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5 Abstract
6 The keratinous wastes of the textile industry and poultry slaughterhouses may be used as sources

7 of soluble keratins or hydrolysates. This review presents methods for processing raw keratin-based

8 materials into bioproducts with functional and bioactive properties suitable for biomedical, cos-

9 metic, food, and agricultural applications. Soluble keratin can be obtained by thermal treatment in

10 some organic solvents, reduction, or oxidation of the disulfide bonds. Recent studies have shown

11 that keratins contain amino acid sequences with high biological activities such as antioxidant,

12 angiotensin I converting enzyme inhibitory, dipeptidyl peptidase IV inhibitory, and antimicrobial.

13 Peptides containing these sequences may find numerous applications as value-added products in

14 the food industry. More research devoted to development of methods for conversion of animal

15 by-products to novel products is needed. Further technological investigations to create large-scale

16 production methods are also necessary.

17 Practical applications
18 The keratinous wastes represent a problematic by-product to the wool textile industry and poultry

19 slaughterhouses due to the large volumes and their high pollutant load. They are usually inciner-

20 ated or used for low value purposes such as fertilizers. This review focuses on the trends of

21 application of keratin recovered from animal by-products. Biomaterials for regenerative medicine,

22 cosmetic formulations, and biodegradable food packaging can be obtained as a result of keratin

23 self-assembly. Several peptide sequences released by hydrolysis as bioactive peptides should be

24 studied further for their in vivo antihypertensive, and antidiabetic effects, as well as functional

25 ingredients in foods.

26

2 7 K E YWORD S

28 bioactive peptides, functional properties, keratin hydrolysates, keratin isolates

29

30

31 1 | INTRODUCTIONAQ2

32 Keratins have biological activity, biocompatibility, biodegradability, and

33 mechanical durability (Cardamone, 2010; Ferraro, Anton, & Sant�e-

34 Lhoutellier, 2016; Reddy, Chen, & Yang, 2013) and are also capable of

35 facilitating cell adhesion and proliferation (Rouse & Van Dyke, 2010).

36 These properties have led to the development of keratin-based materi-

37 als which can be suitable for numerous applications: biomedical (wound

38 healing, drug delivery, tissue engineering, and medical devices) (Rouse

39 & Van Dyke, 2010; Vasconcelos, Freddi, & Cavaco-Paulo, 2008), cos-

40 metic materials (Nomura et al., 2005; Vermelho, Villa, De Almeida, de

41 Souza Dias, & Dos Santos, 2008), food products (Goodwin, 1976), and

42agricultural uses (Vesel�a & Friedrich, 2009), as well as for food packag-

43ing (Song, Lee, Al Mijan, & Song, 2014).

44The industrial applications of keratin-rich materials are limited due to

45difficulty in dissolving it due to the high level of cross-linking of the

46protein and tightly packed microfibrils (Reddy, Jiang, et al., 2013). In recent

47years, bioactive properties related to antioxidant (Ohba et al., 2003),

48angiotensin I converting enzyme (ACE) inhibitory (Karamać, Flaczyk,

49Wanasundara, & Amarowicz, 2005), dipeptidyl peptidase IV (DPP IV)

50inhibitory (Fontoura et al., 2014), antifungal (Gousterova et al., 2011) AQ3, and

51antibacterial activity (Sundaram, Legadevi, Banu, Gayathri, & Palanisammy,

522015) have been found in keratin hydrolysates. Production of enzymatic

53hydrolysates as a source of bioactive peptides can contribute to develop
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54 nutritional or pharmaceutical applications (Di Bernardini et al., 2011;

55 G�omez-Guill�en, Gim�enez, L�opez-Caballero, & Montero, 2011).

56 This paper reviews the processing and applications of keratin. The

57 great potential of keratin as a fibrous protein with supramolecular orga-

58 nization in the form of a-helix which is an important factor affecting

59 the characteristic mechanical properties and functionality, is discussed.

60 The potential of keratin as a store house of bioactive peptides is also

61 discussed.

62 2 | STRUCTURE AND OCCURANCE OF
63 KERATINS

64 Keratins (gr. keras—horn) are major structural proteins of vertebrate

65 epithelia. They occur in hair, bristles, wool, feathers, claws, and horns.

66 They perform various functions such as waterproof, excretion of

67 wastes and regulation of temperature, cushion to protect the deeper

68 tissues against mechanical shock and infection (Ferraro et al., 2016).

69 Keratins are very hard, visco-elastic, and resilient (Bonser, 1996). They

70 undergo bundling and have higher Young’s modulus than collagen

71 (Eslahi, Dadashian, & Nejad, 2013). They are insoluble in water, weak

72 acids, and alkalis, as well as in organic solvents (Ferraro et al., 2016).

73 Keratins belong to the superfamily of intermediate filament (IF)

74 proteins forming the cytoskeleton (Korniłłowicz-Kowalska & Bohacz,

75 2011). Their subunits consist of a central domain with a-helical

76 structure and globular N- and C-terminal domains composed of 15–30

77 amino acid residues, and b-sheet regions (Fraser, MacRae, Parry, &

78Suzuki, 1986). The highly conserved central domains contain 310–315

79residues arranged in repeating sequences (Bragulla & Homberger,

802009). Keratin subunits associate in a high-order structure forming a

81double-stranded superhelix, microfibrils, and macrofibrils embedded in

82an amorphic matrix (McKittrick et al., 2012). The right-handed a-helix

83of a-keratin is stabilized by hydrogen bonds and numerous disulfide

84bridges formed by cysteine residues that cause the insolubility of kera-

85tin. Therefore it is not easily degradable by common proteolytic

86enzymes such as trypsin, pepsin, and papain. A high cystine content

87amounting to 7–20% of the total amino acid residues is characteristic

88of keratins. They also contain about 0.5% methionine residues, as well

89as large proportion of glycine, serine, leucine, and glutamic acid. The

90amino acid sequence of keratin is very similar in different species

91(Bragulla & Homberger, 2009).

92Keratins are heterogeneous proteins due to variation in amino

93acids composition (Table T11) and type of secondary structure. Twenty

94isoforms have been identified with molecular weights ranging from 40

95to 70 kDa in human epithelial cells (Rodziewicz & Łaba, 2006). Wool,

96hair, and skin keratins with cystine content between 10 and 14% are

97soft and flexible, but keratins extracted from feathers, beaks, claws,

98and horns are hard, rigid, inflexible, and inextensible due to higher cys-

99tine content up to 22% (Cardamone, 2010). Keratin polypeptide chains

100can curl into two configurations: a-helix and b-sheet. Thus, keratins are

101also classified into four groups: a-keratin, b-keratin, feather keratin,

102and amorphic keratin (McKittrick et al., 2012). a-Keratins occur in

103mammals as the primary constituent of hair (fiber cortex), nails, hooves,

TABLE 1 Amino acid composition (% of total amino acid residues) of keratin from different sources

Amino acid
Buffalo horn and hoof (Noda,
Imai, Kida, & Otagiri, 1996)

Cow hair (Coward-Kelly, Chang,
Agbogbo, & Holtzapple, 2006)

Feathers (Moore, Martelli,
Gandolfo, Pires, & Laurindo, 2006)

Wool
(Cardamone, 2010)

Alanine 6.3 4.5 3.6 5.8

Arginine 6.8 11.0 5.4 7.8

Aspartic acid 6.7 6.6 4.7 4.1

Cysteine 3.7 nd 7.7 6.1

Glutamic acid 12.6 14.5 7.7 11.4

Glycine 12.3 5.5 6.2 2.9

Histidine 0.6 1.3 – –

Isoleucine 3.0 4.2 4.3 3.9

Leucine 8.2 9.8 7.0 11.9

Lysine 2.7 5.5 0.6 2.9

Methionine 0.6 0.7 1.3 0.2

Phenylalanine 2.9 3.1 4.2 1.9

Proline 6.8 7.7 8.7 4.1

Serine 10.8 8.9 9.3 8.3

Threonine 5.6 7.5 3.5 5.6

Tyrosine 5.9 2.4 2.0 2.4

Valine 4.1 6.8 6.9 6.1

nd5not determined.
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104 horns, quills, and the epidermal layer of the skin. They have a-helical

105 tertiary structure and are rich in cystine residues ranging from 10 to

106 22%. They are divided into two subfamilies, the type I acidic microfibril-

107 lar component of ca. 40–50 kDa and the type II neutral/basic mem-

108 branes of ca. 55–65 kDa (Marchisio, 2000). b-Keratins are found in

109 reptiles and birds in scales, claws, beaks, feathers, and cuticle hair. They

110 are difficult to extract and they do not form useful reconstituted struc-

111 tures such as gels, films, coatings, and fibers suitable for medical appli-

112 cations (wound healing, bone generation, hemostasis, and peripheral

113 nerve repair (Ferraro et al., 2016; Hill, Brantley, & Van Dyke, 2010).

114 They are rich in glycine, alanine, serine, and proline residues, but lack

115 cysteine, thus the structure is stabilized only by hydrogen bonds. In

116 feather keratin b-sheet and a-helix occur in 1/3 and 2/3, respectively

117 (Marchisio, 2000). Feather keratins from various birds are similar with

118 molecular weight of about 10 kDa and cystine content of about 8%

119 which is lower than that in keratin from nail and hair (Akhatar &

120 Edwards, 1997). They are composed of about 20 different types which

121 vary only by few amino acids (Saravanan, 2012). The basic and acid

122 residues are positioned in the N- and C-terminal regions, whereas the

123 hydrophobic residues are located in the central portion. The chemical

124 or enzymatic process of feather keratin degradation is not uniform due

125 to its complex hierarchical structure (Ferraro et al., 2016). Amorphic

126 keratins, so-called g-keratins are a part of the matrix. These are globu-

127 lar proteins with high cystine content and molecular weight of about

128 15 kDa. g-Keratins occur in the external layer of the hair cuticle (Hill

129 et al., 2010).

130 The content and structure of various forms of keratin depend on

131 the physiological function and type of organism in which the protein

132 occurs (Wang, Yang, McKittrick, & Meyers, 2016). Structural diversity

133 of keratins also occurs within the same skin appendages. An example

134 of this is the hair in which the external layer of the cuticle contains

135 more cystine than the internal layers which are less resistant to

136 proteolytic enzymes (Korniłłowicz-Kowalska & Bohacz, 2011).

137 The physicochemical and biological features of keratins isolated

138 from different sources are reflected in various functionalities of these

139 proteins of which self-assembly is the most important (Dickerson et al.,

140 2013). During thermodynamic equilibrium, the keratin molecules

141 spontaneously arrange forming well-defined networks stabilized by

142 noncovalent interactions. As a result of self-assembly, keratins can

143 provide biomaterials for medicine, bioactive peptides, cosmetic formu-

144 lations, and biodegradable films (Ferraro et al., 2016).

145 3 | SOLUBILIZATION OF KERATINS

146 3.1 | Introduction

147 The method of processing raw keratin-based materials depends on the

148 intended use of the product of keratin solubilization. These include

149 thermal treatment in some organic solvents, reduction or oxidation of

150 the disulfide bonds, alkaline, acid or enzymatic hydrolysis, various

151 hydrothermal methods, and a combination of thermo-chemical and

152 enzymatic treatments (Chojnacka, G�orecka, Michalak, & G�orecki, 2011;

153 Ferraro et al., 2016; Wolski, 1979).

1543.2 | Production of keratin isolates

155Obtaining keratin isolates containing native keratin is difficult in prac-

156tice due to insolubility of the protein in solutions which do not cause

157its degradation (Yin, Li, He, Wang, & Wang, 2013). A method of solubi-

158lization of keratin was developed using organic solvents, for example,

159N,N-dimethylformamide (DMF) or dimethyl sulfoxide (DMSO). For

160extraction with DMSO, precipitation of dissolved protein with acetone

161or benzene is needed. When both solvents are removed, a sediment is

162dried for dietary purposes as protein preparation (Wolski, 1985). This

163method requires a long extraction time and high cost caused by the

164need for solvent recovery (Wolski, 1979). There are no changes in pro-

165tein structure caused by this procedure and is often used by many

166researchers on laboratory scale to obtain a substrate for determination

167of keratinolytic activity (Wawrzkiewicz, Lobarzewski, & Wolski, 1987).

168Reduction and oxidation of disulfide bonds belong to the common

169methods for keratin isolation. Reduction of keratin involves use of 2-

170mercaptoethanol (Balaji et al., 2012; Fujii & Li, 2008; Kakkar, Madhan,

171& Shanmugam, 2014; Reichl, 2009; Schrooyen, Dijkstra, Oberth€ur,

172Bantjes, & Feijen, 2001; Tanabe, Okitsu, & Yamauchi, 2004; Yamauchi,

173Yamauchi, Kusunoki, Kohda, & Konishi, 1996), dithiothreitol (DTT),

174dithioerythritol (Vasconcelos et al., 2008; Yang, Zhang, Yuan, & Cui,

1752009), thioglycolic acid (Hill et al., 2010; Zabashta, Kasprova,

176Senchurov, & Grabovskii, 2012), glutathione (Schrooyen, Dijkstra,

177Oberth€ur, Bantjes, & Feijen, 2000), salts of hydrocyanic acid (Arai,

178Sakamoto, Naito, & Takahashi, 1989), bisulfites (Tonin et al., 2007), and

179m-bisulphites (Aluigi et al., 2007; Vasconcelos et al., 2008) to solubilize

180the protein. Many keratins can remain trapped within the protective

181structure, and usually a hydrogen-bond breaking agent, such as urea,

182thiourea, transition metal hydroxides, surfactants, and combinations

183thereof, are included in the extractant to unfold or denature the protein

184(Torchinsky, 1981). Aqueous solutions of tris(hydroxymethyl)amino-

185methane in concentrations between 0.1 and 1.0 M, and urea solutions

1860.1–10 M are used (Schrooyen et al., 2000). The keratin solution is

187dialyzed to remove the reagents. During dialysis, extensive protein

188aggregation may occur but is often prevented by addition of sodium

189dodecylsulfate (SDS) (Schrooyen et al., 2001). Upon reduction, the

190disulfide bonds are broken to give cysteine thiol (reduced keratin) and

191cysteine-S-sulphonate (Bunte salt) residues:

keratin–Cys–S–S–Cys–keratin1 SO3
2–

! keratin–Cys–S–1 keratin–Cys–SSO3
–

where keratin–Cys–S– is the reduced keratin and keratin–Cys–SSO2
3 is

192the Bunte salt (Maclaren & Milligan, 1995) AQ4. If keratins are extracted by

193reduction, the resulting products are referred to as kerateines which

194are less polar, less soluble in water, but more stable in acidic and alka-

195line solutions. They can re-cross-link, and remain in vivo for weeks to

196months longer than the oxidized derivatives (Hill et al., 2010).

197When oxidation is applied to extract keratin, strong oxidants are

198used, such as hydrogen peroxide (Breinl & Baudisch, 1907), potassium

199permanganate (Lissizin, 1928), ammonium copper hydroxide (Nagai &

200Nishikawa, 1970), and organic peracids (de Guzman et al., 2011 AQ5). The

201disulfide bonds are converted to sulfonic acid groups and cysteic acid

202derivatives are formed, which are referred to as “keratoses”:
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RS–SR1 O½ � ! R–SO2H1R–SO3H

203 These keratoses are hygroscopic, water soluble, nondisulfide

204 cross-linkable, and degrade relatively quickly in vivo in days to weeks

205 (Hill et al., 2010).

206 3.3 | Chemical hydrolysis

207 During chemical hydrolysis, some amino acids are lost (Zhang, Li, et al.,

208 2013). Keratins can be easily solubilized by hydrolysis in strong acids or

209 alkalis, but they cannot be recovered except as amino acids or peptides,

210 peptones, and proteoses, the properties of which differ significantly

211 from those of the native keratin. The thermo-chemical treatment of

212 keratinous materials with alkali leads to degradation of asparagine,

213 arginine, serine, threonine, and glutamine (Chojnacka et al., 2011). The

214 solubilization of keratin wool at temperatures above 708C in a pH

215 range of 9–11 for 4–12 hr in the presence of excess alkali can cause

216 conversion of disulfide groups to cystyl residues (CysS–):

2 Cys–S–S–Cys 1 4 OH– $ 3 Cys–S–1Cys–SO2
–

1 2 H2O Cardamone; 2010ð Þ

217 and subsequently the conversion of the cystyl residues into thioether

218 groups, giving lanthionyl residues (Cys–S–Cys) (Cardamone, 2010). Pre-

219 liminary alkaline treatment of wool in the sheep skin unhairing process

220 also leads to the formation of two unnatural amino acids lysinoalanine

221 and ornithinoalanine (Money, 1996). These products are a result of ker-

222 atin hydrolysis under alkaline conditions during unhairing by the lime-

223 sulfide method. Moreover, the treatment of keratins with reducing

224 agents in strong alkaline solutions creates conditions that destroy the

225 cystine and hydroxy amino acid residues (Koleva, Danalev, Ivanova,

226 Vezenkov, & Vassilev, 2009).

227 Keratins can also be solubilized in alkaline solutions of metallic sul-

228 fides. These reagents are generally used in cosmetic depilatories and

229 removal of hair from hides in the tanning industry (Jones & Mecham,

230 1948). Furthermore, alkaline hydrolysis with prolonged exposure at ele-

231 vated temperature produces low molecular weight peptide fragments

232 with poor mechanical properties. This product has limited biomedical

233 application (Smith, Blanchard, & Lankford, 1994).

234 Acidic hydrolysis is highly efficient, but it is not recommended

235 because of the loss of some amino acids, for example, serine, threonine,

236 tyrosine, and cystine, as well as conversion of asparagine, glutamine,

237 and tryptophan to other products. Furthermore, the bonds between

238 valine and isoleucine are gradually disrupted (Chojnacka et al., 2011).

239 Keratin can be solubilized in formic acid (Aluigi et al., 2007), hydrochlo-

240 ric acid (Zhang, Li, et al., 2013), and sulfuric acid (Kurbanoglu &

241 Kurbanoglu, 2007) using appropriately high temperature. During acid

242 hydrolysis of wool keratin, disulfide, and partial peptide bonds are

243 destroyed:

Cys–S–S–Cys1R� ! R–S–Cys1 � S–Cys
�S–Cys1RH ! R � 1HS–Cys Zhang; Li; et al:; 2013að Þ:

244 The degree of acid hydrolysis of keratin ranges from about 33 to

245 46% (Karamać et al., 2005; Zhang, Li, et al., 2013). Acid-derived keratin

246 hydrolysates have higher glass transition and lower decomposition

247temperatures than pristine wool fibers (Katoh, Shibayama, Tanabe, &

248Yamauchi, 2004; Vasconcelos et al., 2008). They are nontoxic and bio-

249compatible and therefore can have potential application as biomaterials

250for wound healing and drug delivery. During acid hydrolysis of wool

251keratin, most of the hydrogen bonds are broken down which results in

252the amorphous structure of wool keratin polypeptides (Tung & Daoud,

2532009). Hence the content of both a-helix and b-sheet structures in

254wool keratin are decreased as the total crystallinity of wool is the sum

255of a- and b-crystallinity (Cao & Billows, 1999). The products of acid

256hydrolysis are more amorphous keratin polypeptides than alkaline-

257derived keratin hydrolysates (Zhang, Li, et al., 2013).

258The hydrothermal methods for obtaining soluble keratin are expen-

259sive and destroy certain amino acids, for example, lysine, methionine,

260and tryptophan (Grazziotin, Pimentel, De Jong, & Brandelli, 2006). They

261result in products with poor digestibility and variable nutritional quality

262(Chojnacka et al., 2011). These processes are performed at 100–1508C

263and 1.5 3 105 Pa (Grazziotin et al., 2006) and alkali or acid are often

264added. These hydrolysates have been used in feeding of poultry, rain-

265bow trout, shrimp, and salmon after supplementation with essential

266amino acids (Bertsch & Coello, 2005).

2673.4 | Enzymatic hydrolysis

268The enzymatic and/or microbiological methods for solubilization of ker-

269atin waste are cheap and run under mild conditions (Chojnacka et al.,

2702011). These methods are an alternative to environmentally harmful

271chemical methods used most often in keratin isolation. Keratinases are

272extracellular serine proteases or metalloproteases produced by bacte-

273ria, actinomycetes, and fungi (Brandelli, 2008). The characteristics of

274keratinases produced by some microorganisms are shown in Table T22.

275These enzymes convert insoluble keratin to feedstuffs, fertilizers, and

276films, and also materials suitable for cosmetic and pharmaceutical appli-

277cations (Brandelli, Daroit, & Riffel, 2010). The mechanism of microbial

278keratinolysis is not completely known. The process of keratin degrada-

279tion proposed by Kunert (1976) is for dermatophytes and consists of

280sulfitolysis and proteolysis:

keratin–Cys–S–S–Cys–keratin 1 HSO3
– ! keratin–Cys–SSO3

–

1HS–Cys–keratin ! amino acids1 peptides:

281In the first stage, disulfide bonds are disrupted by sulfite produced

282by the fungus which leads to protein denaturation (Kunert, 1976) and

283proteolysis by endopeptidases. On the other hand, Yamamura, Morita,

284Hasan, Yokoyama, and Tamiya (2002) proposed a two-stage process of

285keratin degradation involving disulfide reductase and serine protease

286produced by Stenotrophomonas sp. D-1 from deer fur. Keratin reduced

287by disulfide reductase is hydrolyzed by protease to amino acids and

288peptides. Some bacteria, actinomycetes, keratinophilic fungi, and larvae

289of the common clothes moth (Tineola bisselliella Hummel) use native

290keratin as the sole source of carbon, nitrogen, sulfur, and energy

291(Korniłłowicz-Kowalska & Bohacz, 2011). Bacillus licheniformis, Bacillus

292pumilus, Bacillus cereus, and Bacillus subtilis, and Stenotrophomonas sp.,

293Fervidobacterium pannavorans, and Fervidobacterium islandicum were

294isolated from plumage and bird feathers, and fermented feather waste
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295 (Burtt & Ichida, 1999; Ichida et al., 2001; Williams & Shih, 1989).

296 Keratinolytic species of actinomycetes, particularly from the genus

297 Streptomyces, and some species from Thermoactinomyces occur in

298 feathers, hairs, nails, and horns. The keratinophylic fungi live in the soil,

299 birds, mammals, avian nests, bird plumage, mammalian hair, communal

300 waste water, waste sediments, communal waste, and polluted water.

301 They are represented by dermatophytes (some species of Trichophyton

302 and Microsporum), and two genera: Chrysosporium and Myceliophthora

303 (Korniłłowicz-Kowalska & Bohacz, 2011).

304 Another method used to dissolve keratins is a combination of

305 enzymatic and chemical treatment (Mokrejs, Svoboda, Hrncirik,

306 Janacova, & Vasek, 2011). Reports on application of thermo-chemical

307 treatment of keratins have appeared recently, however these methods

308 occur in different experimental layout, aimed in aiding subsequent

309 enzymatic digestion (Łaba et al., 2015).

310 4 | BIOACTIVE PROPERTIES OF KERATIN
311 PRODUCTS

312 4.1 | Introduction

313 Hydrolyzed proteins from many sources such as milk casein, soybean,

314 rice bran, quinoa seed protein, canola, egg yolk protein, and muscle

315 proteins have been reported to be sources of biologically active pep-

316 tides (G�omez-Guill�en et al., 2011) (TableT3 3). These peptides, sequences

317 of 2–30 amino acids, are inactive in the parent protein and can be

318 released during gastrointestinal digestion, enzymatic processing or

319 microbial fermentation (Di Bernardini et al., 2011; Ferraro et al., 2016;

320G�omez-Guill�en et al., 2011). After liberation, they display biological

321activities, for example, antioxidant, ACE inhibitory, and antimicrobial.

322Keratins have also been shown to be a source of bioactive peptides by

323Ferraro et al. (2016) and Lasekan, Bakar, and Hashim (2013).

3244.2 | Antioxidant activity

325Reports on the antioxidant properties of hydrolysates or peptides from

326various proteins are abundant, but only a few from keratin. The antioxi-

327dant peptides often contain hydrophobic amino acid residues, proline,

328histidine, tyrosine, and tryptophan (Brandelli, Daroit, & Corrêa, 2015).

329Ohba et al. (2003) reported high antioxidant activity in the enzymatic

330hydrolysate of a mixture of horn and hoof, and chicken feather. They

331suggested that the large amounts of cysteine in keratin were responsi-

332ble for this activity. Fakhfakh et al. (2011) also found high antioxidant

333activity in the hydrolysate obtained after fermentation of chicken

334feather with the bacterium Bacillus pumilus A1. The keratin wastes

335showed stronger antioxidant activity than the collagen wastes using

336the DPPH radical scavenging assay. The authors suggested that the use

337of feather protein hydrolysate in fish feed formulations could be

338suitable for improving the biological properties of the feed. Kumar

339et al. (2012) produced feather protein hydrolysate with a high DPPH

340free radical-scavenging activity which was similar to that shown by

341Fakhfakh et al. (2011) using the strain Bacillus pumilus A1. Fontoura

342et al. (2014) obtained hydrolysates from raw chicken feathers with the

343bacterium Chryseobacterium sp. kr6 which displayed in vitro antioxidant

344properties. These hydrolysates might be used as a source of bioactive

345constituent for feed, food, and drug production. An antioxidative

TABLE 2 Characteristic of keratinases from some microorganisms

Source of keratinase
Molecular
mass (kDa) Optimum pH

Optimum
temperature (8C) References

Aspergillus fumigatus TKF1 24 6.0 50 Paul et al. (2014)

Aspergillus parasiticus 36 7.0 50 Anitha and Palanivelu (2013)

Bacillus licheniformis PWD-1 33 7.5 50 Lin, Lee, Casale, and Shih (1992)

Bacillus pumilus A1 – 9.0 55–60 Fakhfakh-Zouari, Haddar, Hmidet,
Frikha, and Nasri (2010)

Bacillus subtilis S14 – 8.0 50 Silva, Macedo, and Termignoni (2014)

Brevibacillus sp. 83.2 12.5–13.0 45 Rai and Mukherjee (2011)

Chryseobacterium indologenes A22 – 7.5 45 Bach, Daroit, Corrêa, and Brandelli (2011)

Chryseobacterium sp. kr6 64 8.5 50 Riffel et al. (2007)

Fervidobacterium islandiucum AW-1 >200 9.0 100 Nam et al. (2002)

Microsporum canis 33 8.0 35–45 Descamps et al. (2003)

Microsporum gypseum 33 8.0 35 Raju, Neogi, Saumya, and Goud (2007)

Stenotrophomonas sp. D-1 40 7.0 30 Yamamura et al. (2002)

Streptomyces fradiae 24 8.0 50 Galas and Kału�zewska (1991)

Streptomyces gulbargensis 46 9.0 45 Syed, Lee, Li, Kim, and Agasar (2009)

Streptomyces thermoviolaceus SD8 40 8.0 55 Chitte, Nalawade, and Dey (1999)

Trichophyton mentagrophytes 38 5.5 55 Muhsin and Aubaid (2001) AQ7
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TABLE 3 Bioactive peptides from different proteins

Source Antioxidant peptides Reference ACE inhibitory peptides Reference

Bovine casein Tyr-Phe-Tyr-Pro-Glu-Leu Suetsuna, Ukeda, and
Ochi (2000)

Arg-Tyr-Leu-Gly-Tyr Contreras et al. (2009)

Ala-Tyr-Phe-Tyr-Pro-Glu-
Leu

Tyr-Gln-Lys-Phe-Pro-Gln-
Tyr

Bovine a-lactalbumin Ile-Asn-Tyr-Trp Sadat et al. (2011) Leu-Ala-His-Lys-Ala-Leu Pihlanto-Leppälä et al.
(1998)

Trp-Leu-Ala-His-Lys Pihlanto-Leppälä, Koskinen,
Piilola, Tupasela, and
Korhonen (2000)

Val-Gly-Ile-Asn-Tyr-Trp-
Leu-Ala-His-Lys

Bovine b-lactoglobulin Phe-Asn-Pro-Thr-Gln Contreras, Hern�andez-
Ledesma, Amigo,

Martín-�Alvarez, and
Recio (2011)

Ile-Ile-Ala-Glu-Lys Power, Fern�andez, Norris,
Riera, and FitzGerald
(2014)

Leu-Gln-Lys-Trp Ile-Pro-Ala-Val-Phe-Lys
Leu-Asp-Thr-Asp-Tyr-Lys-

Lys
Ala-Leu-Pro-Met-His-Ile-
Arg

Mullally, Meisel, and Fitz-
Gerald (1997)

Val-Ala-Gly-Thr-Trp-Tyr Power et al. (2014)
Trp-Tyr-Ser-Leu Zhang, Wu, Ling, and Lu

(2013)

Bovine skin gelatin Gly-Pro-Hyp-Gly-Pro-Hyp-
Gly-Pro-Hyp-Gly

Kim, Byun, Park, and
Shahidi (2001) and Kim,
Kim, Kim, Byun, Park,
and Ito (2001)

Gly-Pro-Val Kim, Byun, et al. (2001) and
Kim, Kim, et al. (2001)

Gly-Pro-Leu

Chicken feather keratin Ser-Asn-Leu-Cys-Arg-Pro-
Cys-Gly

Wan et al. (2016) – –

Chicken leg collagen – – Gly-Ala-Hyp-Gly-Leu-Hyp-
Gly-Pro

Saiga et al. (2008)

Egg yolk protein Leu-Met-Ser-Tyr-Met-Trp-
Ser-Thr-Ser-Met

Park, Jung, Nam, Shahidi,
and Kim (2001)

– –

Leu-Glu-Leu-His-Lys-Leu-
Arg-Ser-Ser-His-Trp-
Phe-Ser-Arg-Arg

Egg white protein Ala-His Tsuge, Eikawa, Nomura,
Yamamoto, and
Sugisawa (1991)

Arg-Ala-Asp-His-Pro-Phe-
Leu

Miguel, Recio, G�omez-Ruiz,
Ramos, and Lopez-
Fandino (2004)

Val-His-His Tyr-Ala-Glu-Glu-Arg-Tyr-
Pro-Ile-Leu

Val-His-His-Ala-Asn-Glu-
Asn

Fish skin gelatin (Jonius
belengerii)

His-Gly-Pro-Leu-Gly-Pro-
Leu

Mendis, Rajapakse, and
Kim (2005)

– –

Pacific codfish gelatin – – Thr-Cys-Ser-Pro Ngo et al. (2011)

Thr-Gly-Gly-Gly-Asn-Val

Porcine actomyosin Asp-Leu-Tyr-Ala Arihara (2006) – –

Ser-Leu-Tyr-Ala
Val-Trp

Porcine skin collagen Gln-Gly-Ala-Arg Li, Chen, Wang, Ji,
and Wu (2007)

– –

Porcine skin gelatin – – Gly-Phe-Hyp-Gly-Pro Ichimura, Yamanaka,
Otsuka, Yamashita, and
Maruyama (2009)
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346 peptide had been isolated from chicken feather hydrolysate obtained

347 by bacterial fermentation and identified as Ser-Asn-Leu-Cys-Arg-Pro-

348 Cys-Gly (Wan, Dong, Yang, & Feng, 2016). Polypeptides from bovine

349 hair exhibited significant antioxidant activity and remarkable food

350 protection. These polypeptides could be a new natural antioxidant

351 used in oil and oil-rich food (Zeng, Zhang, Zhang, & Shi, 2013).

352 4.3 | ACE inhibitory activity

353 Antihypertensive peptides can lower blood pressure through inhibition

354 ACE. Many years of research have been devoted to the synthesis of

355 ACE inhibitors used widely for therapeutic purposes to prevent hyper-

356 tension (G�omez-Guill�en et al., 2011). However, they have side effects

357 such as coughing, poor taste, skin rashes, and angioneurotic edema

358 (Atkinson & Robertson, 1979). Therefore, research has focused on

359 identifying natural sources of ACE inhibitors with no side effects. Many

360 antihypertensive/ACE inhibitory peptides have been isolated from

361 casein, collagen, lactalbumin, myosin, ovalbumin, and serum albumin

362 (Brandelli et al., 2015; Contreras, Carr�on, Montero, Ramos, & Recio,

363 2009; Pihlanto-Leppälä, Rokka, & Korhonen, 1998; Saiga et al., 2008).

364 Keratin has also been shown to be a source of ACE inhibitory pep-

365 tides, although it has not been studied with regard to this activity as

366 much as other proteins. ACE inhibitory activity has been shown in

367 keratin hydrolysates from poultry feathers (Karamać et al., 2005). The

368 activity of acid hydrolysates from keratin waste was lower (49.6% inhi-

369 bition) than that of collagen hydrolysates (72.3% inhibition). Increase in

370 ACE inhibitory activity with increase of the concentration of proline

371 and hydroxylproline had been observed (G�omez-Guill�en et al., 2011).

372 Ohba et al. (2003) reported that the enzymatic hydrolysate of a mixture

373 of horn and hoof also exhibited low ACE inhibitory activity. ACE inhibi-

374 tory activity increased with decreasing molecular weight of hydroly-

375 sates. The hydrolysates obtained from raw chicken feathers with the

376 bacterium Chryseobacterium sp. kr6 also had ACE inhibitory activity

377 (Fontoura et al., 2014). The keratin hydrolysates were able to inhibit

378 65% ACE activity and was comparable to ACE inhibitory activity of

379 soybean hydrolysates and milk protein hydrolysates. Enzyme specificity

380 influences the biological activity of protein hydrolysates (G�omez-

381 Guill�en et al., 2011). High hydrophobic and aromatic amino acid

382 residues content of 50–60% of the total amino acid residues is charac-

383 teristic of keratins (Fontoura et al., 2014). Hydrophobic amino acids at

384 the C-terminal tripeptide sequence contribute to the ACE inhibitory

385 activity of peptides (Haque & Chand, 2008).

386 4.4 | Other activities

387 Keratins have also been shown to be a source of bioactive peptides

388 with other biological activities. Fontoura et al. (2014) showed that the

389 hydrolysates obtained from raw chicken feathers had the ability to

390 inhibit DPP IV activity by 44%. This activity was found only in whey

391 hydrolysates which positively affect blood glucose control and insulino-

392 tropic responses in humans. Bioactive peptides from whey proteins

393 stimulate the secretion gut hormones, and also act as DPP IV inhibitors

394 in vivo (Jakubowicz & Froy, 2013).

395Gousterova et al. (2011) found that feather hydrolysate obtained

396using a mixed culture of Thermoactinomyces strains showed good activ-

397ity against plant pathogenic fungi Fusarium solani, Fusarium oxysporum,

398Mucor sp., and Aspergillus niger. It was suggested that the feather

399hydrolysate could be used as an alternative soil amendment for restor-

400ing contaminated soils, accelerating ryegrass growth, and improving the

401quality of agricultural soils.

402Sundaram et al. (2015) observed antibacterial activity of keratin

403hydrolysate and keratin nanoparticles. The radius of inhibition zone for

404keratin hydrolysate against Staphylococcus aureus and Escherichia coli

405was 7.5 mm and 9 mm, respectively, at 100 lg/mL. They reported that

406the inhibition zone formulated for keratin nanoparticles was higher

407than that for keratin hydrolysates.

4085 | CONCLUSIONS AND PERSPECTIVES

409Keratin extracted from waste is a source of bioactive compounds for

410biological, food, and biomaterial applications. There is more information

411on the nonbiological functions of keratins than bioactive properties.

412Thus there is a need for further research devoted to selecting enzyme

413systems that convert keratin waste into bioactive peptides which could

414be used for formation of useful novel bioproducts. Literature shows an

415increasing number of reports on the use of various enzymes and

416conditions to obtain bioactive peptides from keratin. The peptides with

417antioxidant and antimicrobial activities could possibly be used as addi-

418tives in functional food products. Similarly, the fragments of keratin

419with ACE inhibitory and DPP IV inhibitory activity could be suitable for

420food and pharmaceutical applications. Therefore, advanced research on

421safety of these future bioproducts, maintenance of their bioactivity in

422humans mechanism of action, and industrial production are necessary.
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