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Abstract 

This paper presents numerical and experimental investigations to identify reinforcing 

bars using the ground penetrating radar (GPR) method. A novel element of the paper is the 

inspection of different arrangements of reinforcement bars. Two particular problems, i.e. 

detection of few adjacent transverse bars and detection of a longitudinal bar located over or 

under transverse reinforcement, have been raised. An attention was also paid to the influence 

of few adjacent bars on the estimation of wave velocity in concrete based on the diffraction 

hyperbola. The GPR simulations were undertaken using the finite-difference time-domain 

(FDTD) method. The new approach for the numerical modelling of GPR in complex 

reinforced concrete structures with the use of a 3-D FDTD model was presented. Simulated 

scans for the 3-D model were compared with results of in-situ surveys. The results of 

investigations showed high usefulness of the 3-D model for the GPR field propagation in 

structures with a complex system of the reinforcement. 
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1. Introduction

Recently, there has been a growing interest in developing non-destructive testing 

techniques for the assessment of civil engineering objects [1]. Considering structures made of 

reinforced concrete, the important issue is the inspection of reinforcing bars. Some methods 

have proven to be particularly useful in the examination of steel rebars, like the use of 

a magnetic field imaging camera to estimate the depth and diameter of reinforcement [2] or 

the use of X-rays to estimate the reinforcement position [3]. However, the most common 

approach in the inspection of reinforced concrete structures is the application of the ground 

penetrating radar (GPR). This method has found many applications in the evaluation of 

bridges [4], [5], tunnels [6], road pavements [7], retaining walls [8] or buildings [9]. The 

previous studies indicated a large potential of the GPR method in the identification of the 

amount, position, distribution [10] and diameter of rebars in concrete specimens [11] with 

a simple arrangement of reinforcement. Conducted research also involved the influence of the 

bar spacing on the GPR maps [12] or the possibility of detection of various type defects near 

the reinforcing bars [13]. However, considering structures with a complicated reinforcement 

system, difficulties connected with the interpretation of GPR maps may arise. In such cases, 

numerical modelling of propagation of electromagnetic field using finite-difference time-

domain (FDTD) method becomes a powerful tool that enables understanding the origin of 

reflections appearing in GPR radargrams. A wide range of studies has already been reported 

on the GPR simulations with the use of 2-D FDTD models. Numerical calculations were used 

as a tool for interpretation of measurement results for reinforced concrete [6], masonry [14] 

and stone [15,16] structures. In addition, 2-D modelling allowed to verify invented processing 

algorithms of GPR data [17]. At present, researchers are starting to implement 3-D FDTD 

models for GPR simulations, but still current applications of 3-D analyses are mainly 

concentrated on complex modelling of soil [18], [19] and bricks [20]. 

This study presents numerical and experimental investigations to identify reinforcing bars 

using the GPR method. In previous studies [21,22] initial research concerning the possibilities 

of the use of 2-D and 3-D numerical modelling in the interpretation of GPR maps were 

conducted. A novel element of the paper is the inspection of different arrangements of 

reinforcement bars. Typically, GPR investigations concern single bars distributed at the regular 

spacing for which multiple hyperbolas are obtained in radargrams. In this study, the problem of 

detection of few adjacent bars is considered resulting in the deformation of the hyperbolic 

curve. A particular attention is paid to the influence of the adjacent bars on the estimation of 
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wave velocity in concrete. Another issue raised in the study is the detection of a longitudinal bar 

located over or under the transverse reinforcement. The paper also presents the new approach 

for the numerical modelling of GPR in reinforced concrete structures with a complex system of 

the reinforcement with the use of a 3-D FDTD model on the example of a frame arch pedestrian 

bridge. Simulated scans for the 3-D model were compared with results of in-situ surveys. 

2. The object and problem description

The object of investigations was a reinforced concrete pedestrian bridge (Fig. 1a, b). 

The bridge is a frame arch structure with a theoretical span of 28 m. The bridge deck with 

a thickness of 50 cm is supported on the abutments and on the key of the arch. On both sides 

of the main part of the deck, cantilever slabs of varying thickness between 20 cm and 25 cm 

were designed. The tested structure was chosen because of the complex reinforcement system. 

Figure 1c presents the reinforcement drawing based on the technical documentation. The main 

longitudinal reinforcement of the structure consists of bars of 12 mm diameter with a spacing 

of 10 cm. The lower reinforcement of the deck includes bars of 32 mm diameter with 

a spacing of 10 cm. The transverse reinforcement with a diameter of 12 mm consists of three 

rows of rebars: two rows of stirrups in the deck and one curved rod in the cantilever part. The 

structure was made of concrete C30/37. 

Fig. 1. Considered reinforced concrete pedestrian bridge (Gdańsk, Poland, 54°21'32.4"N 18°34'01.8"E): 

(a) general view; (b) deck during GPR measurements; (c) cross-section of the bridge with reinforcement drawing

(dimensions in mm) 
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The presented reinforcement system reveals several problems that may arise in the 

interpretation of GPR data. The first issue concerns the number of bars that are located close 

to each other. Figure 2a shows a concrete section with a single embedded bar. In such a case, 

the diffraction by the circular inclusion is represented as a hyperbola. When few adjacent bars 

are embedded in concrete, the hyperbolic curve is deformed and the signal becomes stronger 

(Fig. 2b). Another problem is the mutual arrangement of longitudinal and transverse rebars. If 

the transverse bar is situated over the longitudinal bar, the hyperbola is cut off at the level of 

the longitudinal bar (Fig. 2c). If the transverse bar is situated under the longitudinal bar, the 

hyperbola appears under the longitudinal reflection without major changes (Fig. 2d). 

 

Fig. 2. Different situations of bar location: (a) single bar; (b) three adjacent bars in a row; (c) transverse bar over 

longitudinal bar; (d) longitudinal bar over transverse bar 

3. Materials and methods 

 3.1. Mathematical models of diffraction hyperbola 

The electromagnetic wave diffracted from a circular inclusion having different electrical 

properties reveals on a GPR map as a hyperbolic curve. The simplest mathematical model of 

the diffraction hyperbola is presented in Fig. 3a and described by the following relation [23]: 

 
 

2

0 2

02

4 ix x
t t

v


   (1) 

where 0x  is the location of the inclusion, 0t  is the two-way travel time to the inclusion, ix  is 

the radar position and v  denotes the velocity of electromagnetic waves in the considered 

medium. The approach reduces the inclusion to a point and neglects the distance between the 

transmitting and receiving antenna. The extension of Eq. (1) to the case taking into account 

the actual bar radius R  and the distance s  between the transmitting and receiving antennas 

(Fig. 3b) gives (e.g. [24]): 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5 

 

2 2 2 2

0 0
0 0

1
2

2 2 2 2
i i

vt s vt s
t R x x R x x R

v

 
                         

        
 

 (2) 

 

Fig. 3. Geometrical relationship for derivation of diffraction hyperbola caused by circular inclusion: 

(a) with zero radius; (b) with radius R and the distance s between the transmitting and receiving antennas 

The identification of hyperbolas on a GPR map enables the estimation of the velocity of 

propagated waves and then a determination of the relative permittivity r  of a medium in 

which the bar is embedded. The fitting of the hyperbola described by Eq. (1) into a GPR map 

can be performed by the direct least square method, while in the case of the hyperbola 

described by Eq. (2) a nonlinear method of approximation has to be used (e.g. Levenberg-

Marquardt method [25]). 

 3.2 FTDT simulations 

Numerical analyses of electromagnetic wave propagation were carried out using the 

open-source gprMax (version: 3.0.19) software [26,27] based on the finite-difference time-

domain method [28]. This method solves Maxwell’s equations with the appropriate boundary 

and initial conditions using the central finite differences. The calculations were performed 

using both 2-D and 3-D models. The advantage of 2-D models is a relatively short time of 

calculations, so it is possible to use small Yee cells. However, the geometry is considered to 

be infinite in the third direction, so it is necessary to create a separate model for each scan 

trace, if the object has variable geometry along its length. Therefore 2-D models are suitable 

for calculations of concrete structures with simple reinforcement, without rebars parallel to a 

scan trace. The advantage of 3-D models is the fact that just one geometry is built and scan 

routes can be arbitrarily selected. Such 3-D models are suitable for analysing structures with a 

complex reinforcement system. However, to decrease the time of calculations, larger Yee 

cells are required which may cause a worse representation of small rebars and be a reason for 

numerical dispersion. 

In order to demonstrate selected problems of rebars identification, GPR simulations in 

two structures, i.e. a concrete slab and the considered bridge, were conducted. The material 

parameters have been adopted in accordance with the results of in-situ surveys. The value of 
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the electric permittivity of concrete was determined as εr = 6.25 and the conductivity of 

concrete was adopted as σ = 0.01 S/m. A source excitation imitating a signal generated by the 

GPR antenna was applied as the Ricker function with a frequency of 2 GHz. The time step 

was selected automatically based on the CFL condition depending on the size of the Yee cell. 

At the edges of the FDTD model, the perfectly match layer (PML) absorbing boundary 

conditions were set up. The distance between the transmitting and receiving antenna in the 

model was set to 6 cm like the actual distance between the transmitter and receiver in the IDS 

antenna. 

A 2-D model of the concrete slab (Fig. 4) with dimensions of 195 cm × 30 cm was 

considered to verify the theoretical assumptions for estimation of the velocity of 

electromagnetic waves based on the diffracted hyperbola. Simulated area of concrete with 

a thickness of 20 cm contains embedded steel bars with a spacing of 45 cm. In the first case 

(model no. 1 shown in Fig. 4a), the slab contains four bars with different radius (R = 6 mm, 

12 mm, 18 mm and 24 mm). In the second case (model no. 2 shown in Fig. 4b), the same slab 

was considered for varying number of adjacent bars of the same diameter, but different 

number. This case reproduces stirrups in reinforced concrete structures, which are often 

placed next to each other (see Fig. 1c and Fig. 2b). 

 

Fig. 4. Concrete slab reinforced by steel bars: (a) model no.1 (four single bars with different radius); 

(b) model no. 2 (single bar, 2, 3 and 4 adjacent bars with the same radius) 

The 3-D numerical model of the reinforced concrete pedestrian bridge was created with 

a particular attention on the distribution of the transverse reinforcement (cf. Fig. 1). All the 

rebars from the project were included in the model. There has been only a simplification of 

the inclination of the pavement. It was assumed that the pavement is straight. Furthermore, a 

layer of the pavement was not included in the model. The 3-D model is shown in Fig. 5. The 

outer dimensions of the model were: 368 cm × 65 cm × 60 cm. The cubic Yee cells with 

a size of 3 mm were applied. FDTD simulations for the transverse scan lasted 99 hours (PC, 

4 core 8 threads CPU @ 3.40 GHz, 16 GB of RAM). Calculations were carried out for two 

transverse (along the bridge width) and six longitudinal (along the bridge length) scans. The 

transverse scans were assumed exactly over and between the transverse reinforcement. In 
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order to show reflections and to examine the possibility of detection of several rows of the 

transverse reinforcement, longitudinal scans were calculated in six cross-sections of the 

bridge marked in Fig. 5b. Sections A-A, B-B and C-C show the cases of transverse bars 

connected together for one, two or three rebars respectively. Sections D-D, E-E and F-F show 

the case when the scan is acquired directly over the longitudinal reinforcement for one, two 

and three adjacent stirrups. 

 

Fig. 5. Numerical 3-D model of the considered bridge: (a) the system of the reinforcement; (b) 2-D view with 

marked sections A-A, B-B, C-C, D-D, E-E, F-F 

 3.3. GPR surveys 

In-situ measurements of the considered bridge (Fig. 1) were performed using Aladdin 

system from IDS GeoRadar. A bipolar antenna operating with a central frequency of 2 GHz 

provided high-resolution echogram, however, reducing the effective penetration depth up to 

about 0.5 m. The survey parameters were: 32 ns range, 1024 samples per scan, 1 cm step. The 

GPR data were collected using K2 FastWave software (manufacturer: IDS GeoRadar, 

version: 2.02.000) and processed in GRED HD (manufacturer: IDS GeoRadar, version: 

01.06.002) software. GPR surveys were performed to inspect the amount and the distribution 

of the reinforcement. During the experimental study transverse profiles were performed along 

the width of the footbridge in different sections with various reinforcement distribution. 

Along the entire footbridge, longitudinal scans were carried out on the cantilever part and 
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over the deck. In order to verify precisely the transverse reinforcement of the bridge, 

a dedicated Pad Survey Guide (PSG) was applied. Figure 1b presents the bridge deck during 

GPR measurements with the use of PSG mat. The mat containing parallel grooves at 

a distance of 0.78 cm allowed accurate guidance of 110 transverse traces. Such dense 

measurements ensured that some of the scans were acquired exactly over the transverse 

reinforcement. 

4. Results and discussion 

 4.1. Estimation of velocity of electromagnetic waves 

The simulations on the models of the concrete slab (Fig. 4) were intended to assess the 

possibility of the estimation of the wave propagation velocity for the unknown number of 

adjacent bars. The data were processed in the MATLAB
®
 environment (manufacturer: The 

MathWorks, Inc., version: 9.1.0.441655). From the simulated B-scans, individual points were 

extracted selecting the minimum value of the voltage for each A-scan. Next, the 

approximation process was applied using Eqs. (1) and (2). Numerical GPR maps with marked 

extracted points and fitted hyperbolas for models no. 1 and no. 2 are illustrated in Fig. 6a and 

Fig. 6b, respectively. Depending on the number of bars and the radius value, the strength of 

the diffraction changes. Figures 6c and 6d show the voltage for A-scans over particular bars. 

In model no. 1 containing one bar with various diameter, the increase of the voltage with the 

increase of bar diameter is observed but not significant (Fig. 6c). In contrast, in model no. 2 

containing the different number of adjacent bars, the significant increase of the amplitude 

with the increasing number of bars can be observed (Fig. 6d). 

 

Fig. 6. Simulated GPR maps for a concrete slab reinforced by steel bars with extracted points and approximated 

hyperbolas: (a) model no. 1 (four single bars with different radius); (b) model no. 2 (single bar, 2, 3 and 4 

adjacent bars with the same radius); and simulated A-scans over bars: (c) model no. 1; (d) model no. 2 
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The results of the estimation of the velocity of the electromagnetic wave propagation 

are presented in Table 1. In model no. 1 the approximation process using Eq. (1) revealed that 

the identified velocity increases with the increasing bar radius, however, its value is 

overestimated. Application of Eq. (2) allowed to obtain the velocity value closer to the real 

one. It is slightly underestimated, but it is almost constant for various values of the radius. 

The radius is overestimated, but an increasing tendency can be noticed. Even if in the fitting 

process the velocity or the radius were blocked, it was not possible to estimate the parameters 

properly. In model no. 2, where the geometrical arrangement of bars does not correspond to 

the mathematical models described in Section 3.1, the fitting process was performed to check 

whether it is possible to roughly estimate the velocity or the number of bars using these 

models. The velocity obtained using Eq. (1) increases with the number of bars and its value is 

overestimated. The values of the velocity achieved using Eq. (2) are closer to the real ones 

with the exception of the case of four adjacent bars, because this hyperbola is strongly 

distorted making it impossible to determine the velocity value correctly. When the velocity 

value was blocked, it was also not possible to estimate the correct value of the diameter, 

however, an upward trend can be observed. In both models of the deck, the correlation 

coefficient r indicating the quality of the hyperbola fitting achieves greater value for 

approximation based on Eq. (2). 

Table 1. Results of hyperbola fitting for the simulated GPR maps (concrete slab reinforced by steel bars) 

hyperbola no #1 #2 #3 #4 

M
o

d
el 1

 

Eq. (1)  
v cm/ns 13,16 13,47 13,78 14,07 

r - 0,999706 0,999593 0,999416 0,999363 

Eq. (2) 

v cm/ns 12,11 11,97 11,64 11,58 

R cm 1,84 2,82 4,25 5,02 

r - 0,999995 0,999994 0,999995 0,999997 

Eq. (2) 

blocked 

velocity  

v cm/ns 12,00 12,00 12,00 12,00 

R cm 2,27 2,66 3,68 4,24 

r - 0,999989 0,999993 0,999876 0,999938 

Eq. (2) 

blocked 

radius  

v cm/ns 12,72 12,76 12,76 12,81 

R cm 0,60 1,20 1,80 2,40 

r - 0,999952 0,999932 0,999864 0,999858 

M
o

d
el 2

 

Eq. (1)  
v cm/ns 13,16 13,68 14,25 14,88 

r - 0,999706 0,999233 0,998188 0,996426 

Eq. (2) 

v cm/ns 12,11 11,09 11,89 10,40 

R cm 1,84 5,33 4,74 10,00 

r - 0,999995 0,999990 0,999409 0,998773 

Eq. (2) 

blocked 

velocity  

v cm/ns 12,00 12,00 12,00 12,00 

R cm 2,27 3,16 4,50 5,90 

r - 0,999989 0,999906 0,999369 0,997915 

The approximation process was also carried out in order to estimate the average 

velocities of the electromagnetic waves based on results of in-situ surveys. Considering the 

fact that the hyperbolas overlap due to the small spacing, an algorithm of extraction of points 
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was created. Several points along the hyperbola on a GPR map were marked and the 

interpolation was performed. Then maximum voltage values were extracted at a given 

distance from the interpolated curve. The fitting of hyperbola was conducted for experimental 

longitudinal and transverse scans (Fig. 7). Figure 7a presents the experimental transverse 

radargram without any gain and filters on which the estimation process was performed. The 

obtained velocities for seven hyperbolas diffracted over bars with the same radius are given in 

Table 2. The approximation process using Eq. (1) gives slightly higher values of the velocity 

than using Eq. (2) with the blocked radius. However, when parameters in the curve fitting 

process may assume any value, the results obtained using Eq. (2) are not satisfying. Measures 

of variability (standard deviation SD, coefficient of variation CV) of identified wave velocity 

based on seven hyperbolas from the transverse scan are: SD = 0.147, CV = 0.011 (using 

Eq.(1)), SD = 1.679, CV = 0.167 (using Eq.(2)) and SD = 0.23, CV = 0.019 (using Eq.(2) 

with blocked radius). 

Table 2. Results of hyperbola fitting for the experimental transverse GPR map 

hyperbola no #1 #2 #3 #4 #5 #6 #7 

Eq. (1) 
v cm/ns 12,79 13,11 12,91 12,76 13,10 12,97 13,09 

r - 0,9848 0,9934 0,9931 0,9910 0,9924 0,9955 0,9897 

Eq. (2) 

v cm/ns 11,83 9,55 7,98 11,42 9,44 8,20 11,92 

R cm 1,60 6,90 9,54 1,98 6,22 8,76 1,41 

r - 0,9806 0,9936 0,9910 0,9890 0,9907 0,9950 0,9846 

Eq. (2) 

blocked 

radius  

v cm/ns 12,36 12,79 12,29 12,09 12,58 12,24 12,40 

R cm 0,60 0,60 0,60 0,60 0,60 0,60 0,60 

r - 0,9790 0,9908 0,9895 0,9879 0,9885 0,9937 0,9842 

Figures 7b and 7c illustrate two experimental longitudinal B-scans. One of the scans 

was acquired along the bridge over the cantilever part (Fig. 7b) where single bars were 

supposed to be embedded. The second radargram was acquired along the bridge over the deck 

(Fig. 7c) where every third stirrup was embedded as two adjacent bars. The results of the 

fitting are presented in Table 3. Measures of variability (standard deviation SD, coefficient of 

variation CV) of identified wave velocity based on eight hyperbolas (over a single rod) from 

longitudinal scans are: SD = 0.263, CV = 0.02 (using Eq.(1)), SD = 1.733, CV = 0.146 (using 

Eq.(2)) and SD = 0.223, CV = 0.018 (using Eq.(2) with blocked radius). The velocities for the 

case of two adjacent bars (Fig. 7c) were found to be higher than in case of one single rod 

(Fig. 7b).  

Finally, the average velocity based on experimental diffraction hyperbolas caused by 

single bars was determined as about 12 cm/ns. The velocity value was validated using 

a method known as “depth to known reflector method” [29]. Using this method, the velocity 

was identified as 11,85 cm/ns. 
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Fig. 7. Experimental GPR maps with extracted points and approximated hyperbolas (a) transverse 

(b) longitudinal over the cantilever part; (c) longitudinal over the deck 

Table 3. Results of hyperbola fitting for the experimental longitudinal GPR maps 

hyperbola no #1 #2 #3 #4 #5 

over the 

cantilever 

part 

Eq. (1) 
v cm/ns 13,08 13,00 12,91 12,78 13,26 

r - 0,9922 0,9978 0,9932 0,9967 0,9890 

Eq. (2) 

v cm/ns 7,61 12,32 12,47 12,18 12,52 

R cm 10,00 0,30 0,30 0,30 0,76 

r - 0,9886 0,9945 0,9878 0,9937 0,9841 

Eq. (2) 

radius 

blocked 

v cm/ns 12,10 12,13 12,17 11,95 12,52 

R cm 0,60 0,60 0,60 0,60 0,60 

r - 0,9873 0,9945 0,9878 0,9936 0,9839 

over the 

deck 

Eq. (1) 
v cm/ns 15,25 13,28 13,12 15,47 13,64 

r - 0,9924 0,9953 0,9970 0,9966 0,9940 

Eq. (2) 

v cm/ns 9,31 12,52 12,43 14,11 12,89 

R cm 10,00 0,31 0,30 1,14 0,30 

r - 0,9908 0,9923 0,9945 0,9948 0,9836 

Eq. (2) 

radius 

blocked 

v cm/ns 14,45 12,30 12,22 14,53 12,62 

R cm 0,60 0,60 0,60 0,60 0,60 

r - 0,9887 0,9922 0,9944 0,9948 0,9833 
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 4.2. Inspection of reinforcing bars in the bridge 

Figure 8 shows the GPR transverse maps calculated over and between the transverse 

reinforcement for the 3-D model. In both radargrams, strong and regular hyperbolas are 

visible giving information about the upper main reinforcement. The lower main reinforcement 

was possible to detect only in the cantilever part of the bridge. The boundary between the 

concrete and the air is also noticeable. Particularly noteworthy is the difference between the 

scan exactly over the transverse reinforcement (Fig 8b) and between the stirrups (Fig 8a). 

Above the row of hyperbolas on the entire length of the echogram, a longitudinal reflection 

reveals the presence of the transverse bar. In addition, at places where there is more than one 

row of transverse bars, a multiple and stronger longitudinal reflection, which slightly deforms 

the shape of the hyperbolas, can be noticed. 

 

Fig. 8. Simulated transverse GPR maps for 3-D model: (a) scan between transverse reinforcement; 

(b) scan over transverse reinforcement 

Results of in-situ surveys through the bridge cross-section are given in Fig. 9. Figure 9a 

illustrates a single transverse scan acquired along the width of the bridge. Regular, strong and 

clear reflections from the upper longitudinal reinforcement can be observed. In addition, 

a reflection from the bottom of the cantilever part is clearly visible. Above the boundary 
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between the air and the concrete, hyperbolic diffractions from the lower main reinforcement 

of the cantilever part of the deck can be noticed. The GPR maps obtained in measurements 

with the use of the PSG mat are shown in Fig 9b and 9c. The B-scan, which was taken exactly 

over the transverse reinforcement (Fig. 9a) is clearly different from the scan made between 

the transverse rebars (Fig. 9b). The transverse reinforcement can be identified as 

a longitudinal reflection above the hyperbolas. 

 

Fig. 9. GPR transverse maps obtained from in-situ surveys using PSG mat: (a) scan over entire cross-section 

(b) scan over the transverse reinforcement (c) scan between the transverse reinforcement 

Figure 10 shows longitudinal GPR maps calculated at the cross-sections marked in 

Fig. 5b. The B-scan on section A-A over the cantilever part of the deck (Fig. 10a) reveals four 

hyperbolas resulting from the diffraction of the electromagnetic wave by the upper transverse 

reinforcement. In sections B-B (Fig. 10b) and C-C (Fig. 10c) where two and three adjacent 

rebars are embedded, the diffraction is stronger than in the case of one single bar. The 

amplified amplitude of the voltage is also visible in Fig. 10g where A-scans over the first 

hyperbola are presented. Results for sections D-D, E-E and F-F containing the longitudinal 

reinforcement below one, two and three adjacent stirrups are given in Figs. 10d, 10e and 10f, 
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respectively. Apart from the fact that the amplitude of the reflected signal increases with the 

number of adjacent bars as in previous cases, additionally the signal strength is slightly 

greater because of the longitudinal rod under stirrups (Fig. 10h). The longitudinal reflection 

from the main bar limits the hyperbola which becomes cut off. It should also be noted that 

with the increase of the number of adjacent bars the longitudinal reflections from the main 

reinforcement becomes less visible. 

 

Fig. 10. Simulated longitudinal GPR maps: (a) section A-A; (b) section B-B; (c) section C-C; (d) section D-D; 

(e) section E-E; (f) section F-F; and simulated A-scans: (g) over the first hyperbola for sections A-A, B-B, C-C; 

(h) over the first hyperbola for sections D-D, E-E, F-F 
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The processed longitudinal maps acquired on the main part of the deck and on the 

cantilever part of the deck are presented in Fig. 11. Two parts of the scanning route were 

selected, i.e. the distance from 11.7 m to 12.4 m and the distance from 13.6 m to 14.3 m. In 

the case of the profile over the cantilever part, where there is only one row of the transverse 

reinforcement, both upper and lower rebars were detected (Fig. 11a). Looking at the 

echogram acquired over the main part of the deck (Fig. 11b), there is no reflection from the 

lower bars. The hyperbolas visible in Fig. 11b, between 11.7 m and 12.4 m, come from 

diffraction of the wave by two adjacent stirrups. Moreover, in the upper layer of bars, multiple 

hyperbolic diffractions are visible between 13.6 m and 14.3 m. This may be caused by the 

probable separation between the transverse reinforcement or the appearance of an additional 

stirrup. It should be emphasized that in the places of occurrence of two reinforcing bars there 

was a significant increase in the amplitude of reflection as shown in Fig. 11c. 

 

Fig. 11. Experimental longitudinal GPR maps: (a) over the cantilever part; (b) over the bridge deck; and 

simulated A-scans over bars (c) over the bridge deck 
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5. Conclusions 

In this paper, numerical and experimental studies of electromagnetic wave propagation 

in concrete structures were carried out by the GPR method. A novel element of the study was 

the inspection of different arrangements of reinforcement bars in complex concrete structures. 

Two particular problems, i.e. detection of few adjacent transverse bars and detection of the 

longitudinal bar located over or under the transverse reinforcement, have been considered. An 

attention was also paid to the influence of few adjacent bars on the estimation of wave 

velocity in concrete based on the diffraction hyperbola. Two models of the hyperbola, i.e. the 

simplest model omitting the bar radius and the model taking into account the radius of the bar 

and the distance between the transmitting and receiving antennas, were applied for the 

estimation of the velocity of electromagnetic wave propagation. 

The presented numerical and experimental investigations support the following 

conclusions: 

 In the case of the hyperbola fitting based on numerical data, the velocity value 

determined with the use of the model omitting the radius was overestimated. 

Moreover, the identified velocity increased with the increasing bar radius or the 

number of adjacent bars. The use of the model including the bar radius and the 

separation between antennas allowed to obtain the velocity value closer to the real one 

and almost constant for various values of the radius. It was found that the velocity can 

be roughly estimated for the maximum number of three adjacent bars using this 

model. In the case of four adjacent bars, the hyperbola was strongly distorted making 

it impossible to determine the velocity value correctly. An improvement in the 

velocity estimation can be obtained if the radius of the bar is known. 

 Considering the hyperbola fitting based on experimental data, the model omitting the 

bar radius turned out to be less sensitive to measurement noise and hyperbola 

overlapping than the model including the bar radius with the arbitrary curve fitting 

parameters. The estimation process based on the model including the bar radius and 

the separation between antennas was improved, when the radius parameter was 

established as the radius that was used in the considered structure. Furthermore, it was 

observed that on GPR maps where two adjacent bars were investigated higher values 

of velocity were obtained than in radargrams where only single bars were scanned. 

 Two or more adjacent bars caused deformation of the shape of the diffraction 

hyperbola as well as the change of its strength. The meaningful increase of the signal 

amplitude with the increasing number of adjacent bars was observed. 
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 The transverse rebar under the main reinforcement was represented in numerical 

radargram as a longitudinal reflection that cut-off diffraction hyperbolas at a certain 

depth. The detection of a transverse rebar over the main reinforcement was possible in 

both experimental and numerical radargrams. The reflection from the transverse bar 

appeared in the radargram as a line over a row of hyperbolas. 

The novel approach presented in this paper is the use of 3-D FDTD numerical 

modelling in civil engineering applications. The three-dimensional model enabled obtaining 

radargrams along arbitrarily selected scan routes and analyzing spatial arrangements of rebars, 

which is unachievable in the case of two-dimensional modelling. Precise 3-D modelling of the 

complex reinforcement system in the considered bridge allowed to identify reflection and 

diffraction patterns accurately and enhance the interpretation of results of GPR surveys. 
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