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Calculation of Resonance in Planar and Cylindrical

Microstrip Structures Using a Hybrid Technique
Rafal Lech Member, IEEE

Abstract—A hybrid technique was employed for the analysis of
the resonance frequency of thin planar and cylindrical microstrip
structures with patches of arbitrary geometry. The proposed
technique utilizes a combination of Galerkin’s moment method
and a finite element method. In this approach, a finite element
method is adopted to calculate the patch surface current densities,
and a method of moments is utilized to calculate the resonance
frequencies of the microstrip structure. The technique allows the
analysis of different shaped patches. To verify the validity of the
approach, the results were compared with those obtained from
commercial software and actual measurements of manufactured
prototypes.

Index Terms—Current density, Cylindrical structure, Finite
element method, Galerkin’s method, Microstrip structure, Reso-
nance structure.

I. INTRODUCTION

M ICROSTRIP structures are very popular due to their

thin profile, light weight, low cost and ease of produc-

tion. They are commonly used in antennas. The thin profiles

of microstrip structures allow them to be utilized in conformal

microstrip structures that have many practical applications in

airplanes, spacecraft, speedboats and other high-speed vehicles

in which aerodynamics or hydrodynamics are important [1].

The resonant frequency problem of a microstrip patch has been

studied and reported in many papers both for planar structures

[2]–[4] as well as curved ones [5]–[12]. The most common

full-wave technique utilized for the analysis of microstrip

antennas is the method of moments (MoM) [2], [3], [5]–

[12]. This technique is applied to the analysis of microstrip

structures with patches of simple geometry such as rectangular,

circular, triangular or elliptical, for which the analytical form

of the current basis functions can be easily derived. For

structures with arbitrary patch geometry, MoM employing the

Rao-Wilton-Glisson triangular basis functions [13], a hybrid

method employing the MoM and the finite-difference tech-

nique [12], or a commercial simulator employing discrete

methods, can be applied. In the case of large structures, high

frequency approaches based on the asymptotic techniques are

utilized [1].

In this communication, the problem of determining the

resonant frequencies of both planar and cylindrical microstrip

structures with patches of arbitrary shapes, located on dielec-

tric coated, conducting planar and cylindrical surfaces, was

investigated. As an alternative to using commercial software,

a hybrid technique employing a two-dimensional finite ele-

ment method (2D FEM) and the MoM is proposed here. A
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Fig. 1. The geometry of the investigated structures.

Galerkin’s moment method for planar structures [2] and for

cylindrical structures [5], [7] is utilized to calculate resonant

frequencies. To determine the patch surface current basis

functions (which are required in this procedure) for patches

with arbitrary shapes, the 2D FEM is used in a cavity model.

It is assumed that the patch is located on a thin substrate, which

is common in conformal structure applications, and therefore

the cavity problem can be treated as two-dimensional. The

proposed technique utilizes the set of current basis functions

defined on the entire surface of the patch of arbitrary shape.

Therefore, only a few current basis functions, as opposed to

MoM with subdomain current basis functions, are required

to obtain sufficient convergence of the methods. Differently

shaped patches are examined to verify the validity of the

approach. The results are compared with results calculated

using commercial software and measurements of manufactured

prototypes.

II. FORMULATION OF THE PROBLEM

The schematic views of the investigated structures are illus-

trated in Fig. 1. The structures are composed of a microstrip

patch of arbitrary shape deposited on a single-layer dielectric

substrate with a ground plane. The height of the substrate

is h and its relative permittivity is εr. Considering a single-

layer dielectric substrate, the structure can be divided into two

regions: region 1, a dielectric layer with a relative permittivity

εr; and region 2, outside of the structure.

Following the analysis for planar [2] and cylindrical [7]

structures, the transforms of the transverse components of the

electric field due to the surface currents on the patch can be

expressed as:
[

Ẽξ

Ẽχ

]

=

[

Gξξ Gξχ

Gχξ Gχχ

] [

J̃ξ
J̃χ

]

(1)

where ξ, χ = {x, y} is for a planar structure and ξ, χ = {φ, z}
is for a cylindrical structure, J̃(·) are the Fourier transforms of

patch surface currents and G(·) are the elements of the dyadic
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Fig. 2. The geometry of the cavity.

Green’s function, which expressions for the planar structures

can be found, e.g., in [2] and for cylindrical structure, e.g., in

[7].

At the resonance, the field and the current can sustain

themselves without the external source, therefore, assuming

a perfectly conducting patch, the electric field (1) vanishes.

To solve the resultant integral equations, the Galerkin’s mo-

ment method is utilized. For this reason, the surface current

distributions ~J are expanded in terms of linear combinations

of basis functions as follows:

~J(ξ, χ) =

N
∑

n=1

(

Jnξ~iξ + Jnχ~iχ

)

an (2)

where index n specifies a single current mode (N - number

of current modes) and an are the current mode coefficients.

The most common choice for the basis functions is the cavity

model. For simple cases, such as rectangular patches, the basis

functions have an analytical form and can be found, e.g., in

[2], [5]. For arbitrary patch shapes, the analytical forms are not

available, therefore discrete methods such as finite-difference

frequency-domain [9], [12] can be applied. It will be shown

later how the finite element method can be applied.

Applying Galerkin’s moment method, sets of homogeneous

equations are obtained in the form:

(Zξξ + Zξχ + Zχξ + Zχχ)a = 0 (3)

where Z(·) are square matrices of size N × N , whose terms

are defined in [2] and [7] for planar and cylindrical structures,

respectively.

Non-trivial solutions of (3) exist if the determinant of matrix

Z equals zero. This is the eigenvalue equation, the roots of

which are complex frequencies f = Re(f) + jIm(f) for a

particular mode [6]. This complex frequency gives the resonant

frequency Re(f) and the quality factor Re(f)/2Im(f) for the

microstrip patch. The imaginary part of the complex resonance

frequencies accounts for the radiation losses [5]. Since the

resonance solutions are satisfied by complex frequencies, a

hybrid complex root-finding algorithm [14], which uses an

adaptive mesh, was utilized.

To calculate the surface current distribution on patch of

arbitrary geometry, an FEM with a second order of basis

functions is utilized. The current basis functions are obtained

from the cavity model approach [15]. The cavity of the patch

shape is obtained by bounding the area at the top and bottom

by a perfect electric conductor (PEC) and along its side by

perfect magnetic conductor (PMC) as illustrated in Fig. 2.

For thin dielectric layers, which are common in conformal

structure applications, it can be assumed that there is no

variation of the field along the height of resonator (it can be

assumed that ∂/∂z = 0 and only TMz modes are considered).

Therefore, the investigated problem can be analyzed as two-

dimensional. The patch surface current distributions can be

found by solving the scalar Helmholtz equation:

∇2
tEz(x, y) + k20εrEz(x, y) = 0 (4)

assuming Neumann boundary condition on the cavity side,

with the use of 2D FEM, e.g., [16], and calculating the

magnetic field distributions on the surface of the patch, which

correspond to the surface current distributions:

Jx = Hy ∼ ∂Ez/∂y, −Jy = Hx ∼ ∂Ez/∂x (5)

The Fourier transforms of the current distributions are then

calculated from:

J̃x(y)(kx, ky) =

∫

∞

−∞

dx

∫

∞

−∞

dy e−jkxx−jkyyJx(y)(x, y) (6)

J̃φ(z),m(kz) =
1

2π

∫ π

−π

dφ

∫

∞

−∞

dz e−jmφ−jkzzJx(y)(φ, z) (7)

if φ = x/r2 and z = y in the case of cylindrical structures.

For the implementation of the Fourier transform calculations,

the Gaussian quadrature method was used.

III. RESULTS

The procedure for calculating the resonant frequencies of

the investigated structure can be divided into the following

steps:

1) Description of the patch shape and generation of the

triangular mesh [17].

2) Calculation of the resonant frequencies of the cavity by

solving the scalar Helmholtz equation with the use of

2D FEM.

3) Calculation of the current distribution on the patch

surface for the resonant frequencies of the cavity.

4) Calculation of the Fourier transforms of the current

distribution.

5) Search for the resonant frequencies of the microstrip

structure from Fig. 1 by finding the roots of equation

det(Z) = 0. A complex root-finding algorithm is neces-

sary for this task as the resonance solutions are satisfied

by complex frequencies.

There are several parameters of the analysis that need to be

determined for convergence of the methods, accuracy of results

and the computation time. In addition to the MoM parameters,

such as the shape of integration path and the integration step

(see [2] and [7]) the maximum size of the triangular mesh

qmax and the order of Gaussian quadrature method for the

FEM and current distribution calculation O must be selected;

these determine the accuracy of the result and the time of

the Fourier transforms calculation as well as single frequency

point calculation in the last step of the analysis procedure.

The calculations for the proposed model were performed in

the MATLAB environment on a Pentium i5-2450M 2.5-GHz

laptop computer. Following the recommendation for the MoM
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Fig. 3. The geometry of a heart-shape patch and current densities Jx and Jy

for five investigated modes on its surface. Patch dimensions: R = 10 mm,
r = 4 mm, L = 25 mm and α = 200

◦ .

parameters given in [2] and [7], and assuming the order of

Gaussian quadrature O = 3, the calculation of the first step

of the procedure took about 0.15 s, second step about 1.5 s,

third step about 0.7 s, fourth step about 10 s and the single

frequency point calculation in the fifth step about 1.5 s.

A detailed analysis of the convergence of the FEM and

timing of the calculations was performed for a planar structure

composed of a heart-shape patch of dimensions presented in

Fig. 3. Figs. 4(a) and (b) illustrate the convergence of resonant

frequency of the FEM calculation for the first and second order

of basis functions, respectively. The following error criterion

was assumed:

Error =
|f − fref |

|fref |
100% (8)

where fref is a reference resonance frequency calculated for

very dense mesh (with 19614 elements). Fig. 4(c) shows the

time of calculation of the FEM analysis, the patch current

distributions and the patch current Fourier transforms. The

assumption of the maximum size of the triangular mesh

qmax = 1 mm produces 1832 triangular elements, using the

second order of FEM basis functions, the calculated resonant

frequency differs less than 1 MHz from that calculated for

very dense mesh. For the chosen mesh, the calculation time

of the FEM analysis and patch current distributions takes less

than 1 s each, and the calculation of the patch current Fourier

transforms takes about 6 s. The calculation time for denser

meshes increases considerably and, in these cases, the resonant

frequencies do not change significantly.

To verify the validity of the proposed approach, two ex-

amples of microstrip structures (one for planar and one for

cylindrical structures) have been analyzed. The first example is

a circular patch with slits as presented in Fig. 5. The obtained

resonance frequencies of the microstrip structure for the inves-

tigated modes from the presented approach, HFSS simulations

and measurements are presented in Table I. The prototype has

been manufactured on the ISOLA I-TERAMT3.45 substrate

and its photo is presented in Fig. 5. A satisfactory agreement

between the obtained results, the calculations of alternative

method and measurements was achieved.

Fig. 4. Convergence of resonant frequencies for the structure from Fig. 3: (a)
assuming first order of basis functions in FEM; (b) assuming second order of
basis functions in FEM; (c) calculation time of different stages of the analysis.

TABLE I
RESONANCE FREQUENCIES IN GHZ FOR THE STRUCTURE FROM FIG. 5.

Mode 1 2 3 4 5

This method 0.959 1.044 1.616 2.3406 2.902

HFSS 0.957 1.047 1.589 2.333 2.904

Measurement 0.960 1.043 1.637 2.307 2.900

The second example is a rectangular patch with slits de-

posited on dielectric substrate covering a metallic cylindrical

core. The schematic view of the structure with its dimensions

and substrate parameters and the obtained resonant frequencies

for TM10 and TM01 modes as a function of slit length are
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Fig. 5. The geometry of a circular patch with slits, a photo of a manufactured
prototype and current densities Jx and Jy for five investigated modes on its
surface. Patch dimensions: R = 30 mm, w = 4 mm, L = 35 mm and
s = 12 mm. Substrate thickness h = 0.254 mm and permittivity εr = 3.45.

Fig. 6. Resonance frequencies of the rectangular patch with slits with
dimensions W = 30 mm, L = 26 mm, ws = 2 mm, placed on the dielectric
substrate of permittivity εr = 2.32 and thickness h = 2 mm in function of
slit lengths [9] and current densities Jx and Jy for TM01 and TM10 modes
on its surface. Solid and dashed lines - this method, Diamonds - FDFD/MoM,
Circles - HFSS.

shown in Fig. 6. The increase in the length of the slits causes a

decrease in the resonant frequency of TM10 mode and does not

affect TM01 mode. The situation would be reversed if the slits

were introduced at vertical edges of the patch. The obtained

results agree with the calculations obtained from alternative

methods.

Considering the assumed limitations of the method, it does

produce accurate results for the presented examples, and at

least 30 times faster than currently used commercial software

(the simulation of the investigated examples in HFSS takes

about 400 s per single frequency point). Therefore, this method

could be used with optimization procedures to design complex

shapes resonant microstrip structures.

IV. CONCLUSION

A new procedure for calculating the resonance frequencies

of planar and cylindrical microstrip structures with patches of

arbitrary shapes was proposed. A hybrid technique based on

the finite element method (to calculate patch surface currents)

and MoM (to solve the microstrip resonance problem) was

employed. Examples of microstrip patches with different ge-

ometries were analyzed, and the obtained results were verified

by comparing them with calculations made by alternative

methods, commercial software and measurements. A good

agreement was achieved, proving the applicability of the newly

proposed method.
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