
TASK QUARTERLY vol. 21, No 4, 2017, pp. 365–377

PROCESSING OF SATELLITE DATA
IN THE CLOUD

JERZY PROFICZ AND KRZYSZTOF DRYPCZEWSKI
Gdansk University of Technology
Academic Computer Centre TASK

Narutowicza 11/12, 80-233 Gdansk, Poland

(received: 22 August 2017; revised: 22 September 2017;
accepted: 29 September 2017; published online: 12 October 2017)

Abstract: The dynamic development of digital technologies, especially those dedicated to
devices generating large data streams, such as all kinds of measurement equipment (temperature
and humidity sensors, cameras, radio-telescopes and satellites – Internet of Things) enables
more in-depth analysis of the surrounding reality, including better understanding of various
natural phenomenon, starting from atomic level reactions, through macroscopic processes
(e.g. meteorology) to observation of the Earth and the outer space. On the other hand such
a large quantitative improvement requires a great number of processing and storage resources,
resulting in the recent rapid development of Big Data technologies. Since 2015, the European
Space Agency (ESA) has been providing a great amount of data gathered by exploratory
equipment: a collection of Sentinel satellites – which perform Earth observation using various
measurement techniques. For example Sentinel-2 provides a stream of digital photos, including
images of the Baltic Sea and the whole territory of Poland. This data is used in an experimental
installation of a Big Data processing system based on the open source software at the Academic
Computer Center in Gdansk. The center has one of the most powerful supercomputers in Poland
– the Tryton computing cluster, consisting of 1600 nodes interconnected by a fast Infiniband
network (56 Gbps) and over 6 PB of storage. Some of these nodes are used as a computational
cloud supervised by an OpenStack platform, where the Sentinel-2 data is processed. A subsystem
of the automatic, perpetual data download to object storage (based on Swift) is deployed, the
required software libraries for the image processing are configured and the Apache Spark cluster
has been set up. The above system enables gathering and analysis of the recorded satellite images
and the associated metadata, benefiting from the parallel computation mechanisms. This paper
describes the above solution including its technical aspects.
Keywords: Apache Spark, Satellite Data, Sentinel-2, ESA, Big Data, Cloud, OpenStack
DOI: https://doi.org/10.17466/tq2017/21.4/y

1. Introduction
The dynamic development of digital technologies, especially those dedicated

to devices generating large data streams, such as all kinds of measurement

366 J. Proficz and K. Drypczewski

equipment (temperature and humidity sensors, cameras, radio-telescopes and
satellites – Internet of Things) enables more in-depth analysis of the surrounding
reality, including better understanding of various natural phenomena, starting
from atomic level reactions, through macroscopic processes (e.g. meteorology) to
observation of the Earth and the outer space.

On the other hand such a large increase in the data quantity requires
a great number of processing and storage resources resulting in the recent
rapid development of Big Data [1] technologies having the following common
characteristics (3V):
• volume: the quantity of processed, stored data, etc.;
• velocity: the speed of data generation;
• variety: many types and sources of data (structured and unstructured).

Sometimes two more characteristics are also included:
• veracity: the data quality and trustworthiness (accuracy, precision, noise and

abnormality in a data-set);
• value: the ability to turn data into the market value.

In the current literature [1] there is a tendency to simplify the idea of
Big Data and focus only on text or numerical data (e.g. sensor measurement
stream) processing. Most important open-source platforms like Apache Spark [2]
or Hadoop Map Reduce [3] provide specialized tools for analysis of text and
(partially) structured data, however, image processing is typically not so well
supported. Most work in the image processing and analysis, especially connected
with machine learning (e.g. deep neural networks), operates on external platforms
such as Tensor Flow [4], Torch [5], Theano [6] or Caffe [7].

Since 2015 the European Space Agency (ESA) has been providing a great
amount of satellite data under the Copernicus [8] program. Data is gathered using
advanced research apparatus – a group of Sentinel satellites. They are responsible
for the acquisition of Earth Observation (EO) data in a cyclical manner and are
equipped, depending on the mission, with a variety of passive and active sensors
(e.g. Syntheric Aperture Radar (SAR), optical and Near Infrared (NIR) cameras).
Sentinel-2 mission [9] provides imagery along with meta data along with additional
analysis results such as polygon masks of cloud coverage.

The main topic of the article is an experimental platform for image analysis,
using a typical open-source Big Data [1] processing software: Apache Spark [2].
The proposed solution is used to process Sentinel-2 satellite data – photography
and metadata covering the area of the southern Baltic Sea and the Republic
of Poland. The above data is publicly available on ESA servers from where
it is continuously downloaded to the prepared platform and processed using
typical Apache Spark [2] tools available for users in Scala, Python, Java, and
R languages.

In the next section, we describe the processed data, both qualitatively (for-
mats, types, etc.) and quantitatively (size, growth rate, etc.), then we provide

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Processing of Satellite Data in the Cloud 367

a technical description of both the cloud computing environment (Tryton super-
computer) and the data transfer system itself. Then, satellite data collection along
with the main technical aspects of the proposed solution and its usage is described.
Finally, the conclusions and future work are presented.

2. Sentinel-2 satellite data
Copernicus [8] is a European Union Earth Observation (EO) program aimed

to create services based on a combination of satellite remote sensing and terrestrial
sensor data. The ESA has created a Sentinel mission including a pair of Sentinel-2
satellites. Sentinel-2A and Sentinel-2B [9] satellites were deployed in orbit in 2015
and 2017, respectively, and their main task is acquisition and transfer of digital
imagery of the Earth’s surface. Both satellites are located at an altitude of 786 km
above the Earth, in a sun-synchronous orbit such that the angle between its plane
and the direction of the Sun’s rays is constant, i.e. observation is made at the
same local time over a given area. For Sentinels-2 it is 10:30 am. This time was
chosen as a compromise between the conditions associated with the corresponding
angle of the sunlight and the statistically minimal cloud coverage of the area under
study.

Sentinel-2 satellites provide 14 band products including spectral ranges such
as visible light, infrared, etc. The resolution of the recorded images varies from 10
to 60 m. Sentinel-2 covers areas of the Earth’s latitude: from 56degS to 84degN,
traversing the space above the same area and with the same viewing angle once
every 5 days with a 100 kilometer field of view. Each satellite weighs approximately
1.2 tons and is designed to be shipped with a small rocket, such as VEGA [10]
or ROCKOT [11]. Its lifespan is estimated for 7.25 years including 3 months for
orbital maneuvers, however, batteries can operate up to 12 years. Figure 1 shows
the Sentinel-2 satellite model.

Figure 1. Sentinel-2 satellite model, source: Wikipedia

The Copernicus project [8] aims to provide open data, so that everyone has
the opportunity to collect and analyze the datasets. Access to the data is possible

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

368 J. Proficz and K. Drypczewski

through the Copernicus Open Access hub [12]. Sentinel data can be applied in
many areas of research including:
1. climate change;
2. land, atmosphere, maritime environment monitoring;
3. emergency management;
4. security: border and maritime surveillance.

Figure 2 presents the data structure for a single measurement:
• manifest file – an XML document containing general information;
• a preview image with HTML files – a low resolution digital photo;
• subdirectories including metadata, and high definition images (JPEG 2000);
• subdirectories with data processing level information;
• subdirectory with auxiliary data.

Figure 2. Sentinel-2 data format, source [13]

The existing observations indicate that the amount of data received and
collected by the platform (images and metadata) is approximately 1.5–2TB per
month. The above estimates concern selected areas: the Baltic Sea and Poland.

3. Computing environment
Gdansk Academic Computer Centre TASK (CI TASK) has an advanced com-

puting environment for transferring and processing large data sets (Big Data [1]).
It is operated by specialized staff with more than 20 years of experience in high
performance computing including Big Data and parallel processing and it is the
leading center of this type in Northern Poland. Its location in Gdansk is condu-
cive to maritime applications, and extensive cooperation with units of the Gdansk
University of Technology (especially with the Faculty of Electronics, Telecommu-
nications and Informatics), as well as other Polish and international universities.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Processing of Satellite Data in the Cloud 369

CI TASK’s flagship computing unit is Tryton, a cluster-based supercomputer, pur-
chased in 2014 and continuously upgraded. Currently (July 2017) it is composed
of over 1600 computing nodes: servers, containing 2 Intel Xeon E5 v3 2.3GHz
(Haswell) processors each, with 12 physical cores with the Hyperthreading (HT)
technology. In total, the cluster has over 3200 processors, 38,500 cores, 48 acce-
lerator cards (GP GPUs) and 218TB RAM [14]. Some of the above resources are
used as a computing cloud via the OpenStack platform [15] which allows users to
use individual nodes by placing virtual machines (VMs) on them, each of which
can use all the resources of a single node, or only a portion of them. This appro-
ach supports the IaaS (Infrastructure as a Service) cloud model. An experimental
platform for Setinel-2 data processing was installed on the aforementioned super-
computer in an OpenStack environment.

In addition to 1.5TFLOPS of computing power, the Tryton supercomputer
enables the use of the mass storage resources available in CI TASK. Over 5PB
of disk space is directly available for nodes as block or object storage, provided
by Ceph [16] and Swift [17] specialized cloud file systems. This solution enables
flexible use of resources, both from the cloud level and the perspective of the high
performance computing (HPC) users. In the above environment, Apache Spark
2.2 [2]: an open platform for the processing of large data sets (Big Data) has been
deployed. It enables efficient analysis and processing of data from a variety of
sources, including block and object file systems. Apache Spark has the following
features:
• high processing speed (in comparison with Apache Hadoop Map Reduce);
• ease of use – direct support for Scala, Java, Python and R languages;
• generality – it combines a variety of applications: SQL, machine learning,

graphical modeling, data streaming and processing (Figure 3);
• portability – integration with Hadoop YARN [18], Apache Mesos [19], Kuber-

netes [20] and the use of external data sources: HDFS [21], Swift 18, HBase [22]
Cassandra [23].

Figure 3. Apache Spark libraries, source: [2]

4. Data processing system
Using the configuration described in the previous section, an experimental

system for processing Sentinel-2 imagery and meta-data was proposed. Figure 4
presents the simplified data flow for such processing. The measurements made by
the Sentinel-2 satellites (images and accompanying information) are transmitted

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

370 J. Proficz and K. Drypczewski

(down-link) by radio to the Earth and received by the ESA data reception
stations. Raw data is then preprocessed to obtain level 1 and 2 imagery that
are then collected on the ESA servers. The prepared client (deployed in CI TASK)
is a virtual cloud computing machine, which continually queries the published
data and, if the imagery contains the relevant areas (the Baltic Sea and Poland),
downloads and stores them in the Swift file system [17]. Such data is ready to be
used by any application deployed in the dedicated Swift container.

Figure 4. Satellite data processing diagram; source: T. Ziółkowski

The proposed system utilizing the collected data is a cluster of virtual
machines running in the OpenStack computing cloud [15] and managed by Apache
Spark v. 2.2 [2]. It performs all decompression, decoding, analysis and processing
of collected data and then passes the processed images and metadata as output
according to the user request. Users can program appropriate processing routines
using Java, Python, R, or Scala languages. The language used during the tests
was Scala [22]. It is both an object-oriented and functional language that allows
the use of existing classes and libraries from Java due to its operation on the
Java Virtual Machine (JVM). It also greatly simplifies functional programming
supporting stateless and statefull functions, with extensive use of mechanisms
such as recursion and parallel processing. The Sentinel Application Platform
(SNAP) [24], including the Sentinel 2 Toolbox, implemented in the Java and

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Processing of Satellite Data in the Cloud 371

provided by ESA that supports image processing can be used to extract individual
data from packets corresponding to each measurement. Processing of satellite
imagery encoded with JPEG 2000 [25] was done using Java Advanced Imaging
(JAI) [26], ImageIO-Ext [27] and OpenJPEG [28] libraries.

5. Example of usage
One of the possible applications of Apache Spark in Sentinel-2 data proces-

sing is selection of satellite products based on the information contained in the
images and the metadata. In the presented example, it is only those products
that: a) present a given area (e.g. city of Gdansk) and b) cloud coverage for cho-
sen image has not exceeded a certain value (e.g. no more than 30% of the pixels
in the image contain clouds) that are selected. The basic metadata documents
(Figure 2) describing level 1C and 2A products, are the MTD MSIL1C.xml and
MTD MSIL2A.xml files, respectively. They contain information about the cloud co-
verage (Figure 5) and the Global Footprint (Figure 6), i.e. a list of geographical
positions (in decimal degrees) that form the polygon describing the imagery area.

<n1:Quality Indicators Info>
<Cloud Coverage Assessment>75.0991</Cloud Coverage Assessment>

</n1:Quality Indicators Info>

Figure 5. Cloud coverage indicator in MTD MSIL2A.xml file

<Product Footprint>
<Global Footprint>

<EXT POS LIST>
55.00678356187177 17.87240396241576
55.038802909805916 19.588520320630224
54.05231184875538 19.622172463921235
54.021430711029694 17.946857574749785
55.00678356187177 17.87240396241576

</EXT POS LIST>
</Global Footprint>

</Product Footprint>

Figure 6. The area presented in the image is described by a fragment of MTD MSIL2A.xml

The example application (Figure 7) has been implemented in Scala [29]
using methods for data and collection stream operations that take a lambda
expression i.e. an object representing function that is executed on each of the
elements of the collection, as a parameter. Especially:
• map (lambda) – used to convert each element in a dataset using the lambda

expression;
• filter (condition) – allows selecting only those elements that meet the condition

passed as the parameter.
Apache Spark [2] provides a functionality to create data collection that

is automatically distributed to cluster nodes and then to perform operations

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

372 J. Proficz and K. Drypczewski

1 import scala.xml.XML
2 import java.awt.geom.Path2D
3 import org.apache.hadoop.fs.{FileSystem, Path}
4 import java.net.URI
5 import java.io.{DataInputStream, EOFException, InputStreamReader}
6 import org.apache.spark.SparkContext
7 import java.io.BufferedInputStream
8 import java.io.DataInputStream
9 import java.io.File

10 import java.io.FileInputStream
11 import java.io.FileNotFoundException
12 import java.io.IOException
13 import java.awt.Graphics
14 import java.awt.Image
15 import java.awt.image.BufferedImage
16 import javax.media.jai.
17 import javax.imageio.ImageIO;
18 import java.awt.Color
19 import java.io.ByteArrayOutputStream
20
21 def filter bounding box(positionsString: String, lat test: Double,
22 lon test: Double): Boolean = {
23 val positions: Array[Double] = positionsString.split(" ").map(.toDouble)
24 val product area: Path2D = new Path2D.Double();
25 product area.moveTo(positions(0), positions(1));
26 for (Array(lat, lon) <- positions.grouped(2).drop(1))
27 product area.lineTo(lat, lon)
28 product area.contains(lat test, lon test)
29 }
30
31 def create RGB(path: Path): Option[String] = {
32 var fs = FileSystem.get(URI.create(path.toString()),
33 SparkContext.getOrCreate.hadoopConfiguration)
34 var path2 = None: Option[Path]
35 var path3 = None: Option[Path]
36 var path4 = None: Option[Path]
37 val file status = fs.listStatus(path)
38 for (status <- file status) {
39 val name=status.getPath().toString()
40 if (name.contains("B02 20")) path2 = Some(status.getPath())
41 else if (name.contains("B03 20")) path3 = Some(status.getPath())
42 else if (name.contains("B04 20")) path4 = Some(status.getPath())
43 }
44
45 if (!(path2.isEmpty || path3.isEmpty || path4.isEmpty)) {
46 val i2 = ImageIO.read(fs.open(path2.get))
47 val i3 = ImageIO.read(fs.open(path3.get))
48 val i4 = ImageIO.read(fs.open(path4.get))
49 val w = i2.getWidth
50 val h = i2.getHeight
51 val final image =
52 new BufferedImage(w, h, BufferedImage.TYPE INT RGB)
53 for (x <- 0 until w) {
54 for (y <- 0 until h) {
55 val red = (i4.getRGB(x, y) >> 16) & 0xff;
56 val green = (i3.getRGB(x, y) >> 8) & 0xff;
57 val blue = i2.getRGB(x, y) & 0xff;

Figure 7. Example Sentinel-2 data filtering

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Processing of Satellite Data in the Cloud 373

58 val rgb = (red << 16) | (green << 8) | blue
59 final image.setRGB(x, y, rgb)
60 }
61 }
62 val output URI = "swift2d://output.sentinel/"
63 val file name = path.toString().substring(path.toString()
64 .lastIndexOf('/')+1) + "/B432RGB.jpg"
65 fs = FileSystem.get(URI.create(output URI),
66 SparkContext.getOrCreate.hadoopConfiguration)
67 val out = fs.create(new Path(output URI+file name))
68 val baos = new ByteArrayOutputStream();
69 ImageIO.write(final image, "jpg", baos);
70 out.write(baos.toByteArray())
71 out.close()
72 Some(output URI + file name)
73 }
74 else
75 None
76 }
77
78 val sentinel metadata = sc.wholeTextFiles
79 ("swift2d: //sentinel products.sentinel/sentinel2/../*MSIL[12][AC].xml")
80
81 val xml = sentinel metadata.map{
82 case (file name, content) =>
83 (file name,XML.loadString(content))
84 }
85
86 val details = xml.map{
87 case (file name, xml nodes) =>
88 (file name, xml nodes \\ "EXT POS LIST" text,
89 xml nodes \\ "Cloud Coverage Assessment" text)
90 }
91
92 val filtered = details.filter{
93 case (file name, bounding box,cloud percentage) =>
94 (cloud percentage.toFloat < 40 &&
95 filter bounding box(bounding box, 54.3520500, 18.6463700))
96 }
97
98 val products = filtered.map{
99 case (file name, bounding box, cloud percentage) =>

100 file name.substring(0, file name.lastIndexOf('/'))
101 }
102
103 products.foreach{
104 case (file name) =>
105 create RGB(new Path(file name))
106 }

Figure 7 – continued. Example Sentinel-2 data filtering

such as a map or filter. In the first step, the application retrieves information
about satellite data stored in the Swift object storage (Figure 7, lines 78–79).
It is only XML files that contain the desired metadata (MTD MSIL1C.xml and
MTD MSIL2A.xml) that are selected. The wholeTextFiles method returns a col-
lection of type (String, String), where the first parameter is the name of the file,
and the second parameter is its content. Then (lines 81–84) the content of the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

374 J. Proficz and K. Drypczewski

metadata files is loaded into the XML parser and information about the cloud
coverage and imaging area (lines 86–90) is retrieved. The filter bounding box
method (lines 21–29) is used to determine whether the given geographic position is
presented in the satellite image. It takes a list of geographic locations (as shown in
Figure 6) as a parameter and builds a polygon describing the area of the image. In
the next step it is verified if the position represented by the lon test, lat test
parameters is in the specified area. In lines 92–96 data filtering occurs, only those
products that meet both conditions are selected: a) the cloud coverage of a given
product does not exceed the set value (40% in this case) and b) the position (in
this case, the center of Gdansk) is placed in the image (filter bounding box
condition). In the next step, (lines 98–101) the path names to the main catalogs
of the selected products are retrieved. In the last phase, data from the selected
products is merged into RGB images (lines 103–106).

Images containing bands 4, 3 and 2, i.e., those corresponding to RGB
channels [30], are downloaded from the Swift object storage (create RGB function,
lines 31–77) and then the data is merged into one image (lines 46–61) and saved
in the file system (lines 62–72).

6. Experiments and results
The Spark platform allows easy addition and removal of computing nodes.

Two scalability tests were performed to check the impact of the change in the
number of workers on the execution time,. The test cluster contains six machines
(1 master and 5 slaves) with the following configuration: 32GB of RAM, a 64-bit
processor (32 cores), a 48GB SSD disk. The data set used contains approximately
12 000 Sentinel-2 level 2A products.

In the first test, satellite data was queried for images presenting the city of
Gdansk, with no more than 40% of the pixels containing clouds (program from
Figure 7). Then, RGB images where generated from the selected products. In
the second test, RGB images were generated for the entire dataset, without any
selection process.

In both cases, computations were run on a cluster with 5, 4, 3, 2 and 1
worker nodes. In each of the executions, the number of partitions which is a Spark
variable controlling parallelism was set as a result of multiplication of the total
number of cores in a cluster by 4.

Figure 8 and Figure 9 present the tests results. The charts present the
relation between the number of workers and the execution time.

Figure 10 and Figure 11 present the speedup of the presented tasks in
relation to the number of workers.

An increase in the number of workers increases the speed of data proces-
sing and allows faster data analysis. The speedup achieved in the second test
is much more significant than in the first one. It is a result of using the Spark
wholeTextFiles method (Figure 7, lines 79–80). This method downloads meta-
data files available in the Swift storage and reads their content. This operation

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Processing of Satellite Data in the Cloud 375

Figure 8. Execution time for Test No. 1

Figure 9. Execution time for Test No. 2

Figure 10. Spark cluster speedup, Test No. 1

Figure 11. Spark cluster speedup, Test No. 2

is performed entirely on a driver node and only after it has finished, the data is
send to workers and parallel processing starts. Since the dataset in the first test is
much smaller than in the second one, the metadata processing becomes a bigger
part of the entire execution time and leads to a smaller speedup.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

376 J. Proficz and K. Drypczewski

7. Conclusions
Currently (November 2017) the proposed system is an experimental deploy-

ment that is a basis for further development. Future works should be focused on
increasing the efficiency and reliability of data processing and user convenience.
We plan to automate the Spark cluster management (in the area of installation
and changing the number of computational nodes) [2] in the OpenStack environ-
ment [15]. More extensive performance and scalability tests as well as integration
with libraries supporting advanced machine learning (e.g. H2O platform [31]) are
also planned. The aim of the proposed platform is to provide an environment
for scientific and educational purposes. It is available to CI TASK users, especially
those from the Pomeranian scientific community that are interested in performing
Sentinel-2 satellite data analysis of the Baltic Sea as well as for other individuals
and organizations interested in processing the gathered data. In addition, the plat-
form is to be used in the “Space applications of advanced information technology”
course that is conducted within the interdisciplinary faculty “Space and satellite
technologies” at the Gdansk University of Technology (since October 2017).

References
[1] Demchenko Y, De Laat C and Membrey P 2014 CTS, IEEE 104
[2] Apache Spark – Lightning-fast cluster computing [Online] available at: https://spark.

apache.org/ [Accessed: 25-July-2017]
[3] Apache Hadoop – website [Online] available at: https://hadoop.apache.org/ [Acces-

sed: 23-June-2017]
[4] Thensorflow Homepage [Online] available at: https://www.tensorflow.org/ [Accessed:

23-June-2017]
[5] Torch – a scientific computing platform for LuaJIT [Online] available at: http://torch

.ch/ [Accessed: 23-June-2017]
[6] Theano – a library to define, optimize, and evaluate mathematical expressions [Online]

available at: http://deeplearning.net/software/theano/ [Accessed: 26-June-2017]
[7] Caffe – Deep learning framework [Online] available at: http://caffe.

berkeleyvision.org/ [Accessed: 26-June-2017]
[8] Copernicus – observing the Earth, ESA programe [Online] available at: http://www.esa.

int/Our Activities/Observing the Earth/Copernicus [Accessed: 26-June-2017]
[9] Sentinel-2 Homepage [Online] available at: http://www.esa.int/Our Activities/

Observing the Earth/Copernicus/Sentinel-2 [Accessed: 23-June-2017]
[10] Vega – Arianspace [Online] available at: http://www.arianespace.com/vehicle/vega/

[Accessed: 06-July-2017]
[11] Rockot launch vehicle [Online] available at: http://www.russianspaceweb.com/rockot

.html [Accessed: 06-July-2017]
[12] Copernicus Open Access Hub [Online] available at: https://scihub.copernicus.eu/

[Accessed: 27-July-2017]
[13] Sentinel-2 MSI, Data formats [Online] available at: https://sentinel.esa.int/web/

sentinel/user-guides/sentinel-2-msi/data-formats [Accessed: 23-July-2017]
[14] Tryton Supercomputer, Academic Computer Centre TASK [Online] available at: https:

//task.gda.pl/kdm/sprzet/tryton/
[15] OpenStack, Open Source Cloud Computing Software [Online] available at: https://www.

openstack.org/ [Accessed: 27-June-2017]
[16] Ceph Homepage [Online] available at: http://ceph.com/ [Accessed: 27-June-2017]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Processing of Satellite Data in the Cloud 377

[17] Swift – OpenStack [Online] available at: https://wiki.openstack.org/wiki/Swift
[Accessed: 27-June-2017]

[18] Apache Hadoop YARN [Online] available at: https://hadoop.apache.org/docs/r2.7.3
/hadoop-yarn/hadoop-yarn-site/YARN.html [Accessed: 27-June-2017]

[19] Apache Mesos [Online] available at:http://mesos.apache.org/ [Accessed: 28-June-2017]
[20] Kubernetes – Production-Grade Container Orchestration [Online] available at: https://

kubernetes.io/ [Accessed: 28-June-2017]
[21] HDFS Architecture Guide [Online] available at: https://hadoop.apache.org/docs/r1.

2.1/hdfs design.html [Accessed: 28-June-2017]
[22] Apache HBase Home [Online] available at: https://hbase.apache.org/ [Accessed:

28-June-2017]
[23] Apache Cassandra Homepage [Online] available at: http://cassandra.apache.org/

[Accessed: 28-June-2017]
[24] SNAP – Sentinel Application Platform [Online] available at: http://step.esa.int/main

/toolboxes/snap/ [Accessed: 28-June-2017]
[25] JPEG 2000 Homepage [Online] available at: https://jpeg.org/jpeg2000/ [Accessed:

28-June-2017]
[26] Java Advanced Imaging API Home Page [Online] available at: http://www.oracle.com

/technetwork/java/iio-141084.html [Accessed: 28-June-2017]
[27] The ImageIO-Ext Project Home [Online] available at: https://github.com/

geosolutions-it/imageio-ext/ [Accessed: 29-June-2017]
[28] OpenJPEG, an open-source JPEG 2000 codec [Online] available at: http://www.

openjpeg.org/ [Accessed: 29-June-2017]
[29] Odersky M 2014 Scala by Example, Programing Methods Laboratory [Online] available

at: http://www.scala-lang.org/docu/files/ScalaByExample.pdf, EPFL [Accessed:
26-July-2017]

[30] Sentinel-2 User Handbook [Online] available at: https://sentinel.esa.int/documents
/247904/685211/Sentinel-2 User Handbook, ESA [Accessed: 03-July-2017]

[31] H2O Homepage [Online] available at: https://www.h2o.ai/ [Accessed: 03-July-2017]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

