex-valued signal

sum streams
(sample-by-sample)

multiply by a factor

multiply by a stream
(sample-by-sample)

divide by a stream
(sample-by-sample, denominator
is decorated by black bullets)··

Figure 1: Notations for diagrams.
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2 Chirplet-based analysis

The spectral parameters of an analyzed signal x(t), such as IF and CR, can be estimated

at any time-frequency coordinates (t, ω) through the STFT as proposed in [13,14]. Herein,

we extend this approach to the CT which can be defined by a convolution product with

a function gα expressed as:

ygx(t, ω) =

∫
R
x(τ)gα(t− τ, ω)dτ =

∫
R
x(τ)h(t− τ)ejα

(t−τ)2
2 ejω(t−τ)dτ

= M g
x(t, ω)ejφgx(t,ω)

(1)

where M g
x(t, ω) =

∣∣ygx(t, ω)
∣∣, φgx(t, ω) = arg

(
ygx(t, ω)

)
stand respectively for the magnitude

and the phase of the CT, j being the imaginary unit (j2 = −1) and e being the Euler’s

number. The kernel of this transformation corresponds to a linear frequency modulated

chirp tapered by a real-valued and differentiable analysis window h(t) as follows:

gα(t, ω) = h(t)ejα t
2

2︸ ︷︷ ︸
hα(t)

ejωt (2)

α being the CR parameter of the analysis window. In this paper, we use the 4-term

Blackman-Harris window [29] as h(t), because its side lobes are strongly suppressed and

even its high order derivatives are easy to compute.

2.1 Chirp rate estimation

As proposed in [13], a TF phase accelerogram can be estimated through the amplitude of

the STFT. Following this idea and using notations consistent with [14], we can propose a

new CR estimator based on the CT as defined by Eq. (1) using specific analysis windows

Dgα(t, ω) and Tgα(t, ω) as:

R̂g
x(t, ω) =

<
(
yDgx (t,ω)
ygx(t,ω)

)
=
(
yTgx (t,ω)
ygx(t,ω)

) , (3)

where <() and =() return respectively, the real and the imaginary parts of a complex

number. In the corresponding software [30], we simply denote this estimator as ”K”.

Dgα(t, ω) is the first-order derivative of the window gα(t, ω) with respect to time:

Dgα(t, ω) =
∂gα(t, ω)

∂t
=

(
dhα
dt

(t) + jωhα(t)

)
ejωt (4)

as well as Tgα(t, ω) is the product of the window gα(t, ω) and a time ramp function which
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is simply the linear odd function with a slope equal to one:

Tgα(t, ω) = t gα(t, ω). (5)

Since we proposed in [14] enhanced CR estimators based on higher-order derivatives,

we can also deduce similar ones by applying L’Hôpital’s rule on Eq. (3). These new

estimators can be expressed as follows:

`̂
Rg
x(t, ω) =

∂
∂t

[
<
(
yDgx (t,ω)
ygx(t,ω)

)]
∂
∂t

[
=
(
yTgx (t,ω)
ygx(t,ω)

)] =
<
(
yD

2g
x (t,ω)
ygx(t,ω)

− yDgx (t,ω)2

ygx(t,ω)2

)
=
(
yDTgx (t,ω)
ygx(t,ω)

− yDgx (t,ω)
ygx(t,ω)

yTgx (t,ω)
ygx(t,ω)

) (6)

as well as

´̂
Rg
x(t, ω) =

∂
∂ω

[
<
(
yDgx (t,ω)
ygx(t,ω)

)]
∂
∂ω

[
=
(
yTgx (t,ω)
ygx(t,ω)

)] = −
=
(
yDTgx (t,ω)
ygx(t,ω)

− yDgx (t,ω)
ygx(t,ω)

yTgx (t,ω)
ygx(t,ω)

)
<
(
yT

2g
x (t,ω)
ygx(t,ω)

− yTgx (t,ω)2

ygx(t,ω)2

) , (7)

where D2gα(t, ω) = ∂2gα(t,ω)
∂t2

, T 2gα(t, ω) = t2gα(t, ω) and DT gα(t, ω) = gα(t, ω) +

Dgα(t, ω). In the corresponding software [30], we simply denote this estimators, respec-

tively, as ”D” and ”F”. These estimators obtain better results when they are applied

close to the component attractors identified in the TF domain by their instantaneous

frequencies and their spectral delays [2, 14, 24, 25, 31, 32]. However, despite the spectral

energy is often concentrated in these areas, both the numerator and denominator of Eq.

(3) can go to zero causing numerical instabilities. Therefore, estimators (6) and (7) were

shown to be more robust than (3) [14].

2.2 Directional kernel

The concept of the directional kernel (TF-oriented) in the context of adaptive TF analysis

is still developed [8]. In very few words, this approach is closely associated with the

ambiguity function of the analysis window used by CT which is defined by:

A(τ, ν) =

∫
R
hα(t)hα(t− τ)∗ejνt dt. (8)

Significant values of this function are distributed into the ambiguity area according to

the window envelope h(t) and its CR α as illustrated in Fig. 2. Especially, the CR

indicates a direction in the TF domain. The energy of each component, whose attractor

is distributed along to this direction, is well concentrated in the spectrogram obtained

using this window. If the CR is exactly equal to this direction, the window is locally
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matched to this component. This aspect highlights the importance of a proper selection

of the window and of its parameters, especially its CR α.

τ

ν ν = ατ

Figure 2: Illustration of the ambiguity area (represented in the time-delay / Doppler-
frequency domain) of a chirped analysis window whose envelope is defined by the
Gaussian-like function and where CR α is constant.

As CT is related to the short-time fractional Fourier transform for which the theory

was further investigated in [33], it can be shown that CT divides the TF plane into

parallelograms which have the same resolution in time as the STFT. However, the CT’s

frequency resolution depends on the parameter α. For a given STFT’s frequency resolution

σ2
ω =

∫
R(ω−ω̄)2|Fh(ω)|2dω∫

R |Fh(t,ω)|2dω corresponding to the squared bandwidth around a central frequency

ω̄ =
∫
R ω|Fh(ω)|2dω∫
R |Fh(t,ω)|2dω , where Fh(ω) is the Fourier transform of window h(t), thus CT modifies

the frequency resolution such as [33]:

σ2
ω,α = σ2

ω sin(θ)2, with θ = tan−1 (α) . (9)

2.3 Time-frequency reassignment

IF and SD (or group delay) point component attractors in the time-frequency domain. In

TF reassignment, they are used to improve the energy concentration, which is relocated

close to these attractors [2, 12, 24, 25, 31, 32]. IF and SD can also be estimated using the

chirplet transform in the TF domain. IF corresponds to the partial derivative of the CT’s

phase, with respect to time and can be obtained by the following manner [26,34]:

Ω̂g
x(t, ω) = =

(
yDgx (t, ω)

ygx(t, ω)

)
. (10)

SD is defined as the partial derivative of the CT’s phase with respect to frequency which

can be computed as:

D̂g
x(t, ω) = −<

(
yTgx (t, ω)

ygx(t, ω)

)
. (11)
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Then, the new TF localization of spectral energy is indicated by Ω̂g
x(t, ω) and, dually, by

corrected time defined as:

Γ̂gx(t, ω) = t+Dg
x(t, ω) = t−<

(
yTgx (t, ω)

ygx(t, ω)

)
. (12)

Then, both IF and corrected time can be used for energy reassignment following [35]:

Σg
x(t, ω) =

∫∫
R2

Eg
x(τ, υ)δ

(
t− Γ̂gx(τ, υ)

)
δ
(
ω − Ω̂g

x(τ, υ)
)
dτdυ, (13)

with

Eg
x(t, ω) =

∣∣ygx(t, ω)
∣∣2 = M g

x(t, ω)2, (14)

where δ(t) denotes the Dirac distribution, Eg
x(t, ω) and Σg

x(t, ω) denote respectively, the

classical and the reassigned energy distributions. A variant of the reassignment method

which admits a reconstruction formula is called synchrosqueezing. Despite this technique

obtains a poorer time-frequency localization than energy reassignment, it preserves the

phase of the original transform and can be used for disentangling signal components as

proposed in [36].

3 Self-tuning chirplet transform

The main idea of the self-tuning chirplet transform (STCT) is to fit the directional kernel

of CT according to the TF accelerogram estimated using the STFT. This method is

realized in a two-stage algorithm presented in Fig. 3. Firstly, the window parameter α

is assumed to be equal to zero. Then, an accelerogram is computed using Eqs. (3), (6),

or (7). The first stage is completed after estimating a dominant instantaneous CR as a

function of time defined by:

rgx(t) = R̂g
x

(
t, argmax

ω

(
Eg
x(t, ω)

))
, (15)

where R̂g
x is a TF accelerogram (computed using one of the proposed estimators (3), (6)

or (7)) which is a function of time t and of frequency ω. The operator argmax returns

the frequency for which the maximum energy is reached. Finally, the STCT can be

computed as:

y′gx (t, ω) =

∫
R
x(τ)h(t− τ)ej

r
g
x(t)(t−τ)

2

2 ejω(t−τ) dτ. (16)
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This new transform can also be used to compute second-order estimations of IF, SD

and CR as for the STFT. A TF representation corresponding to the distribution of the

spectral energy is provided by |y′gx (t, ω)|2 and its readability can be improved by a better

TF localization using the time-frequency reassignment [24,25].

3.1 Accuracy for a selected synthetic FM signal

Let us consider a synthetic simple model, which is an analytical FM signal:

xsin(t) = exp
(
j2π sin(t)

)
, (17)

whose instantaneous CR is defined as the second-order derivative of its phase (expressed

in rad/s2):

Rsin(t) =
d2

dt2
[
arg
(
xsin(t)

)]
= −2π sin(t). (18)

Its instantaneous angular frequency defined as the first-order derivative of the phase is:

Ωsin(t) =
d

dt

[
arg
(
xsin(t)

)]
= 2π cos(t), (19)

xg

D

F

<

F

=

····
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T
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| |2
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o
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u
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o
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F F

| |2 E′gx

R′gx

····

··

=

Figure 3: Block scheme of the proposed self-tuning chirplet spectrograph and accelero-
graph. In this variant, the CR estimator defined by Eq. (3) is applied. The legend for
this diagram is presented in Fig. 1.
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which is clearly seen in the presented spectrograms in Fig. 4 (as high energy density along

this curve) and in accelerograms in Fig. 5 (directly, as value along this curve). The CR

estimation for this signal is more precise in accelerograms computed through STCT in

comparison to STFT. This is confirmed by the curves presented in Fig. 6 for a window

width equal to 2.75 s which displays for the signal of Eq. (17), the relation between the

energy localized by the transform where the CR estimation error is computed.

Figure 4: Classical energy spectrograms computed using STFT (upper) and STCT (lower)
of signal defined by Eq. (17) in the presence of AWGN (SNR is 10 dB, sampling rate is
20 Sa/s).
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Figure 5: Time-frequency phase accelerograms computed using STFT (upper) and STCT
(lower) of signal defined by Eq. (17) in the presence of AWGN (SNR is 10 dB, sampling
rate is 20 Sa/s).

3.2 Application on real-world LFM sonar signal analysis

In this section, a real-world LFM signal recorded in shallow water of Baltic Sea is ana-

lyzed. This signal is initially produced by an active sonar developed in the Department

of Marine Electronics Systems, Gdansk University of Technology [37, 38]. The analyzed

signal is reflected from a real submarine during a military exercise close to the Polish

coast. This is the reason, why the original parameters such as sampling rate, frequency

band, pulse width, etc. which are confidential have been modified. The corresponding

quadrature demodulated complex envelope is analyzed and, finally, its spectral energy is

distributed around zero on the frequency axis in the presented spectrogram in Fig. 7. In

this experiment, we estimate the energy distribution as well as the accelerogram used for

the evaluation of statistical relations between these two representations (cf. Fig. 8). A
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Figure 6: Relations between the error of estimated CR and the spectral energy density for
different estimators for the window width equal to Twin = 2.75 s. The investigated signal
is defined by Eq. (17) in the presence of AWGN (SNR is 10 dB, sampling rate is 20 Sa/s).

two-dimensional median filter with an empirically chosen kernel size was applied to the

computed accelerogram in order to smooth the displayed results.

In Fig. 8, the curve which shows the relation between the observed energy and the

estimated CR is presented. A significant local maximum in this curve is visible close to

-10 kHz/s (inside a drawn circle), which is near to the original parameter of sounding

LFM pulse signal. This value is assumed to be the window CR α in the next stage of the

analysis, which involves the second time-frequency analysis. Now, our goal is to obtain a

higher energy concentration in the spectrogram, which is necessary for a correct detection

of submerged objects.

In Fig. 9, the comparison between curves which express for a given transform using

a window parameterized by a fixed CR, the part of the corresponding energy density

provided by its resulting TF representation. The highest percentage is reached by the

STCT-based analysis for a CR equal to -10 kHz/s which is dominant for high energy

density (bright red background). This confirms that for this CR, the energy concentration

in the final spectrogram is the highest. In contrast, for window CRs equal to 10 and -30

kHz/s (black and blue lines), which are mismatched, the smearing of the energy is also

clearly visible from this experiment.
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Figure 7: Classical STFT-based spectrogram (upper) and time-frequency phase accelero-
gram smoothed by a two-dimensional median filter (lower). The investigated signal is a
reflection of a LFM sonar chirp from submarine recorded in shallow water of Baltic Sea
during military exercise close to the Polish coast.
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Figure 8: Statistical relations between estimated CR and spectral energy density. The
investigated signal is a reflection of a LFM sonar chirp from submarine recorded in shallow
water of Baltic Sea during military exercise close to the Polish coast.

Figure 9: Statistical analysis of the energy density as a percentage share of spectrograms
based on STFT and STCT. The investigated signal is a reflection of a LFM sonar chirp
from submarine recorded in shallow water of Baltic Sea during military exercise close to
the Polish coast.
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4 Multi-window chirplet transform

Multi-window chirplet transform (MWCT) is proposed for the analysis of signals whose

components are simultaneously characterized by a finite number of clearly different CRs.

The procedure of this method begins from the creation of a vector of N representative

CRs:

α = (α1, α2, ..., αN), (20)

where α1 < α2 < ... < αN . We assume that the range between α1 and αN covers

the values which are associated with the considerable components of an analyzed signal.

The accelerogram computed through the STFT can also be used to define this range

(e.g. linearly spaced values in range [min(R̂g
x(t, ω)),max(R̂g

x(t, ω))] can be chosen). In

the remainder, all bold symbols (math font style) denote vectors, thus the corresponding

TF functions (distributions and parameters) can now be considered as three-dimensional

tensors. Then, CTs are computed for each CR present in vector α using the chirped

analysis windows defined by Eq. (2):

gi(t, ω) = h(t)ejαi
t2

2 ejωt, for i = 1, 2, ..., n. (21)

Therefore, we can obtain a tensor made of these TF transforms denoted by:

ygx(t, ω) = (yg1x (t, ω), yg2x (t, ω), ..., ygNx (t, ω)), (22)

which are used to estimate the corresponding energy distributions:

Egx(t, ω) = (Eg1
x (t, ω), Eg2

x (t, ω), ..., EgN
x (t, ω)), (23)

instantaneous frequencies:

Ωg
x(t, ω) = (Ω̂g1

x (t, ω), Ω̂g2
x (t, ω), ..., Ω̂gN

x (t, ω)), (24)

spectral delays:

Dg
x(t, ω) = (D̂g1

x (t, ω), D̂g2
x (t, ω), ..., D̂gN

x (t, ω)), (25)

and, TF accelerograms:

Rg
x(t, ω) = (R̂g1

x (t, ω), R̂g2
x (t, ω), ..., R̂gN

x (t, ω)) (26)

both computed according to aforementioned Eqs. (3), (6), (7), (10), (11), and (14), where
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Figure 10: Block scheme of multi-window chirplet spectrograph and accelerograph. The
legend for this diagram is presented in Fig. 1.

g denotes the vector of the used windows. Subsequently, a new measure of unmatching

Ug
x (t, ω) can be defined based on the vectors α and Rx as follows:

Ug,α
x (t, ω) = |Rg

x(t, ω)−α| = (|R̂g1
x (t, ω)−α1|, |R̂g2

x (t, ω)−α2|, ..., |R̂gN
x (t, ω)−αN |). (27)

Each element of Ug,α
x is a TF distribution defined as the absolute value of the difference

between each expected CR αi and the TF accelerogram computed using its corresponding

chirped analysis window. Finally, a new energy distribution can be derived from Egx

(combination from its elements) according to the following formula:

Ẽgx(t, ω) = Egk
x (t, ω), with k = argmin

i
|R̂gi

x (t, ω)− αi| and i = 1, 2, ..., N. (28)

The same approach as for the energy can be applied to derive other parameters, such as

IF Ωx, SD Dx, and CR Rx, respectively:

Ω̃gx(t, ω) = Ω̂gk
x (t, ω), with k = argmin

i
|R̂gi

x (t, ω)− αi| and i = 1, 2, ..., N, (29)

D̃g
x(t, ω) = D̂gk

x (t, ω), with k = argmin
i
|R̂gi

x (t, ω)− αi| and i = 1, 2, ..., N, (30)
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as well as

R̃gx(t, ω) = R̂gk
x (t, ω), with k = argmin

i
|R̂gi

x (t, ω)− αi| and i = 1, 2, ..., N. (31)

Moreover, a modified time-frequency reassignment method can also be applied such as

for the STFT through Eq. (13), using these new estimated IFs and SDs. A diagram of

this procedure in presented in Fig. 10 for the energy and CR estimation.

4.1 LFM signal detection in AWGN

In this section we consider the detection of LFM pulses in additive white Gaussian noise

(AWGN) channel for signal-to-noise ratio (SNR) levels which are equal to 0 and 10 dB

(2 cases). This testing signal consists of two pulses which occur simultaneously. Their

CRs are equal to, respectively, r1 = 0.5 kHz/s and r2 = 1 kHz/s and their frequencies are

f1 = 200 Hz and f2 = 400 Hz. Moreover, each pulse is weighted by a Tukey window [29]

whose width is equal to 0.3 s.

This signal definition can be expressed by the following formula:

x2LFM(t) = wTukey(t) exp(j2πf1t+ jπr1t
2) + wTukey(t) exp(j2πf2t+ jπr2t

2) + b(t), (32)

where wTukey(t) is the envelope of a Tukey window and b(t) is a white Gaussian noise. The

detection is based on the statistical relations between the resulting spectral energy and

the accelerograms corresponding to local maximums in the energy-CR profiles. In Fig. 11,

detection results for a series of LFM chirp signals in AWGN channel are presented. First

of all, we can observe that using a wide window (length of 1 s) to compute a single STFT

leads to poor results (see the red curves). This situation is similar when a mismatched

chirplet transform is used (not presented here). Some improvements can be observed for

the use of a short window (length of 0.1 s) represented by the blue curves. For this variant,

we can observe a satisfying detection for a SNR equal to 10 dB (see the cyan circles).

However, for a low SNR equal to 0 dB, we miss one of the components. Finally, the use

of the multi-window chirplet transform (MWCT) allows excellent detection even for SNR

equal to 0 dB (see the gray circles). For this experiment, N = 151 uniformly spaced CR

values in range [0, 1500] Hz (resp. [−1500, 0] Hz) have been used to compute the MWCT.
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Figure 11: Averaged relation between CR and spectral energy of two-component LFM
signal in the presence of AWGN, where SNR is equal to 0 (lower) and 10 dB (upper). The
proposed multi-window method and the method based on a single STFT are compared.
Successful detections are indicated by circles.

4.2 TF localization performance for LFM signal in AWGN

In this section, we analyze the degrading effect of AWGN in terms of TF localization

when the reassignment method is used. We consider a LFM chirp sampled at 1000 Sa/s

whose CR is constant and equal to r1 = 1 kHz/s with an initial frequency equal to 0 Hz.

This signal has a constant amplitude equal to 1. At the beginning, we estimate its energy

distribution in the TF domain based on single- or multi-window STFT and we look for

the energy maximums at each instant. Their arguments as a function of time denoted by

ωmax(t) are Fourier frequencies which should be located close to a signal attractor in the

TF domain if a noise density is relatively weak. The attractor is defined by the following
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linear relation: f = r1t. Then, in the obtained points
(
t, ωmax(t)

)
, we estimate IF and SD

using, respectively, Eqs. (10) and (11). Finally, the performance is expressed by the root

mean squared error (RMSE) expressed in hertz, as follows:

ξ =
1

2π

√√√√ 1

M

M∑
m=0

(
Ω̂
(
tm, ωmax(tm)

)
− 2πr1Γ̂

(
tm, ωmax(tm)

))2

, (33)

where m = 1, 2, ...,M is an sampling index. In Fig. 12, we present results of the esti-

mation of ξ comparing the proposed MWCT method to the single STFT-based approach

for 6 different windows whose widths are equalto 50 ms, 100 ms, 175 ms, 300 ms, 425

ms, and 550 ms. These curves are functions of the SNR. We analyze this signal in the

time range between Tmin = −0.5 s and Tmax = 0.5 s using N = 321 CRs non-uniformly

distributed in the range between −5.6713 kHz/s and 5.6713 kHz/s. This set is defined as

follows: {r1, r2, ..., rN}, where

rn = ru tan

(
π
n− 81

180

)
, (34)

and ru = 1 Hz/s.

Looking at Fig. 12, the curves for STFT are shaped by the Heisenberg-Gabor Uncer-

tainty Principle. From these curves, we can point the best (quasi-optimal) window width

which is 100 ms and which has the smallest RMSE in every SNR point. The windows

which are narrower or wider are characterized by higher RMSE values. This is the classic

situation in the TF analysis. For each of these curves, we observe 2 ranges: anormal (type

II error) and normal (type I error, where straight dashed line is observed), respectively,

for low and high SNRs. However, an additional issue influences on the results for the

proposed MWCT method. Above all, in this case, we observe the significat improvment

for any window and for both estimators. The Heisenberg-Gabor Uncertainty Principle

still plays an important role, however we can notice that the adaptation works well. In

general, the curves for the proposed MWCT method can be divided into 4 parts:

• for low SNR and for all widths – anormal range – method does not work at all,

• for moderate SNR and for all widths – normal range – the adaptation works well,

however its impact is limited by the inaccuracy of chirp-rate estimation,

• for high SNR and for wide widths – transitional range – the adaptation works still

better and its impact increases comparatively to other effects,

• for very high SNR and for wide widths – ”super” range – the adaptation works very

well and its impact is constant comparatively to other effects.
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Figure 12: Comparison of the proposed multi-window method (MWCT) to the single
STFT-based approach (STFT) for 2 CR estimators (”D” and ”F”) and for 6 different
windows, whose widths are equal to: 50, 100, 175, 300, 425, and 550 ms, as a function of
SNR. The infinite LFM chirp, whose CR is equal to 1 kHz/s, is analyzed.

These parts are clearly visible for the window whose width is equal to 300 ms (black

curve; section points are localized on the SNR axis near to: -1, 9, and 15 dB). We can

also observe that the adaptation does not work for very narrow windows, however its

positive impact is clear and significant for the optimal window in the case of the classical

STFT. This gives the practical meaning of the proposed method.

In Figs. 13 and 14, estimated TF energy distributions using a single STFT and the

proposed MWCT method are presented. We analyze a AM FM test signal which is defined
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as follows:

x(t) =
1

tsec

(t− t0) exp(jπr0t
2), t > −0.5, (35)

where t0 = −0.5 s, r = 1 kHz/s, and tsec = 1 s. The signal is analyzed in the presence of

moderate AWGN. We present energy distributions before (Fig. 13) and after (Fig. 14) TF

reassignment. In our subjective opinion, the proposed MWCT method does not clearly

improve the readability, however it can be used to find true TF localization of local

ridge maximums (attractor).

4.3 Analysis of the vibrato performed by a flute

We have conducted the time-frequency analysis of the vibrato performed by a flute. Its

results are presented in Figs. 15 and 16 including an energy distribution and phase

Figure 13: Classical single STFT-based (upper) and proposed multi-window (lower) spec-
trograms of AM FM test signal in moderate AWGN (SNR = 10 dB).
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Figure 14: Reassigned single STFT-based (upper) and proposed multi-window (lower)
spectrograms of AM FM test signal in moderate AWGN (SNR = 10 dB).

accelerograms using a single STFT as well as using the proposed multi-window method.

The energy distribution is estimated by a single STFT. The window width is equal to

125 ms. The selected analyzed signal contains components which are characterized by

positive, neutral, and negative values of the CR. They occur alternately (vibrato). We

can observe that the introduced multi-window method allows to estimate the CR for an

audio signal.
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Figure 15: Single STFT-based spectrogram (top), single STFT-based reassigned spec-
trogram (middle) and multi-window reassigned energy distribution (bottom) of a vibrato
performed by a flute. A slight improvement of the TF localization using the multi-window
reassignment method is visible in comparison with the single STFT-based version.
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Figure 16: Time-frequency phase accelerograms of the vibrato performed by a flute STFT-
based (upper) and estimated using multi-window method (lower).

5 Conclusion

We have proposed to use estimated CRs in the time-frequency domain (TF accelerogram)

in order to locally adapt the analysis window used to compute improved TF representa-

tions. In the presented experiments, the tapering Blackman-Harris window was modulated

and used as a directional kernel. We have considered this approach as a special case of

an adaptive chirplet transform. We have defined three CR estimators for this purpose.

We have shown that the introduced approach can improve the performance of the TF

attractor localization through TF reassignment as well as it significantly increases the

possibility of LFM chirp detection whose CR is a priori unknown. However, we do not

notice any significant improvement in the TF representation readability. This problem
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remains to be further investigated.

We have introduced two adaptive CT algorithms which can be efficiently implemented

by FFT – self-tuning and multi-window. We have provided an implementation of these

methods as the open source ccROJ project [30], which is C++ framework for the time-

frequency analysis. Our proposed implementations use an elegant mathematical formula-

tion of several TF signal parameters estimators through specific analysis windows. This

results in a negligible increase of the computation run-time complexity as expressed in

Table 5 in terms of “Big O” notation. We intend to further develop this project. Then,

we have shown the practical significance of the proposed approach in applications such

as signal detection in the time-frequency domain and by using CR versus spectral energy

dependence.

Table 1: Run-time complexity in units of time for the proposed methods. T denotes
the number of time instants where a FFT of length F is computed to obtain a TF
representation (STFT or CT). Our new proposed multi-window method is computed
through n� F distinct CTs (in this paper N has the largest value equal to 321).
Subroutine Arithmetic operations in units of time
FFT O(F log(F ))
STFT or CT O(TF log(F ))
IF, SD or CR Eq. (3) estimation 3O(TF log(F ))
CR Eq. (6) or (7) estimation 5O(TF log(F ))
STCT (compute a CR and a CT) 8O(TF log(F )) or 12O(TF log(F ))
MWCT (compute N CRs and a CT) 4O(NTF log(F )) or 6O(NTF log(F ))
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