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Abstract Aproblem of graph F-free coloring consists in partitioning the vertex set of
a graph such that none of the resulting sets induces a graph containing a fixed graph F
as an induced subgraph. In this paper we consider dynamic F-free coloring in which,
similarly as in online coloring, the graph to be colored is not known in advance; it is
gradually revealed to the coloring algorithm that has to color each vertex upon request
as well as handle any vertex recoloring requests. Our main concern is the greedy
approach and characterization of graph classes for which it is possible to decide in
polynomial time whether for the fixed forbidden graph F and positive integer k the
greedy algorithm ever uses more than k colors in dynamic F-free coloring. For various
classes of graphs we give such characterizations in terms of a finite number of minimal
forbidden graphs thus solving the above-mentioned problem for the so-called F-trees
when F is 2-connected, and for classical trees, when F is a path of order 3 (the latter
variant is also known as subcoloring or 1-improper coloring).
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1 Introduction

Graphs have proven to be a powerful model of complex networks in various domains,
ranging from telecommunication to chemistry and social networks. In their earlier stud-
ies researches usually focused on static networks rather than their dynamic behavior.
However, many real world networks are not static but inherently evolve over time (see,
e.g., Newman [27]); each and every minute, new web pages are added, people become
members of new social networks thereby creating new nodes and forming new groups
(clusters) having certain properties. In this paper we join the concept of evolving graph
structure with the dynamic maintenance of temporal partitions of its vertex set into the
subsets that induce graphs with specified structural properties. In addition to practical
applications, significant motivation for our research on the dynamic variant of graph
partitioning comes from the area of designing of graph classes along with polynomial-
time approximation algorithms (see, e.g., Borowiecki [6]). In the above context, as a
model for dynamic partitioning, we use the dynamic F-free coloring of graphs.

1.1 Dynamic F-free Coloring

We consider simple, finite, undirected graphs G = (V, E) with the vertex set V , edge
set E and order n = |V (G)|. For graphs G and F we say that G contains F if there
exists an induced subgraph of G isomorphic to F . Otherwise, we say that G is F-free.
It is known that every class of F-free graphs is hereditary, i.e., every induced subgraph
of an F-free graph is F-free. If from the fact that connected components of a graph G
are F-free it follows that G is F-free, then the class of F-free graphs is additive. We
will also use the fact that if a class of F-free graphs is additive, then F is connected.
All classes of graphs that we consider are additive and hereditary.

An F-free coloring of a graph is a partition of its vertex set into subsets called color
classes such that each color class induces an F-free graph. In the classical coloring,
called proper coloring, adjacent vertices cannot be colored with the same color, which
is equivalent to K2-free coloring (Kp denotes the complete graph of order p). Indeed,
in proper coloring each color class is an independent set, or equivalently, induces a
K2-free graph.

In this paper we consider the dynamic F-free coloring. The dynamic model of
F-free coloring can be interpreted as a game of Presenter and Painter; the two unco-
operative players. According to [7] the game can be described as follows. In a sequence
of moves, Presenter gradually reveals the structure of a graph, i.e., in each move Pre-
senter presents some number of new vertices along with the edges between them as
well as the edges between new vertices and previously known ones. In the same move
Presenter can also discolor arbitrary vertices, and then request Painter to immediately
color the vertices of Presenter’s choice. More formally, let r > 0 and let σ1, . . . , σr
denote subsequent moves of Presenter. Let G1 be an empty graph. For i > 1, by
Gi and Gi+1 we denote the graphs known to Painter before and after σi , respec-
tively. The move σi is defined by (Di ,Ui , Ei ,Ci ), where Di is the set of vertices that
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Fig. 1 Examples of greedy dynamic F-free colorings: a F = K2 (proper coloring), and b F = K3
(triangle-free coloring)

lose their colors, Ui is the set of new vertices, Ei is the set of edges uv such that
u ∈ Ui , v ∈ V (Gi ) ∪ Ui , and Ci is the set of vertices that have to be immediately
colored by Painter in response to σi . Naturally, Gi+1 = (V (Gi ) ∪ Ui , E(Gi ) ∪ Ei ).
Note that there is no loss of generality in assuming thatCi �= ∅. We also allowUi to be
empty, i.e., at some stage of the game Presenter and Painter may continue discoloring
and coloring the same graph. Similarly, Presenter does not have to discolor vertices,
i.e., Di = ∅ is allowed. In our setting Painter does not know the graph in advance, nor
the order in which vertices will be colored or discolored. The goal of Presenter is to
find a sequence of moves that force Painter to use as many colors as possible, while
Painter aims at minimizing the number of colors.

Example 1.1 Consider dynamic F-free coloring of graphs in Fig. 1 under assumption
that Painter acts greedily, i.e., always uses the smallest possible color. Note that in
proper coloringof a graphpresented inFig. 1aPainter is forced to color eachvertexwith
a different color. To achieve this goal Presenter reveals vertices v1, . . . , v4 and requests
Painter to color each vertex as soon as it is revealed (in other wordsUi = Ci = {vi } for
i ∈ {1, . . . , 4}). In his next move, Presenter discolors v2 and asks for coloring of just
revealed vertex v5. Now, if Presenter requests coloring of v2 (for the second time), then
since v5 is already colored 2, the vertex v2 will be colored 5. Next, Presenter discolors
v1 and asks for coloring of the new vertex v6. Finally, the request for coloring of v1
forces Painter to introduce color 6. The example in Fig. 1b presents K3-free coloring
with 3 colors. Consider the following sequence of coloring and discoloring requests
(we assume that each vertex is revealed just before it is colored for the first time).
Namely, requests for coloring of v1, v2 and v3 (in order) result in the assignment of
color 1 to v1 and v2, and forces Painter to use color 2 for v3 (for otherwise we would
have a monochromatic K3 induced by {v1, v2, v3}). Next, after discoloring of v1 and
v2, Painter is asked to color v4, . . . , v7 (naturally, the first color will be used for all of
them). Consequently, v1 will be colored 2 and because of the two triangles induced
by {v1, v2, v3} and {v2, v6, v7} the third color will be forced in v2. ��

Dynamic F-free coloring is a natural generalization of both offline and online F-
free coloring models. Namely, the problem of offline coloring of a graph G = (V, E)

can be seen as a one-move game with σ1 = (∅, V, E, V ), while online coloring is a
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game such that for every move: Di = ∅, the set Ui is a singleton, and Ci = Ui . In the
above-mentioned setting, the dynamic K2-free coloring has been considered in [7].

1.2 Related Research and Our Results

The idea of F-free coloring goes back at least as far as to a paper of Chartrand et al.
[11]. Many variants and generalizations of basic concepts have been introduced and
intensively studied over the years. Since this subject is too wide to be surveyed in a
short paper, we mention just a few examples like subcoloring known also as P3-free
coloring (where Pp denotes the chordless path on p vertices), P4-free coloring and
improper coloring, and we refer to appropriate literature on other variants, e.g., many
results on subcoloring can be found in Albertson et al. [2], Broere and Mynhardt [8],
Fiala et al. [16] as well as in work of Gimbel and Hartman [17]. For results on P4-free
coloring see, e.g., Gimbel andNešetřil [18] and a paper ofHoàng andLe [23], while for
improper coloring we refer the reader to papers of Bermond et al. [4], Cowen et al. [15]
and Havet et al. [21]. Concerning the computational complexity of F-free k-coloring
problem we mention the result of Achlioptas [1] who proved that for any fixed graph
F , except K2, the problem of deciding if a given graph admits an F-free coloring with
at most k-colors isNP-complete (for a detailed study of the computational complexity
of many variants of offline generalized colorings see, e.g., Broersma et al. [9]).

As we have already mentioned, dynamic coloring can be seen as a generalization
of offline and online colorings, but it is also closely related to the iterative coloring,
in which the coloring algorithm is allowed to decide on improvements of subsequent
solutions obtained by recoloring some vertices of a known graph (see, e.g., Caramia
and Dell’Olmo [10], Molloy and Reed [26]). Since in iterative approach the graph is
given in advance and the coloring algorithm can decide on which part of the solution
to improve, the results on greedy dynamic F-free coloring seem to be applicable in
the analysis and development of vertex recoloring rules for iterative greedy F-free
coloring.

In context of onlinemodel special attentionwas paid to the analysis of colorings that
can be obtained with the greedy algorithm. For proper coloring the largest number of
colors used by the greedy algorithm is a well known graph invariant, denoted by Γ(G)

and called the Grundy number of a graph. In this sense, Goyal and Vishwanathan
[20], and Zaker [28] determined the computational complexity of a long-standing
open problem posed by Hedetniemi et al. [22] (cf. Jensen and Toft [25]). Namely, they
proved that given a graph G and a positive integer k it is NP-complete to decide if
Γ(G) ≥ k. Recently, their result has been extended by Borowiecki [6] who proved
that for F-free coloring an analogous problem is NP-complete for every F = Kp

with p ≥ 3. Despite vast literature devoted to the Grundy number, we know only few
graph classes for which the greedy algorithm always outputs optimal colorings (see,
e.g., Borowiecki and Rautenbach [5], and Christen and Selkow [13] for more details).
As of today, determining the Grundy number is known to be polynomial for P4-laden
graphs and trees (see Araujo et al. [3] and Hedetniemi et al. [22], respectively).

In this paper we continue the above-mentioned line of investigation by considering
the classes of graphs for which a “dynamic variant” of the above-mentioned problem
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can be solved in polynomial time. More formally, let F denote the class of F-free
graphs. The dynamic F-Grundy number of a graph G, denoted by Γd(G, F), is the
largest number of colors that may be required by the greedy algorithm during some
dynamic F-free coloring of G. The main problem considered in this paper can be
stated as follows.

Problem 1.1 (Greedy Dynamic F- free k- coloring)

Input: A graph G.
Question: Does Γd(G, F) ≥ k hold for G?

The current knowledge on minimal forbidden subgraphs characterizing the classes
of F-free k-colorable graphs is very far from being complete even if we consider
offline proper coloring (in this sense, some recent results in selected classes of graphs,
mainly for k ∈ {3, 4}, can be found inChudnovsky et al. [14], Goedgebeur and Schaudt
[19] and Hoàng et al. [24]). On the other hand, for every fixed k ≥ 2 and connected
graph F , the class of graphs F-free k-colorable with the greedy algorithm can be
characterized by a finite number of minimal forbidden graphs (see, Borowiecki [6])
and hence the online variant of greedy F-free k-coloring can be solved in polynomial
time. Despite the fact that the structure of minimal graphs for greedy dynamic F-free
coloring seems to be more involved than in the case considered in [6], we strongly
believe that Problem 1.1 can also be solved in polynomial time.

In this paper,we show that for every forbidden graph F and every integer k ≥ 1 there
exists an infinite number of F-free 2-colorable graphs G for which Γd(G, F) > k.
Consequently, the performance ratio of the greedy algorithm cannot be bounded by
any constant, even if we restrict the input to F-free 2-colorable graphs. This negative
result motivates our investigations in the direction of characterizing the subclasses
of F-free 2-colorable graphs for which the greedy algorithm uses no more than k
colors. In Sect. 2, under the assumption that F is 2-connected, for every fixed k ≥ 1
we characterize the class of F-trees for which the greedy algorithm uses at most k
colors. This leads to a polynomial-time algorithm for Problem 1.1 for F-trees. Next,
in Sect. 3, assuming that F = P3, we prove analogous results for the class of all trees.
For proper coloring of trees (recall F = P2) the problem was solved in [7], while an
intriguing problem for trees, when F is a tree of order greater than 3 constitutes an
open problem presented in the last section of this paper.

2 Dynamic F-free Coloring, when F is 2-Connected

In this section, under the assumption that F is 2-connected, we consider
Greedy Dynamic F- free k- coloring for F-trees.

In order to define F-trees we need some additional notions. Namely, by G − v

we denote the graph obtained from G by removal of vertex v. Given two disjoint
graphs G1,G2 and vertices v1 ∈ V (G1), v2 ∈ V (G2), we say that a graph G is
obtained from G1 and G2 by the identification of v1 and v2 if the following hold: (i)
V (G) = (V (G1)\{v1}) ∪ V (G2), and (ii) E(G) = E(G2) ∪ E(G1 − v1) ∪ {v2u |
u was a neighbor of v1 in G1}.
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Definition 2.1 A single-vertex graph K1 and the graph F are F-trees. Moreover, if
G1,G2 are disjoint F-trees with vertices v1 ∈ V (G1) and v2 ∈ V (G2), then the graph
obtained by the identification of v1 and v2 is an F-tree.

Clearly, if F is a tree (in the classical sense), then any F-tree is a tree. Concerning
simple properties of F-trees note that if F is 2-connected, then every block (i.e.,
maximal 2-connected subgraph) of an F-tree is isomorphic to F . It is also not hard to
see that independently of F , every F-tree admits an F-free coloring with at most two
colors.

In what follows, since F is always clear from the context, it is usually omitted to
simplify notation. In particular in this section we write k-forcing tree instead of k-
forcing F-tree (this resembles omitting prefix hyper-, which is quite common practice
in papers dealing with hypergraphs). Let η = |V (F)|.
Definition 2.2 Let k ≥ 1. A k-forcing tree Tk is a rooted graph defined as follows:

(a) T1 = K1, while T2 = F with the root in any vertex,
(b) for k ≥ 3, let Tk−2 be a (k − 2)-forcing tree and let T 1

k−1, . . . , T
η−1
k−1 denote

arbitrary (k−1)-forcing trees such that T 1
k−1, . . . , T

η−1
k−1 , Tk−2 are pairwise disjoint.

A k-forcing tree Tk can be obtained by adding the edges between the roots of
T 1
k−1, . . . , T

η−1
k−1 , Tk−2 such that the graph H induced by the roots is isomorphic

to F , and setting one of the roots of T 1
k−1, . . . , T

η−1
k−1 as the root of Tk .

For an illustration of a k-forcing tree Tk see Fig. 2a, where appropriate forcing trees
aremarkedwith solid lines. In order to proveminimality of forcing treeswith respect to
the dynamic F-Grundy number we introduce the notion of a k-branch, which, despite
significant differences between the cases in which F is 1- and 2-connected, allows a
unified description of structural properties of k-forcing trees.

Definition 2.3 Let k ≥ 1. A k-branch Bk is a rooted graph defined as follows:

(a) B1 = F with the root in any vertex,
(b) for k ≥ 2, let T1 be the 1-forcing tree and let Tk−1 be a (k − 1)-forcing

tree. Moreover, let T 2
k , . . . , T η−1

k denote arbitrary k-forcing trees such that

T1, T 2
k , . . . , T η−1

k , Tk−1 are pairwise disjoint. A k-branch Bk can be obtained by

adding the edges between the roots of T1, T 2
k , . . . , T η−1

k , Tk−1 such that the graph
H induced by the roots is isomorphic to F , and setting the root of T1 as the root
of Bk .

In Definition 2.2 (Definition 2.3) the subgraph H , induced by the roots, is called the
base of k-forcing tree Tk (of k-branch Bk). Note that the root of any branch belongs to
exactly one block of this branch. For an illustration see Fig. 2a, where Bk−1 is marked
with a dashed line.

Lemma 2.1 Let k ≥ 2 and for each i < k let Bi be an i-branch. If we identify the
roots of the branches B1, . . . , Bk−1, then we obtain a k-forcing tree Tk.
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Fig. 2 The structure and branches of k-forcing tree Tk (the white vertex is the root)

Proof For the base step of the induction, observe that the assertion holds for k = 2.
Now, assume k > 2 and that for all i ≤ k − 1 the identification of the roots of
B1, . . . , Bi−1, results in an i-forcing tree Ti .

Let T be an F-tree obtained by the identification of the roots of B1, . . . , Bk−1. By
the induction hypothesis, B1, . . . , Bk−2 form a (k − 1)-forcing tree, say T ′ (see Fig.
2b). Now, consider the base H of Bk−1 and observe that the root x of Bk−1 is the root
of T ′. By the definition of (k − 1)-branch there is a vertex of H (different from x)
that is the root of a (k − 2)-forcing tree, say T ′′, while the remaining η − 2 vertices
of H are the roots of (k − 1)-forcing trees T 2

k−1, . . . , T
η−1
k−1 (see Fig. 2a). Clearly, the

trees T ′, T 2
k−1, . . . , T

η−1
k−1 , T ′′ are disjoint, and since their roots form the vertex set of

H , by Definition 2.2 we conclude that T is a k-forcing tree Tk . ��
Lemma 2.2 Let k ≥ 2 and for each i < k let Bi be an i-branch. Every k-forcing tree
Tk can be obtained by the identification of the roots of the branches B1, . . . , Bk−1.

Proof For the base step of the induction, observe that if k = 2, then the assertion
follows from the definitions of 2-forcing tree and 1-branch. Assume k > 2 and that
the assertion holds for all i ≤ k − 1.

Let T be a k-forcing tree with the root x and the base H . By the definition of
k-forcing tree, x is the root of the (k − 1)-forcing tree T ′ that does not contain H .
Using the same definition, let H1, . . . , Hη−1 denote η − 1 forcing trees obtained from
T by removal of T ′ and all edges of H . By the induction hypothesis, we see that T ′
can be obtained by the identification of the roots of the branches B1, . . . , Bk−2. Now,
the assertion follows from the observation that H and H1, . . . , Hη−1 form Bk−1, and
that by Lemma 2.1 the branches B1, . . . , Bk−1 form Tk . ��

In what follows we need a slightly deeper insight into the structure of k-forcing
trees and their branches.

Property 2.1 If Tk is a k-forcing tree with the root x, then for each i ∈ {1, . . . , k} the
k-forcing tree Tk contains some i-forcing tree Ti with the vertex x as its root. ��
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Property 2.2 If Bk is a k-branch with the root x, then for each i ∈ {1, . . . , k} the
branch Bk contains some i-branch Bi with the vertex x as its root. ��

Let k be a positive integer and let F1, . . . , Fk be disjoint rooted copies of a given
graph F and let x1, . . . , xk be their roots, respectively. An (F, k)-star with the center
x and rays F1, . . . , Fk is a graph obtained from the graphs F1, . . . , Fk by the identifi-
cation of their roots and setting the resulting common vertex as the center x . Similarly
as for k-forcing trees, F is always clear from the context and hence it is omitted.
Consequently, an (F, k)-star is briefly called a k-star, and it is denoted by Sk(x).

For an uncolored vertex v we say that colored vertex u is fixed colored with respect
to v if Presenter will never discolor u before v becomes colored. To express this fact
we write u ≺ v. We also say that Sk(v) is k-precolored if its center v is not colored
but for each ray Fi all vertices in V (Fi )\{v} are already fixed colored i with respect
to v. Observe that the greedy algorithm uses color k for a vertex v if and only if v is
the center of a (k − 1)-precolored star Sk−1(v). Thus we have the following property.

Property 2.3 For every k > 1 Presenter has a strategy that forces the greedy algo-
rithm to use color k for vertex v of a graph G if and only if G contains Sk−1(v) and
Presenter has a strategy (realized on G) that forces the greedy algorithm to produce
a (k − 1)-precoloring of Sk−1(v). ��
Lemma 2.3 Let F be 2-connected. For every k-forcing tree Tk, we have

Γd(Tk, F) ≥ k .

Proof The proof is by induction on k. It is easy to check that the assertion holds for
k ≤ 2. Assume k > 2 and that our lemma holds for all Ti with i ≤ k − 1.

Following the notation introduced in the definition of k-forcing trees, let
u1, . . . , uη−1 denote the roots of T 1

k−1, . . . , T
η−1
k−1 and let uη stand for the root of

Tk−2. Moreover, set x = u1, and let x be the root and H the base of Tk (for an
illustration see Fig. 2a).

First, we prove that Tk contains a (k − 1)-forcing tree (we denote it by T ′) with the
root uη. From Property 2.1 it follows that T 1

k−1, . . . , T
η−2
k−1 contain T 1

k−2, . . . , T
η−2
k−2

with the roots u1, . . . , uη−2, respectively, and that T
η−1
k−1 contains (k − 3)-forcing tree

T ′′ with the root uη−1. Naturally, the trees T 1
k−2, . . . , T

η−2
k−2 , Tk−2, T

′′ are disjoint and
since their roots are the vertices of H , a (k − 1)-forcing tree T ′ with the root uη is
formed. Hence, by the induction hypothesis and Property 2.3 Presenter has a strategy
that forces the greedy algorithm to use color k − 1 for uη. Now, without loss of
generality we may assume that Presenter discolors all vertices, except the vertex uη.
Let uη be fixed colored k−1 with respect to x , i.e., uη ≺ x (see Fig. 3a for an example
with F = K3, k = 4 and vertex uη colored 3).

Next, since u2, . . . , uη−1 are the roots of disjoint (k − 1)-forcing trees

T 2
k−1, . . . , T

η−1
k−1 , by the induction hypothesis it follows that for each of them Pre-

senter has a strategy of forcing color k − 1 in the root (note that as long as x remains
uncolored, colors of the vertices of the base H cannot influence each other). Hence,
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Fig. 3 An example of forcing color 4 in the root x of Tk , where F = K3, k = 4 and η = 3

assume that u2, . . . , uη−1 are fixed colored k − 1 with respect to x , i.e., u j ≺ x for all
j ∈ {2, . . . , η − 1} (see Fig. 3b for an illustration of T 2

3 with the root colored 3).
By the induction hypothesis, since x is the root of T 1

k−1, Presenter has a strategy
forcing the greedy algorithm to use color k−1 for x . By Property 2.3 this is equivalent
to the existence of a (k − 2)-precolored star Sk−2(x), contained in T 1

k−1, and sharing
a single vertex with H whose vertices (except x) are already colored k − 1 (see Fig.
3b for an illustration of T 1

3 with gray circles denoting precolored vertices of S2(x);
recall k = 4). Thus, the base H and Sk−2(x) form a (k − 1)-precolored star Sk−1(x).
Consequently, by the induction hypothesis and Property 2.3, this implies the existence
of a strategy that forces the greedy algorithm to use color k for x . ��
Theorem 2.1 Let F be2-connectedand let k ≥ 1. If T is an F-tree, thenΓd(T, F) ≥ k
if and only if T contains a k-forcing tree Tk.

Proof By Lemma 2.3 we have Γd(Tk, F) ≥ k, and since Tk ≤ T , we get
Γd(T, F) ≥ k. It is not hard to see that the theorem holds for k ≤ 2. Assume
k > 2 and that the assertion holds for all Ti with i ≤ k − 1.
If Γd(T, F) ≥ k, then Presenter has a dynamic presentation that forces the greedy

algorithm to assign color k to some vertex x of T . Hence, by Property 2.3, just before x
gets colored k the tree T contains a (k−1)-precolored star Sk−1(x). Let H1, . . . , Hk−1
be the rays of Sk−1(x) and for all i ≤ k−1 let ui1, . . . , u

i
η denote the vertices of Hi with

ui1 = x . Recall that because Sk−1(x) is (k−1)-precolored, for each ray Hi all vertices in
V (Hi )\{x} are fixed colored i with respect to x (in particular uij ≺ x, j ∈ {2, . . . , η}).

Consider an arbitrary ray Hi andwithout loss of generality assume that uiη was fixed

colored with respect to all other vertices of Hi , i.e., uiη ≺ uij for j ∈ {1, . . . , η − 1}.
Since uiη is colored i , by the induction hypothesis T contains an i-forcing tree T ′

i rooted
at uiη.Moreover, fromLemma 2.2 it follows that T ′

i contains all branches B1, . . . , Bi−1

rooted at uiη. Recall that the root of each branch belongs to exactly one block (the base
of branch). Let R1, . . . Ri−1 be the bases of the branches B1, . . . , Bi−1, respectively.
We claim that either V (Bj ) ∩ V (Hi ) = {uiη} or V (Bj ) ∩ V (Hi ) = V (Hi ) for all j ∈
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{1, . . . , i −1}. Suppose that there is R j such that 2 ≤ |V (R j )∩V (Hi )| ≤ η−1. Now,
observe that no η-element superset of V (R j )∩V (Hi ) distinct from V (Hi ) can induce
a 2-connected graph. Since R j is isomorphic to F , this contradicts 2-connectedness
of F . Thus, at most one of the bases, and consequently at most one of the branches
B1, . . . , Bi−1 contains Hi . Assume that this is the branch Bi−1. Consequently, T ′

i
contains branches B1, . . . , Bi−2 all of which share only vertex uiη with Hi . Thus, by
Lemma 2.2 vertex uiη is the root of an (i − 1)-forcing tree T ′

i−1 that contains no vertex

of Hi − uiη. Now, consider vertices u
i
j with j ∈ {2, . . . , η − 1} and recall that they are

fixed colored i with respect to ui1. Hence, by the induction hypothesis, each uij is the

root of an i-forcing tree T j
i . Moreover, since among all vertices of Hi , the vertex uiη

was colored first, Presenter cannot use uiη, when forcing Painter to use color i for uij
with j �= η. Consequently, for each j ∈ {2, . . . , η − 1} the i-forcing tree T j

i must be

disjoint from Hi − uij . Hence T
2
i , . . . , T η−1

i and T ′
i−1, rooted at u

i
2, . . . , u

i
η−1 and u

i
η,

respectively, are pairwise disjoint and their roots together with ui1 induce Hi . Thus,
by Definition 2.3 we get an i-branch Bi with the root ui1 = x and the base Hi .

Since i was selected arbitrarily, we conclude that for each i ∈ {1, . . . , k − 1} the
tree T contains an i-branch with the root x and base Hi , and since by Lemma 2.1 a
subgraph obtained by the identification of the roots of the branches B1, . . . , Bk−1 is a
k-forcing tree Tk , the F-tree T contains Tk . ��

3 Dynamic Subcoloring

In this section we considerGreedy Dynamic F- free k- coloringwhen F = P3.
The results in this section are of more general character than those of Sect. 2, in the
sense that instead of considering our problem for F-trees we solve it for the class of
all trees. As previously, with a small abuse of notation we usually omit F .

Definition 3.1 Let k ≥ 1. A k-forcing tree Tk is a rooted graph defined as follows:

(a) T1 = K1, while T2 = P3 with the root in any vertex,
(b) for k ≥ 3, let Tk−1 be an arbitrary (k − 1)-forcing tree and let T 1

k−2, T
2
k−2 denote

arbitrary (k − 2)-forcing trees such that T 1
k−2, T

2
k−2, Tk−1 are pairwise disjoint.

Moreover, let x1, x2, x3 denote the roots of T 1
k−2, T

2
k−2 and Tk−1, respectively. A

k-forcing tree Tk can be obtained by adding the edges between x1, x2, x3 such that
the graph H induced by x1, x2, x3 is isomorphic to P3, and setting x3 as the root
of Tk ,

(c) for k ≥ 4, let Tk−3 be an arbitrary (k − 3)-forcing tree and let T 1
k−1, T

2
k−1 denote

arbitrary (k − 1)-forcing trees such that T 1
k−1, T

2
k−1, Tk−3 are pairwise disjoint.

Moreover, let x1, x2, x3 denote the roots of T 1
k−1, Tk−3 and T 2

k−1, respectively. A
k-forcing tree Tk can be obtained by adding the edges x1x2, x2x3 and setting either
x1 or x3 as the root of Tk .

Note that Definition 3.1(b), in contrast to (c) allows x3 in the middle as well as at
the end of P3 (see the upper row in Fig. 4).
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x3 x2 x1

T2

T 2
1 T 1

1

x1 x3 x2

T2

T 1
1 T 2

1

x1 x2 x3

T2

T 1
1 T 2

1

T 1
k−1 T 2

k−1

x2 x1 x3

T 1
k−1 T 2

k−1

x1 x2 x3

Tk−2 Tk

x1 x2 x3

Fig. 4 Dynamic subcoloring: all k-forcing trees for k = 3 (upper row), and k-branches for k ≥ 3 (bottom
row)

Definition 3.2 Let k ≥ 1. A k-branch Bk is a graph defined as follows:

(a) B1 = B2 = P3 with the root in any vertex,
(b) if k ≥ 3, then Bk can be obtained by adding the edges between the roots x1, x2, x3

of three pairwise disjoint forcing trees:
(b1) T1, T 1

k−1, T
2
k−1 (where T1 is the 1-forcing tree and T

1
k−1, T

2
k−1 denote arbitrary

(k−1)-forcing trees) such that the graph H induced by the roots is isomorphic
to P3, or

(b2) T1, Tk−2, Tk (where T1 is the 1-forcing tree, Tk−2 is an arbitrary (k−2)-forcing
tree and Tk is an arbitrary k-forcing tree) such that the graph H induced by the
roots is isomorphic to P3 with x2 as the middle vertex,

then setting x1 as the root.

Note that in the above definition, in contrast to Definition 2.3, the root of a branch
may belong to more than one subgraph isomorphic to F and contained in the branch.
Analogously as in previous section, in Definition 3.1 (Definition 3.2) the subgraph H ,
induced by the roots, is called the base of k-forcing tree (of k-branch).

To keep our paper concise, instead of proving basic lemmas for F = P3 we shortly
remark on similarities to their counterparts in Sect. 2. To see that an analogue of
Lemma 2.1 holds for F = P3 it is enough to observe that if H is the base, then by
Definition 3.2, the vertices in V (H)\{x} are either the roots of two (k − 1)-forcing
trees or one k-forcing tree and one (k − 2)-forcing tree, instead of η − 1 forcing trees
as in Definition 2.3. Also note that we need no changes in the proof of Lemma 2.2.
Similarly, it is not hard to see that if F = P3, then Properties 2.1, 2.2 and 2.3 can
be applied directly. On the other hand, the assumption on 2-connectivity of F in the
proof of Theorem 2.1 is crucial. Similarly, Presenter’s strategy given in the proof of
Lemma 2.3 has to be modified. Therefore, our main results for subcoloring, stated as
Lemma 3.1 and Theorem 3.1, need their own proofs.

Lemma 3.1 For every k-forcing tree Tk, we have

Γd(Tk, P3) ≥ k .

Proof It is not hard to see that our lemma holds for k ≤ 3. Recall that by Lemma
2.2 every k-forcing tree Tk with k ≥ 2 can be obtained by the identification of the
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roots of branches B1, . . . , Bk−1. Let x be the root of Tk and let u1, u2 and x denote
the vertices of the base of Bk−1. We prove that Presenter has a strategy that forces
the greedy algorithm to use color k for the vertex x . In fact, we prove even more, i.e.,
we show that there exists a strategy resulting in a coloring such that for each branch
Bi with i ∈ {1, . . . , k − 1} all vertices of the base Hi of Bi (except x) are colored
i , which clearly implies the existence of a (k − 1)-forcing star Sk−1(x) with the rays
H1, . . . , Hk−1 that allows forcing color k in x .

The above assertion easily holds for small values of k. Now, let us assume that it
holds for all Bi with i < k − 1 and that our lemma holds for all Ti with i ≤ k − 1.
In what follows we argue that Presenter can force color k − 1 in u1 and u2 of Bk−1
and that both vertices can be set as fixed colored with respect to the vertex x in which
Presenter is going to force color k.

Case 1 Let Tk be a k-forcing tree as in Definition 3.1(c), and let u1, u2 and x be the
roots of forcing trees Tk−3, T 1

k−1 and T 2
k−1, respectively (see Fig. 5a for an example

with k = 5). Clearly, according to the definition u1u2, u1x ∈ E(Tk) and k ≥ 4 while
from Lemmas 2.1 and 2.2 we see that Tk−3 and T 1

k−1 are contained in Bk−1.
First, we argue that Presenter can force the greedy algorithm to use color k − 1

for u1 (see Fig. 5b for an illustration). Recall that B1, . . . , Bk−2 are the branches that
form T 2

k−1. By the induction hypothesis, Presenter has a strategy that can be played
on T 2

k−1 to force color k − 2 in non-root vertices of the base Hk−2 of Bk−2. Without
loss of generality let v be a vertex of Hk−2 that is adjacent to x and assume that after
coloring v with color k − 2 Presenter discolors all vertices of T 2

k−1 except v.
Since B1, . . . , Bk−3 form a (k − 2)-forcing tree (we denote it by T ′) with the root

x , by the induction hypothesis Presenter has a strategy that can be played on T ′ to
force color k − 2 in the vertex x (note that v /∈ V (T ′)). From now on, assume that v

and x are fixed colored k − 2 with respect to u1, i.e., v ≺ u1 and x ≺ u1 (see gray
vertices in the figure).

Next, let B ′
1, . . . , B

′
k−2 be the branches that form T 1

k−1 and let v′ be a neighbor of
u2 in the base of B ′

k−3. Similarly as above, by the induction hypothesis Presenter can
easily use the (k − 3)-forcing tree formed by B ′

1, . . . , B
′
k−2 (we denote it by T ′′) to

force color k − 3 in v′ and u2. Let v′ ≺ u1 and u2 ≺ u1.
Assume first that k ≥ 5. Since by the induction hypothesis Presenter has a strategy

that can be played on Tk−3 to force color k−3 in u1, we know that just before coloring
u1 there is a (k − 4)-precolored star Sk−4(u1). Moreover, Sk−4(u1) and the subgraphs
induced by the already colored vertices v, x and v′, u2 form a (k − 2)-precolored star
Sk−2(u1) (see Fig. 5b for S3(u1)with precolored vertices represented by gray circles).
On the other hand if k = 4 it is enough to observe that u1 together with the precolored
vertices v, x and v′, u2 form a 2-precolored star S2(u1). This implies the existence of
a strategy of forcing color k − 1 in u1. Let u1 be fixed colored k − 1 with respect to x .

Now, assume that u1 is the only colored vertex of Tk (recall that u1 does not belong
to V (T 1

k−1)). Since u2 is the root of T
1
k−1, by the induction hypothesis it follows that

u2 can be colored k − 1. Thus, u1 and u2 can be fixed colored k − 1 with respect to
x , i.e., u1 ≺ x and u2 ≺ x .

Case 2 Let Tk be a k-forcing tree as in Definition 3.1(b), and let let u1, u2 and
x be the roots of forcing trees T 1

k−2, T
2
k−2 and Tk−1, respectively (see Fig. 6a for an
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u1

u2 x

T 2
4

B3

B2

B1

T2

T 1
4

(a)

u1

u2

2

x

3

v
3

v

2

1 1
B3

H3

T
T

B2

B1

(b)

4

u1
u2

4

x

3

3

2

2

11

T4

(c)

Fig. 5 An illustration for Case 1 in the proof of Lemma 3.1: a a 5-forcing tree T5 [see Definition 3.1(c)];
b forcing color 4 in u1; c forcing color 5 in x
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example with k = 4). Since our lemma holds for small k, we assume that k ≥ 4. By
Lemmas 2.1 and 2.2 it follows that T 1

k−2 and T
2
k−2 are contained in Bk−1. Without loss

of generality we can assume that u1 is a pendant vertex of the base Hk−1 of Bk−1.
Hence, according to the definition of Tk , we have u2x ∈ E(Tk). Consequently, either
x or u2 is the second pending vertex of Hk−1.

First, we argue that Presenter has a strategy of forcing the greedy algorithm to use
color k−1 for u1 (see Fig. 6b for an illustration). By Property 2.1 both Tk−1 and T 2

k−2
contain (k−3)-forcing tree T ′ rooted at x and T ′′ with the root u2, respectively. Since
the roots of T ′, T ′′ and T 1

k−2 are exactly the vertices of Hk−1, by Definition 3.1(b)
the base Hk−1 and the above trees form a (k − 1)-forcing tree, say T ′

k−1, with root
u1. Hence, by the induction hypothesis there exists Presenter’s strategy forcing color
k − 1 in u1. Let u1 be fixed colored k − 1 with respect to x .

Now, assume that u1 is the only colored vertex of Tk . We argue that Presenter can
force color k − 1 in vertex u2 (see Fig. 6c). Similarly as in Case 1, by the induction
hypothesis Presenter can easily use the tree Tk−1 formed by B1, . . . , Bk−2 to force
color k − 2 in the root x and its neighbor v in Bk−2. Let x and v be fixed colored
k − 2 with respect to u2, i.e., x ≺ u2 and v ≺ u2. Naturally, u2 /∈ V (Tk−1) and since
u2 is the root of T 2

k−2, by the induction hypothesis Presenter can force color k − 2
in u2. Following Property 2.3, this implies that T 2

k−2 contains a (k − 3)-precolored
star Sk−3(u2). Observe that Sk−3(u2) together with the subgraph induced by v, x, u2
forms a (k−2)-forcing star Sk−2(u2), which by Property 2.3 implies the possibility of
forcing color k − 1 in u2 (see Fig. 6c for S2(u2) with precolored vertices represented
by gray circles). Thus u1 and u2 can be fixed colored k − 1 with respect to x , i.e.,
u1 ≺ x and u2 ≺ x .

Finally, observe that in both cases x is the root of a (k − 1)-forcing tree Tk−1
containing neitheru1 noru2 (seeFigs. 5c and6d) andhence by the induction hypothesis
Presenter can use this tree to realize his strategy of forcing color k − 1 in x . This, in
turn, implies the existence of a (k − 2)-precolored star Sk−2(x) such that u1, u2 /∈
V (Sk−2(x)). The star Sk−2(x), together with the subgraph induced by u1, u2 and x ,
form a (k − 1)-precolored star Sk−1(x), which clearly implies Γd(Tk, P3) ≥ k. ��

Theorem 3.1 If T is a tree, then Γd(T, P3) ≥ k if and only if T contains a k-forcing
tree Tk.

Proof By Lemma 3.1 we have Γd(Tk, P3) ≥ k, and since Tk ≤ T , we get
Γd(T, P3) ≥ k. If Γd(T, P3) ≥ k, then Presenter has a dynamic presentation
that forces the greedy algorithm to assign color k to some vertex x of T . Hence,
by Property 2.3 before x gets colored k the tree T contains a (k − 1)-precolored
star Sk−1(x). Let H1, . . . , Hk−1 be the rays of Sk−1(x) and for all i ≤ k − 1
let ui1, u

i
2, u

i
3 denote the vertices of Hi with ui1 = x . Since Sk−1(x) is (k − 1)-

precolored, for each ray Hi the vertices ui2 and u
i
3 are fixed colored i with respect

to x , i.e., uij ≺ x, j ∈ {2, 3}. In what follows we assume that ui2 becomes fixed

colored before ui3, i.e., u
i
2 ≺ ui3.

We continue by proving that if Presenter has a strategy to force color k in x , then T
contains a k-forcing tree Tk with the root x , and Tk can be obtained by the identification
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u1 u2 x

T3

T 1
2 T 2

2

B3

(a)

u1

3

u2

T

x

T

T3

T 1
2 T 2

2

H3

T3

(b)

u1

3

u2

3

1

1

x

2

2 v

T 2
2

B2

B1

T3

(c)

u1 u2 x

v

3 3

2

2

1

1

T3

(d)

Fig. 6 An illustration for Case 2 in the proof of Lemma 3.1: a a 4-forcing tree T4 [Definition 3.1(b)]; b
forcing color 3 in u1; c forcing color 3 in u2; d forcing color 4 in x

of the roots of i-branches Bi , i ∈ {1, . . . , k − 1} performed in such a way that the
rays of Sk−1(x) are the bases of the appropriate branches. It is not hard to see that the
theorem holds for k ≤ 3 (see, e.g., Fig. 4). Assume k > 3 and that the above assertion
holds for all Ti with i ≤ k − 1.

Considering an arbitrary ray Hi of Sk−1(x) we prove that Hi is the base of an
i-branch. Clearly, H1 and H2 are 1- and 2-branches, respectively. Let i ≥ 3.

Since ui2 is fixed colored i , by our assumptionswe know that Presenter has a strategy
of forcing color i in ui2 which results in (i − 1)-precolored star Si−1(ui2). Moreover,
by the induction hypothesis T contains an i-forcing tree T ′

i with the root ui2, and T ′
i

can be obtained by the identification of the roots of j-branches Bj , j ∈ {1, . . . , i − 1}
such that the rays of Si−1(ui2) are the bases of appropriate branches. An analogous
observation holds for vertex ui3 for which there is a tree T

′′
i rooted at ui3 and obtained

by the identification of the roots of appropriate j-branches with the rays of Si−1(ui3)
as their bases. In what follows we analyze the relationships between the branches that
form T ′

i and T ′′
i . Recall that u

i
2 ≺ ui3.
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Case 1First, assume that ui2 is a pendant vertex of Hi . Note that because all branches
B1, . . . , Bi−1 that form T ′

i are rooted at u
i
2, at most one of themmay contain vertex ui3.

Following Property 2.2 assume that this is the branch Bi−1. However, even under such
assumption, T ′

i still contains branches B1, . . . , Bi−2 that do not contain ui3. Hence,
by Lemma 2.2 the vertex ui2 is the root of the (i − 1)-forcing tree T ′

i−1 such that
T ′
i−1 ≤ T ′

i and ui3 /∈ V (T ′
i−1). Now, consider u

i
3. If u

i
3 is a pendant vertex of Hi ,

i.e., ui3x, u
i
2x ∈ E(T ), then similarly as above we can argue that ui3 is the root of

an (i − 1)-forcing tree T ′′
i−1 such that T ′′

i−1 ≤ T ′′
i and ui2 /∈ V (T ′′

i−1). Assume that
ui3 is not pendant, i.e., xui3, u

i
3u

i
2 ∈ E(T ). Since ui2 ≺ ui3, Presenter cannot use ui2

when forcing color i in ui3. Therefore, the (i − 1)-precolored star Si−1(ui3) does not
contain ui2 and hence at most one of the branches that form T ′′

i may contain x . Again,
by Property 2.2 the tree T ′′

i contains branches B1, . . . , Bi−2 that do not contain ui2.
Hence, by Lemma 2.2 vertex ui3 is the root of an (i − 1)-forcing tree T ′′

i−1 such that
T ′′
i−1 ≤ T ′′

i and ui2 /∈ V (T ′′
i−1).

Thus, independently of whether ui3 is a pendant vertex of Hi or not, the trees T ′
i−1

and T ′′
i−1 are disjoint, and it follows that Hi is the base of an i-branch of the type

described in Definition 3.2(b1).
Case 2 Next, assume that ui2 is not a pendant vertex of Hi , i.e. ui2x, u

i
2u

i
3 ∈ E(T ).

Note that since ui2 has two independent neighbors in Hi and all branches B1, . . . , Bi−1

that form T ′
i are rooted at ui2, at most one of the branches may contain x and at most

one of them may contain ui3. Hence, from Property 2.2 it follows that T ′
i contains

branches B1, . . . , Bi−3 containing neither ui3 nor x . Thus, by Lemma 2.2 the vertex
ui2 is the root of an (i − 2)-forcing tree T ′

i−2 such that T ′
i−2 ≤ T ′

i , u
i
3 /∈ V (T ′

i−2) and
x /∈ V (T ′

i−2). It remains to consider the vertex ui3. Since u
i
3 is a pendant vertex of Hi

and ui2 ≺ ui3, the i-precolored star Si (ui3) contains neither u
i
2 nor x . Hence, none of

the two vertices belongs to V (T ′′
i ).

Thus, the trees T ′
i−2 and T ′′

i are disjoint, and it follows that Hi is the base of the
i-branch of the type described in Definition 3.2(b2).

Since i was selected in an arbitrary manner, we conclude that for each i ∈
{1, . . . , k − 1} the tree T contains an i-branch with the root x and base Hi . Clearly,
by Lemma 2.1 a subgraph obtained by the identification of the roots of the branches
B1, . . . , Bk−1 is a k-forcing tree. Hence, T contains Tk . ��

4 Conclusions

In the preceding sections we considered greedy dynamic F-free coloring under the
assumption that F is either 2-connected or P3. In both cases, from the constructions
of k-forcing F-trees it easily follows that for the fixed F and k ≥ 1 the number of
k-forcing F-trees is finite. Putting this together with Theorems 2.1 and 3.1 leads to
the following result.

Theorem 4.1 Let k ≥ 1 be a fixed integer and let F be a fixed graph. If F is
2-connected, then the problem Greedy Dynamic F- free k- coloring admits a
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polynomial-time algorithm for F-trees, and it admits such an algorithm for trees when
F = P3.

Proof From the definitions of k-forcing trees it easily follows that the order of any
k-forcing tree is at most |V (F)|k−1. Since for a given graph G of order n checking
if a graph H of order p is an induced subgraph of G can be done by a simple brute
force algorithm in time O(n p) and the number of k-forcing F-trees that we have
to consider is finite, it follows that checking if Γd(T, F) ≥ k can be done in time
O(n|V (F)|k−1

). ��
Given two graphs G1 and G2 (not necessarily disjoint) by G1 ∪ G2 we denote the

graph with the vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2).

Definition 4.1 LetG be a graph and let {G1, . . . ,Gp} be the set of induced subgraphs
of G such that Gi = F for all i ∈ {1, . . . , p}. The graph B = G1 ∪ · · · ∪Gp is called
the backbone of G.

Theorem 4.2 If G is a graph with backbone B, then Γd(G, F) = Γd(B, F).

Proof We first observe that every vertex v ∈ V (G)\V (B) is F-isolated, i.e., G does
not contain an induced subgraph H such that H = F and v ∈ V (H). Hence, for every
vertex in V (G)\V (B), independently of when it is colored, the greedy algorithm will
always use color 1. Moreover, the color of an F-isolated vertex cannot influence the
colors of other vertices. ThusΓd(G, F) ≤ Γd(B, F). On the other hand, since B ≤ G,
we have Γd(G, F) ≥ Γd(B, F). ��

Let BF be an arbitrary class of graphs for which Problem 1.1 admits a polynomial-
time solution, and let GF be the class of graphs with backbones in BF . By arguments
similar to those used in the proof of Theorem 4.1, for any fixed F and k appropriate
backbone can be determined in polynomial-time. Together with Theorems 4.1 and 4.2
this leads to the following corollary.

Corollary 4.1 If k is a fixed positive integer and F is a fixed graph, then the problem
Greedy Dynamic F- free k- coloring is polynomial-time solvable for graphs in
GF .

Consider Problem 1.1 with inputs in the class of classical trees. In this context we
already know polynomial-time algorithms when F ∈ {K2, P3} (see [7] and Sect. 3,
respectively). Hence, a natural question to ask is about similar results for F being
a tree of order at least 4. One of the possibilities is to forbid paths Pp with p ≥ 4.
Another natural extension is to forbid certain monochromatic stars, which for trees
comes down to anm-improper coloring, i.e., a partition of the vertex set in which each
color class induces a graph of maximum degree at most m (in other words, no vertex
x has more than m neighbors colored with the same color as x). In the class of trees,
an m-improper coloring is equivalent to K1,m+1-free coloring, where K1,m+1 denotes
the star with m + 1 rays.

Problem 4.1 Let F ∈ {Pp, K1,m+1} where p ≥ 4 and m ≥ 2, and let k ≥ 1 be a
fixed integer. For a given tree T decide whether Γd(T, F) ≥ k.
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