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Identification of nonstationary multivariate
autoregressive processes — comparison of
competitive and collaborative strategies for joint
selection of estimation bandwidth and model order

Maciej NiedZwiecki and Marcin Ciotek

Abstract—The problem of identification of multivariate au-
toregressive processes (systems or signals) with unknown and
possibly time-varying model order and time-varying rate of
parameter variation is considered and solved using parallel esti-
mation approach. Under this approach, several local estimation
algorithms, with different order and bandwidth settings, are run
simultaneously and compared based on their predictive perfor-
mance. First, the competitive decision schemes are considered.
It is shown that the best parameter tracking results can be
obtained when the order is selected based on minimization of the
appropriately modified Akaike’s final prediction error statistic,
and the bandwidth is chosen using the localized version of the
Rissanen’s predictive least squares statistic. Next, it is shown that
estimation results can be further improved if a collaborative
decision is made by means of applying the Bayesian model
averaging technique.

Index Terms—Identification of nonstationary processes, deter-
mination of estimation bandwidth, model order selection.

I. INTRODUCTION

UTOREGRESSIVE models have found a large number

of applications in many research areas such as signal
prediction [1], adaptive control [2], equalization of telecommu-
nication channels [3], biomedical signal analysis [4]-[7], elim-
ination of impulsive disturbances from archive audio signals
[8], and spectrum estimation [9], among many others. Such
models are rarely based on physical insights and therefore their
coefficients usually have no physical interpretation. However,
they have some obvious advantages: they are easy to build
using statistical inference and, more importantly, they allow
mathematically tractable formulations and then solutions for
problems arising in applications mentioned earlier.

When the analyzed process (system or signal) is nonstation-
ary, identification of its autoregressive model can be carried
out using local estimation techniques. In such a case two
important decisions must be taken: selection of the estimation
bandwidth (inversely proportional to the size of the local
analysis window), i.e., the frequency range in which process
parameters can be tracked “successfully” [10], and selection
of the model order.

In the system identification case, estimation bandwidth
should be chosen in accordance with the degree of system
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nonstationarity (quantifying how fast the statistics of the
underlying process vary in time), so as to trade off the bias and
variance components of the mean squared parameter tracking
error. Selection of the model order should be made in a way
that allows one to capture the dominant system dynamics
under the information content constraints imposed by the
limited estimation bandwidth. Both overfitted and underfitted
models suffer from quantitative and qualitative drawbacks
such as lower predictive capabilities, neglected or nonexistent
dynamics, etc.

The appropriate choice of model order and estimation
bandwidth is equally important in signal analysis applications,
where autoregressive modeling is often used for the purpose of
parametric spectrum estimation [11]. Misspecified order and/or
bandwidth may result in the incorrect resonant structure of
the estimated spectrum (existence or nonexistence of spectral
peaks may lead to wrong qualitative interpretation of the
spectrum), as well as in increased estimation errors.

Finally, we note that the problems of bandwidth and order
selection are mutually coupled since, according to the principle
of parsimony [10], smaller bandwidth allows one to estimate
a larger number of model parameters and vice versa.

The problem of joint bandwidth and order adaptation for the
purpose of noncausal identification of autoregressive signals
was considered for the first time in our earlier papers [12]
(for weighted Yule-Walker algorithms) and [13] (for doubly
exponentially weighted lattice algorithms). In the current paper
we will study the analogous problem for multivariate au-
toregressive systems with exogenous inputs, identified using
causal exponentially weighted least squares algorithms. We
will propose and compare several decision rules based on
the modified (localized) Akaike’s final prediction error (FPE)
statistic [14], [15] and on the predictive least squares (PLS)
principle [16], [17], [18]. Finally, we will show how the “hard
selection” (competitive) scheme can be extended to a “‘soft
selection” (collaborative) one, based on the Akaike’s concept
of Bayesian model averaging [19], [20]. Interestingly, some
of the qualitative conclusions reached for causal estimators
differ from those reported in [12] for noncausal ones. The
paper extends preliminary results presented in [21].
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II. SYSTEM DESCRIPTION

Consider the time-invariant multivariate system governed by
the ARX (autoregressive with exogenous input) equation

y(t) =Y Ai(t)y(t—i) +ZB u(t — i) +e(t) 0
i=1
covle(t)] = p(t)
where ¢ = 1,2,... denotes normalized (dimensionless) time,
y(t) = [yi(t),...,ym,(t)]" denotes the m,-dimensional

output signal, u(t) = [u1(t),...,um, (t)]T denotes the m,,-
dimensional observable input signal, e(t) denotes zero-mean
white input noise, and A;(¢), B;(t) are the m, x m,- and
m, X m,,-dimensional matrices of time-varying autoregressive

and input coefficients, respectively:

af;(t) 1:(t)
Ai(t) = : . Bi(t) = : 2)
a;rnyi (t) ;Ly ,(t)
1=1,...,n 1=1,...,n,
where ali(t) = [CL“ z(t) almy ( )] and ﬂlz( ) =
[b11,i(t), .. bum,i(t )T for l =1,...,my
Denote by 05, (t) = [af (t), - ( ) (), BT
the d,-dimensional, d,, = n(my + my), vector
of parameters characterizing the j-th output, called
also the j-th channel, of the ARX system, and by

‘Pn<t) = [yT(t - 1)a-'~7yT(t - n>7uT(t - 1)3

.,uT(t — n)]T — the corresponding regression vector
(the same for all channels) of the same dimension.
Finally, denote by 6,,(t) [(BL(NT, ..., (00" ()"
vec{[A1(t),..., An(t),B1(t),...,B,(t)]T} the vector
made up of all D, = myd, system parameters and let
W, (t) = Ly, ® @n(t) = diag{ep,(t),...,pn(t)} where the
symbol ® denotes Kronecker product of two matrices/vectors.
Using this shorthand notation, (1) can be rewritten in the
form

y(t) =TT (t)0,(t) +e(t) . 3)

When system parameters vary slowly with time they can be
estimated using a localized least squares (LS) algorithm, such
as the one based on the well-known method of exponentially
weighted least squares (EWLS). To achieve the effect of
forgetting ’old’ data, the sum of squares minimized in the
method of least squares is replaced with the exponentially
weighted sum of squares, resulting in the following EWLS
estimator [22]

Bn‘k _argmmZ/\ | y(t—i)—¥rit—i)o, |?
“)
Pkt WY (6= 1) — W (¢ — )04 (1))
x [Y(t - Z) — W (6 — )8, (1)]"

where Ag, 0 < A; < 1 denotes the so-called forgetting
constant (the subscript k£ is needed to differentiate between

several candidate forgetting factors as discussed in Section III)
and

(&)

is the effective width of the exponential window quantifying
the estimation memory of the EWLS tracker. In steady state,
i.e., for large values of ¢, the effective window width converges
to a constant value Lj(co) = 1/(1 — Ag).

The EWLS estimates can be computed recursively which
allows for real-time applications. Moreover, the computations
can be arranged in an gder—recursive way, which means that
all lower-order models 6,5, (t), pnx(t),n =1,..., N—1, can
be obtained in the course of estimation of the highest-order
model 6y (t), px(t) [23].

When the identified system is nonstationary and its identifi-
cation is carried out using the EWLS approach, two important
design decisions must be taken. First, the system order(s)
should be chosen appropriately. If the number of estimated
coefficients is too small, i.e., the order is underestimated,
the obtained system model may fail to correctly describe
system dynamics. If the order is overestimated, i.e., if some
superfluous coefficients are estimated, the descriptive (e.g.
predictive) capabilities of the model also deteriorate - the fact
well known in statistics [22]. Second, the estimation memory
of the parameter tracking algorithm should be chosen so as to
match the degree of system nonstationarity!, trading off the
bias and variance components of the mean squared parameter
tracking error. The effective memory Lyg(¢) should be large
when parameters vary slowly with time, and small in the
presence of fast parameter changes [10], [24]. If the degree of
system nonstationarity changes over time, estimation memory
should be selected in an adaptive fashion. This problem is
often referred to as adaptive bandwidth scheduling.

III. COMPETITIVE ORDER AND BANDWIDTH SCHEDULING

Our approach is based on parallel estimation. Consider K
time- and order-recursive EWLS algorithms, with different
forgetting factors Ag,k = 1,..., K, working in parallel and
yielding at each time instant KN estimates: 6., (t), Pk (1),
n=1...,N, k=1,..., K. Within the competitive frame-
work, one looks for the best-local values of n and k. The
model adopted at the instant ¢ has the form

Oy Payin @) (6)
When system identification/tracking is carried out using the
EWLS approach, instead of the LS approach, the local model
order and estimation bandwidth selection can be performed by
minimizing over n and k the following generalized version of

For a nonstationary autoregressive proces, nonstationarity degree can be
defined in terms of the local rate of change, with respect to time, of its time-
varying autocorrelation function Ry (¢, 7) = E[y(t)y T (t — 7)], see [25].
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the MFPE statistic [originally developed in [26] for estimation
of the model order only] — see Appendix

MFPE,,;(t) = det Pn|k( )
1+ N o (7)
- Nk(t)

where N (t) denotes the so-called equivalent width of the
exponential weighting sequence [10]

=13 ¢
Na(t) = (Zl_o k) _0=AAEN)

ST (T4 A1 = Ae)
Note that in the steady state Ny (0co) = (1 + Ag)/(1 — Ag).
Let K ={1,...,K} and N' = {1,..., N}. The combined

order-bandwidth optimization can be performed using the
following rule

{(7(t), k(t)} = arg min MFPE, . (t). 9)
neN

kEX
As to the model order selection, the same (asymptotically)

results can be obtained by minimization, over n, of the
generalized AIC statistic [26]

Ly (1)

AICn\k(t) = Nk(t) n (10)

Ly (t) log det py,i.(t)
= (t) log MFPEn|k (t)

where the last transition follows from the fact that for Ny (¢) >
d,, it holds that log[1 &+ d,, /Ny (t)] = £d,, /Ny ().

As an alternative way of choosing the model order and
estimation bandwidth, one can consider minimization of the
localized version of the PLS statistic [27], [28]

PLS,(t) = det Qn\k( )

11
Zenlk n|k(t_z) (b

where &, (t) = y(t)— ¥} (¢ )Bn‘k(t 1) denotes the one-step-
ahead prediction error, and L € [20,50] is the width of the
local decision window T'(t) = [t — L+ 1, ¢]. This corresponds
to choosing the model that shows the best-local predictive
performance.

The PLS-based decision rule takes the form

{n(0),

Qn|k:

E(t)} = arg min PLS,, . (t). (12)
neN
ke

In addition to selection strategies based entirely on the MFPE
or PLS statistics, one can consider mixed strategies, which
exploit MFPE for model order selection and (subsequently)
PLS for estimation bandwidth selection or vice versa. Such
mixed strategies are two-stage procedures. When MFPE is
used for order selection, and PLS for bandwidth selection,
one can first look for the best value of n for each value of k,
and then search for the best value of £ (mixed strategy A)

ne(t) = in MFPE,, (¢
nk( ) arggg}\lf n|k( )

~ . (13)
k(t) = arg inellrcl PLS5, )k (t)

TABLE I
DESCRIPTION OF FOUR VARIANTS OF MIXED SELECTION

Variant A B C D
Step 1 MFPE(n) PLS(k) PLS(n) MFPE(k)
Step 2 PLS(k) MFPE(n) | MFPE(k) PLS(n)

or first search for k£ and then for n (mixed strategy B)

kn(t) = arg min PLSn‘k(t)

~ (14
n(t) = arg HllIl MFPE, ;. (t)( ).

The remaining two mixed strategies (C, D), specified in Table
I, correspond to the situation where order decisions are based
on PLS and bandwidth decisions on MFPE.

Remark 1

Since the pioneering work of Akaike [14], [29], a large
number of alternative/modified model order selection criteria
have been proposed based on statistical arguments and/or on
empirical evidence, see e.g. [30], [31] and references therein.
Our focus on MFPE/AIC and PLS has two reasons. First,
when appropriately modified both approaches can be used
for joint model order and estimation bandwidth selection for
the purpose of identification of nonstationary autoregressive
processes. Second, both AIC and PLS have their Bayesian
reinterpretations, which will be exploited for further improve-
ment of identification results.

Remark 2

The problem of selection of bandwidth parameters for a bank
of competing algorithms was studied in [12]. As shown there,
to maximize robustness of the parallel estimation scheme, the
effective memory spans of the competing algorithms should
form a geometric progression, i.e., it should hold that

Ni(o0) = yNi—1(0), k=2,..., K (15)
where v > 1. The value of ~y can be determined analytically
for the assumed acceptable level of “insignificant increase”
(compared with the ideal switching scheme) of the mean
squared parameter estimation error in the case where the
optimal bandwidth is unknown but constant, and for the
assumed degree of smoothness of parameter trajectory. For the
acceptable relative performance degradation equal to 10%, the
values of v range from 1.57 (for smooth deterministic param-
eter trajectories) to 2.43 (for random-walk type trajectories). If
nothing is known about parameter variation, our recommended
default value is v = 2 (memory doubling technique).

As to selection of the number of algorithms working in
parallel, the typical choices are K = 2 (short-memory al-
gorithm and long-memory algorithm) and K = 3 (short-
memory algorithm, nominal-memory algorithm, and long-
memory algorithm). Computational load of the parallel esti-
mation scheme grows linearly with K. We note, however, that
it can be significantly reduced (almost to the load of a single
algorithm) using the postfiltering technique described in [32].
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IV. COLLABORATIVE ORDER AND BANDWIDTH
SCHEDULING

Collaborative strategy is based on Bayesian reasoning. In
this framework all unknown parameters (such as n and/or
k) are regarded as random variables with assigned a priori
distributions. Consequently, Bayesian estimates of quantities
that depend on such parameters often take the form of a
weighted sum of conditional estimates with weights equal to
appropriately defined posterior probabilities.

Consider the situation where the bandwidth parameter k is
fixed and the model order n is unknown. The optimal, in the
mean square sense, Bayesian predictor can be expressed in the
form

YNt + 1) =D Tt +1[t)  (16)

neN
where
1=1 1=1

a7
denotes predictor corresponding to the model of order n, and
pne(t) > 0, n € N, >\ bnk(t) = 1, denote a
posteriori probabilities of different model orders given the data
set Y(t) = {y(i),7 < t} available at the instant t.

According to (16), the optimal predictor is the weighted
linear (convex) combination of competitive predictors with
the weights reflecting our confidence in that n is the right
choice of the model order. Unlike the competitive, “hard
selection” case discussed in the previous section, where the
predictor is seeked in the form ¥ ), (t + 1|t), the Bayesian
solution is collaborative, i.e., “soft”. Since it takes into account
uncertainty embedded in the selection process (especially
when several competing models demonstrate similar predictive
capabilities), some performance improvements over the model
switching strategy can be expected.

Note that the Bayesian formula (16) can be rewritten as

§N|k(t +1[t) = OR(t+ 1)Oni(t)

N
ZAzNUs

(t—i+ 1)+ Y By np(tult—i+1)
1=1

(18)

Wher? é./\f\k(t) = VeC{[A1,N|k(t)7 .- -aAN,N|k(t)a P’l,N|k(t)’
BN «(t)]T} denotes the D y-dimensional vector of pa-
rameters of the averaged system model

L N|k Zﬂn\k
B; N|k: Zun\k

n=t

i=1,...,N.

The corresponding estimate of p(t) can be obtained from

i,n|k )

(19)
i,nlk )

ot Zunw )Pk (t (20)

As argued by Akaike in his Bayesian extension of the
AIC criterion [19], [20], in the stationary case and under
noninformative [33] a priori distribution 7(-) imposed on n
[r(n) =1/N,n € N, one can adopt

fin(t) o exp [—;Alcn@)} @)

where AIC,(t) denotes Akaike’s statistic [which can be
obtained from (10) after setting A\ = 1] and the symbol
denotes proportionality (with constant of proportionality that
does not depend on n). Akaike called such posteriors model
likelihoods. In the nonstationary case model likelihoods can
be defined as

t X eXp _71 t >~ Ly (t)/2

where the last transition follows from (7) and (10).

Remark 1

The averaged model has always the maximum order /N, which
means that when N > n, it is overparametrized. In spite of
this, the predictor ¥ x|, (£ +1[t) based on such a model (which
differs from the predictor ¥ (t + 1[t), based exclusively
on the maximum-order model) performs better, in the mean
square sense, than the predictor ¥7 % (t + 1[t) which relies
on the point estimate of n. This seeming contradiction shows
clearly that the problems of model order estimation and model
parameter estimation should be considered and solved jointly.

The estimation bandwidth uncertainty can be dealt with in
an analogous way as model order uncertainty — rather than
selecting “the most appropriate” model 6 N k(t)( ) from the
set 0 N\l( ), .-+, 0k (t), one can apply once more the model
averaging approach Note that the optimal Bayesian predictor
can be expressed in the form

= (T nrt + 1]t) (23)
ke

yay(t+1]t)

where px(t),k € K, Y cx ur(t) = 1, denote a posteriori
probabilities of & given )(t). The optimal predictor can
be rewritten in terms of the averaged vector of parameter
estimates

Y (t+1[t) = WK (£ + 1)0x (1) 24
where
Oniic(t) Z 1 (8) O () (25)
kek

Likewise, the estimate of the covariance matrix of the input
noise can be obtained from

Pnic(t) =D ()Pt (26)
keK
Let
L—1
Quik(t) Z el (t — i)eny (t — i) (27
=0
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where epx(t) = y(t) — UK (£)Opx(t — 1) denotes the one-
step-ahead prediction error yielded by the corresponding order-
averaged model. As shown in [28], which presents a Bayesian
reinterpretation of the PLS criterion (based on the concept
of prequential likelihood [34]), under noninformative priors
imposed on k [n(k) = 1/K,k =1,...,K] and p [7(p) x
(det p)~(mvt1)/2] the weights py(t), called model credibility
coefficients, can be obtained in the form

pui(t) oc [det Qurx ()]
which resembles the Akaike’s formula (22).

Remark 2

The collaborative, model averaging scheme (24), with the
weights assigned according to (22) and (28), can be regarded a
Bayesian extension of the mixed competitive selection scheme
A. While the model credibility coefficients are applicable to
any set of models (irrespective of the identification principles
and estimation bandwidth settings), the model likelihoods
are well-defined only for a family of EWLS-based models
obtained using the same bandwidth settings. For this reason
Bayesian extension of the mixed competitive schemes B, C
and D is not possible along the presented lines. Since, as
we will demonstrate in Section V, performance of scheme
A is comparable with that of scheme B, and much better
than performance of schemes C and D, the above-mentioned
limitation does not seem to be serious.

-L/2 28)

V. PARAMETRIC SPECTRUM ESTIMATION

Setting u(t) = 0 in (1), one obtains the following model

ZA

which describes the time-varying autoregressive (AR) signal.
According to Dahlhaus [36], [35], [25], when AR coefficients
vary smoothly with time and the model (29) is uniformly
stable, the signal {y(t)} belongs to the class of locally
stationary processes with well-defined evolutionary spectral
representation. The corresponding instantaneous spectral den-
sity function has the form

S(w,t) = A e ¥, a(t)] p(t) A 7, a(t))] (30)

y(t—i) +e(t), covle(t)]=p(t) (29)

where j = /-1, w € (—m,n| denotes the normalized
angular frequency, a(t) = vec{[A1(t),..., A, (t)]T} denotes
the vector of all AR coefficients and

Ale™ alt)) =1-) Ai(t)e 7. (31)
The theory of locally stationary processes developed by
Dahlhaus, based on the concept of infill asymptotics®, is
statistically more consistent than the earlier attempt made by

Priestley [37]. In particular, the time-varying spectral density
function (30) is uniquely defined in the rescaled time domain,

2In this framework a fixed-length time interval is sampled over a finer and
finer grid of points as the sample size increases, which results in a triangular
array of increasingly stationary processes.

the property that does not hold in the non-rescaled case
considered by Priestley.

Based on (29), the competitive parametric spectrum estimate
can be expressed in the form

S(w, t) = A7 e ™ @50 (O] Pagoyin ()

. 32
x A7 e’ @ 2

ool

where v, (t) = Vec{[ﬁlm‘k(t),...,./A&n’n‘k(t)]T}, and the

collaborative one takes the form

S(w,t) = A7 e ™ anc(t)] paic(t)
“Tr e — (33)
x A7 [e7, ap ik ()]
where pxc(t) is given by (26) and [cf. (25)]
dNuc( ) = vec{[A;, N|IC( ) An (0]}
1N|IC Z,uk ZN|k )7 Z:177N (34)
kek
Remark

As shown in [13], minimization of the FPE statistic is equiva-
lent to minimization of the mean-square log spectral distortion
measure evaluated for gain normalized spectra. This is another
good reason to use MFPE in the spectral estimation case.

VI. COMPUTER SIMULATIONS
A. System identification

Performance of the proposed joint order and bandwidth
selection methods was checked by means of computer sim-
ulation. Dynamics of the simulated three-input three-output
(my = m, = 3) ARX system was based on three stable time-
invariant “anchor” models M;, M5, and M5 of orders 1, 2
and 3, respectively. For M3 we adopted the model of a rotary
cement kiln (established experimentally) presented in [38].
This model is characterized by 3 matrices of autoregressive
coefficients AY, A9, A9 and 3 matrices of input coefficients
BY, B, BY, specified in Table II. The anchor model My was
obtained from M3 by zeroing its highest-order coefficients
(A = BY = 0), and the anchor model M; — by retaining
only the first-order coefficients (A = B} = AJ = BJ = 0).
All anchor models specified above are stable.

The time-varying ARX model was obtained by morphing
anchor model M, into M, and anchor model M5 into Ms.
Transition from the model M7, valid at the instant ¢;, to
the model M5, valid at the instant ¢o, was realized using the
following transformations

Ao(t) = p() A3, Bao(t) = u(t)B3, te[tit] (39
where u(t) = (¢t — t1)/(t2 — t1). The remaining parameters
were kept constant: A;(t) = AY, B1(t) = BY, t € [t1,1a].

Transition from the model M5, valid at the instant ¢3, to the
model M3, valid at the instant ¢4, was realized in an analogous
way, namely

As(t) =n(t)A3, Bs(t) =n(t)B3, t€[ts,ta  (36)
where n(t) = (t—t3)/(ts—t3), and A1 (t) = A, B1(t) = BY,
Ay (t) = AY, Ba(t) = BY, t € [t3, t4].
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TABLE II
COEFFICIENTS OF THE ANCHOR MODEL M3

A} B}
0.692  0.002 -0.009 0.056  -0.609 1.577
0.256  0.295 -0.001 0.042 -0.844  0.110
-0.193  -0.021 0.666 0.057  2.850 -0.502
Aj B}

0.260  0.005  0.001 0.032 1.044  -1.128
-0.654  0.147  0.084 -0.655  11.988  -0.266
0275 -0.002 -0.019 0.100  -3.541 0.757
A3 B3
0.039  0.005 -0.012 -0.122 -0.524  -0.511
0282  0.029 -0.036 0315 7.169  0.035
0.120  0.000  0.128 -0.048 1.234  -0.669

M,
M,
M,
| [ | | >
1 1 1 1 »
1 tt, t 0t T, t
Fig. 1. Morphing scenario used in simulation tests

The applied morphing scenario is symbolically depicted in
Fig. 1. The identified system, analyzed in the interval [1, T%],
had 3 periods of time-invariance (M;—M;, Mo—Msy, Ms—
Ms3), each of length I; = 2000, interleaved with 2 periods
of nonstationary behavior (M;—Ms, Ms—M3), each of length
lo = 500 (Ty, = 3ly + 2l = 7000). The coordinates of
the breakpoints, marked by bullets in Fig. 1, were equal to:
t1 = 2000, to = 2500, t3 = 4500 and t, = 5000. Data
generation was started 1000 instants prior to ¢ = 1 so that
for all competing algorithms estimation and evaluation of the
results could be started at the instant ¢t = 1.

Similarly as in [38], the pseudo-random binary type se-
quence with magnitude |uq(t)| = |uz(t)| = |us(t)| = o, Vi,
ug = 0.1, and covariance matrix cov[u(t)] = u3I3 (the same
in all experiments) was used as an observable input signal. The
unobservable noise sequence {e(t)}, white and independent of
{u(t)}, was Gaussian: e(t) ~ N(0,0213), 0. = 0.01.

As a performance measure, quantifying the tracking capabil-
ities of different estimation algorithms, the squared parameter
tracking error dpag (t) = ||0(t) —0(t)||? was used. Evaluation
was based on comparison of the mean scores obtained after
combined time and ensemble averaging of dpar(t) (over
t € [1,T] and 100 independent realizations of {e(t)}).

Table III shows the mean scores yielded by 3 EWLS
algorithms (A1 = 0.98, Ay = 0.99, A3 = 0.995) run for models
of different orders (n = 1,...,10) and by 7 adaptive order-
and-bandwidth selection schemes (PLS, MFPE, A, B, C, D,
Bayesian). Additionally, Figs. 2 and 3 show the evolution of
the bandwidth and order selection statistics based on PLS and
MFPE.

First of all, note that all adaptive bandwidth-and-order
selection schemes yield much better results than their fixed-
bandwidth fixed-order counterparts. Actually, note that when
the model order is not underestimated (n, N > 3), perfor-
mance of the best nonadaptive algorithm, observed for Ay =
0.99 and n = 3 (dpar = 2.98), is worse than performance
of any of the proposed adaptive schemes, irrespective of the
choice of the maximum order N. Note also that among all
adaptive solutions the Bayesian scheme provides results that
are uniformly the best.

According to Fig. 2, which shows the locally time averaged
histograms of the results of bandwidth selection based on
PLS and MFPE (each time bin covers 250 samples), shorter-
memory algorithms are preferred in the presence of parameter
variation, i.e., in the intervals [tq,ts] and [t3,t4]; they are
switched back to the longer-memory ones when system dy-
namics becomes time-invariant again. Fig. 3 summarizes the
order selection capabilities of both adaptive schemes. Both
order selection criteria appropriately react to the change of
system order, which takes place at the instants ¢; (from 1 to
2) and t3 (from 2 to 3).

Note that the bandwidth selection capabilities of the PLS-
based approach are slightly better than those of the MFPE-
based approach, and that the order selection capabilities of
the MFPE-based approach are much better than the analogous
capabilities of the PLS-based approach. This is exactly the
reason why the mixed strategies A and B yield better pa-
rameter tracking results than the competitive strategies based
exclusively on PLS or MFPE. The very best results are
obtained when the collaborative Bayesian strategy is adopted.

Finally, we note that the conclusions reached differ from
those reported in our earlier paper [12], devoted to noncausal
identification of nonstationary AR signals, where the decision
rule based on the cross-validation statistic, similar to PLS,
failed to correctly identify both order and bandwidth parame-
ters. This effect is most likely caused by the fact that, unlike
prediction errors used for evaluation of causal estimation
algorithms, the sequence of leave-one-out interpolation errors
exploited in [12] may be strongly internally correlated.

B. Parametric spectrum estimation

Unlike the system identification experiment, the stable AR
anchor models M;, Ms and Msj, of orders 2, 4 and 6,
respectively, were specified in the lattice form. The model
Ms was obtained by means of identifying — using the
Whittle-Wiggins-Robinson algorithm [22] — a fragment of a
stereo audio recording (m, = 2). It had the form M3 =
{AY, ..., A R)}, where AY,i = 1,...,6 denote the ma-
trices of normalized reflection (partial autocorrelation) coeffi-
cients and R = cov[y(t)] — see Table IV. The remaining two
models were obtained by zeroing the higher-order reflection
coefficients in M3, namely M, = {AY,..., A}, RJ} and
M; = {AY, AY, RY}. We note that every lattice representa-
tion {Aq,...,A,,Rg} can be uniquely transformed into the
direct representation {A1,..., A, p}, and vice versa [22].
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TABLE III
COMPARISON OF PARAMETER TRACKING ERRORS OBTAINED FOR 3 FIXED-ORDER (n = 1,...,10) EWLS ALGORITHMS WITH DIFFERENT FORGETTING
CONSTANTS A1, A2, A3, WITH THE RESULTS YIELDED BY 2 ORDER-AND-BANDWIDTH-ADAPTIVE PARALLEL ESTIMATION SCHEMES BASED ON THE PLS
STATISTIC (L = 30) AND THE MFPE STATISTIC, 4 MIXED COMPETITIVE PLS/MFPE ADAPTATION SCHEMES (A, B, C, D), AND THE COLLABORATIVE
BAYESIAN SCHEME BASED ON MODEL AVERAGING. THE FIRST COLUMN SHOWS THE MODEL ORDER 1 (FOR FIXED-ORDER SOLUTIONS) OR THE
MAXIMUM MODEL ORDER N (FOR ORDER-ADAPTIVE SOLUTIONS). FOR n, N > 3 THE BEST RESULTS IN EACH ROW ARE SHOWN IN BOLDFACE.

ARX modeling — PAR measure

n/N A1 Py A3 PLS MFPE A B C D Bayesian
1 133.13 132.02  131.22 132.50  132.38 132.50 132.50  132.38 132.38 132.42
2 25.29 25.06 24.83 25.14 25.17 25.13 25.13 25.18 25.19 25.12
3 3.28 2.98 4.47 1.04 0.90 0.87 0.90 1.11 1.16 0.85
4 8.52 6.64 7.81 1.40 0.99 0.90 0.97 1.62 1.72 0.86
5 14.18 10.71 11.98 1.57 1.05 0.90 1.04 1.84 2.00 0.86
6 20.14 14.83 15.88 1.67 1.10 0.90 1.09 1.95 2.17 0.86
7 26.32 18.92 19.71 1.74 1.13 0.90 1.15 2.00 2.28 0.86
8 32.86 23.21 23.66 1.80 1.15 0.90 1.20 2.02 2.37 0.86
9 39.62 27.61 27.78 1.84 1.17 0.90 1.25 2.04 2.43 0.86
10 46.84 32.24 31.99 1.87 1.18 0.90 1.31 2.05 2.47 0.86
TABLE V
COMPARISON OF PARAMETER TRACKING ERRORS OBTAINED FOR 3 FIXED-ORDER (n = ].7 ey 10) EWLS ALGORITHMS WITH DIFFERENT FORGETTING

CONSTANTS A1, A2, A3, WITH THE RESULTS YIELDED BY 2 ORDER-AND-BANDWIDTH-ADAPTIVE PARALLEL ESTIMATION SCHEMES BASED ON THE PLS
STATISTIC (L. = 30) AND THE MFPE STATISTIC, 4 MIXED COMPETITIVE PLS/MFPE ADAPTATION SCHEMES (A, B, C, D), AND THE COLLABORATIVE
BAYESIAN SCHEME BASED ON MODEL AVERAGING. THE FIRST COLUMN SHOWS THE MODEL ORDER 72 (FOR FIXED-ORDER SOLUTIONS) OR THE
MAXIMUM MODEL ORDER N (FOR ORDER-ADAPTIVE SOLUTIONS). FOR n, N > 6 THE BEST RESULTS IN EACH ROW ARE SHOWN IN BOLDFACE.

AR modeling — PAR measure

n/N A A2 A3 PLS MFPE A B C D Bayesian
1 38.76  38.76  38.76 38.75 38.76 38.75 3875 38.76  38.76 38.75
2 25.68 2558 25.53 25.60 25.60 25.60 25.60 25.60 25.60 25.59
3 17.11  16.77 16.66 16.76 16.75 16.73 1673 16.74 16.76 16.69
4 10.59  10.02 9.84 10.01 9.89 9.81 9.82 10.00 10.04 9.79
5 4.37 3.38 3.23 3.05 3.02 2.92 291 3.03 3.06 2.86
6 3.46 1.97 1.63 1.36 1.30 1.07 1.10 1.38 1.41 1.02
7 4.92 2.69 2.00 1.56 1.36 1.17 1.19 1.58 1.59 1.08
8 6.41 345 2.40 1.72 141 1.23 1.26 1.73 1.75 1.13
9 7.91 4.20 2.77 1.87 1.44 1.26 1.32 1.85 1.89 1.16
10 9.47 4.97 3.14 2.00 1.46 1.28 1.36 1.95 2.02 1.18
TABLE VI
COMPARISON OF SPECTRAL ESTIMATION ERRORS OBTAINED FOR 3 FIXED-ORDER (n = 1, ey 10) EWLS ALGORITHMS WITH DIFFERENT FORGETTING

CONSTANTS A1, A2, A3, WITH THE RESULTS YIELDED BY 2 ORDER-AND-BANDWIDTH-ADAPTIVE PARALLEL ESTIMATION SCHEMES BASED ON THE PLS
STATISTIC (L = 30) AND THE MFPE STATISTIC, 4 MIXED COMPETITIVE PLS/MFPE ADAPTATION SCHEMES (A, B, C, D), AND THE COLLABORATIVE
BAYESIAN SCHEME BASED ON MODEL AVERAGING. THE FIRST COLUMN SHOWS THE MODEL ORDER 7. (FOR FIXED-ORDER SOLUTIONS) OR THE
MAXIMUM MODEL ORDER N (FOR ORDER-ADAPTIVE SOLUTIONS). FOR n, N > 6 THE BEST RESULTS IN EACH ROW ARE SHOWN IN BOLDFACE.

AR modeling — RER measure

n/N A1 pY) A3 PLS MFPE A B C D Bayesian
1 1.835 1.761 1.730 1.800 1.809 1.800 1.800 1.809 1.809 1.784
2 0.682 0.614 0.586 0.632 0.643 0.631 0.631 0.643  0.643 0.621
3 0.442 0.365 0.337 0.374 0.391 0373  0.372 0390 0.390 0.365
4 0.268 0.183  0.158 0.180 0.197 0.176 ~ 0.174 0.197 0.197 0.172
5 0.205 0.109 0.083 0.093 0.114 0.091 0.088 0.112 0.110 0.088
6 0.205 0.094 0.064 0.069 0.087 0.064 0.061 0.088 0.083 0.061
7 0.238  0.107  0.070 0.072 0.089 0.066 0.063 0.091 0.084 0.062
8 0.274  0.121  0.077 0.075 0.090 0.067 0.064 0.093 0.085 0.063
9 0312  0.136  0.083 0.077 0.090 0.067 0.066 0.095 0.085 0.063
10 0.352  0.150  0.090 0.079 0.091 0.068 0.067 0.097 0.086 0.064
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Fig. 2. Histograms of the results of estimation bandwidth selection, obtained
for 100 process realizations (7s = 7000).

Fig. 3. Histograms of model order estimates, obtained for 100 process
realizations (Ts = 7000).

The identified process, analyzed in the interval [1, T], had 5
periods of time-invariance (M1—-My, Mo—Msy, Ms—Ms, Mo—
Mo, M,—M,), each of length I; = 2000, interleaved with 2
periods of nonstationary behavior (M;—Msy, My—Ms3), each
of length I, = 500 (Ty = 51y + 2l = 11000), and with 2
abrupt changes (M3—Ms,, My—M;). The coordinates of the
breakpoints, marked by bullets in Fig. 4, were equal to: ¢; =
2000, to = 2500, t3 = 4500, t4 = 5000, t5 = 7000, and
te = 9000.

Similarly as in the system identification experiment, transi-
tion between different models was realized by morphing, with
a constant speed, one set of reflection coefficients into another
one. For example, the transition from the model M5, valid at

TABLE IV
LATTICE FORM OF THE ANCHOR MODEL M3

R§
0.006  0.007
0.007  0.011
Al Aj
0.987 -0.040 -0.740  -0.353
0.044 0.991 0.158 -0.768
Aj Aj
0.529  0.329 -0.590  0.013
-0.243  0.496 0.022  -0.430
Ag Ag
0.553 0361 -0.322 -0.093
-0.322 0.385 -0.048  -0.378

— — 1 1 —>
1 tot, 5 1, ts tg T, ¢

Fig. 4. Morphing scenario used in simulation tests.

the instant ¢3, to the model M3, valid at the instant t4, was
realized using the following transformations

Ro(t) = R
Ai(t) =AY
i=1,...,4, (37)
Ailt) = pu(H)A?
1=25,...,6, tE[t37t4]
where 1(t) = (t—t3)/(ta—t3). The resulting time-varying re-
flection coefficients Aq(t),. .., Ag(t) were then transformed
into autoregressive coefficients A;(t), ..., Ag(t) and the driv-

ing noise covariance p(t). As explained in [5], the time-variant
model obtained in such a way is uniformly stable, the property
that generally does not hold true if morphing is applied directly
to the matrices of autoregressive coefficients. The evolutionary
spectrum of the simulated nonstationary AR process is shown
in Fig. 5.

Two performance measures were used to evaluate simulation
results: the parameter tracking error dpag(t), defined earlier,
and the relative entropy rate

drpr (t) = % /Tr {tr [(S(w,t) - §(w,t)) §’1(w,t)}

—T

— log det {S(w, t)§_1(w,t)} } dw (38)

which is an extension, to the multivariate case, of the well-
known Itakura-Saito spectral distortion measure. The results of
comparison of different approaches, gathered in Table V (PAR)
and Table VI (RER), stay in agreement with those obtained
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Fig. 5. Single channel spectra of stationary anchor processes (three upper
plots) and single channel evolutionary spectrum of the simulated nonstationary
autoregressive process (lower plot).

earlier in the system identification case: if the order is not
underestimated (N > 6) the Bayesian scheme provides results
that are uniformly the best according to both performance
measures.

Estimates of the evolutionary spectrum, obtained for a
typical simulation run of the Bayesian approach, and averaged
over 100 process realizations, are shown in Fig. 6.

VII. CONCLUSION

The problem of causal identification of nonstationary mul-
tivariate autoregressive processes, with unknown order and
unknown rate of parameter variation, was considered and
solved by combining results yielded by several parameter
trackers with different order and bandwidth settings working in
parallel. Two decision approaches were considered, based on
the localized versions of Akaike’s final prediction error (FPE)
and the predictive least squares (PLS) statistics, respectively.
It was shown that the best results can be obtained when
both approaches are combined, namely, when FPE is used for
model order selection, and PLS — for estimation bandwidth
selection. On a qualitative level these findings differ from the
conclusions reached in our earlier papers devoted to noncausal
identification of nonstationary autoregressive signals. Finally,
it was shown that even better results can be obtained if the
competitive estimation strategy is replaced with the collabo-
rative one.

The proposed identification schemes usually outperform the
fixed-order fixed-bandwidth algorithms they are made up of
and can be realized in a computationally affordable way.

S(w,t) [aB]

S(w,t) [dB]

Fig. 6. Estimated evolutionary spectrum of the simulated nonstationary
autoregressive process obtained for a single process realization (upper figure)
and averaged over 100 realizations (lower figure).
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Appendix [outline of derivation of (7)]

Denote by Z(t) = {£(1),...,&(8)}, £(i) = {y(i),u(@)},

the data set available at the instant ¢, and by Z(¢) =

{€(1),..., &)}, €(3) = {¥(i),u(d)} — another, independent
realization of Z(¢) obtained from the analyzed system under
the same experimental conditions. This means that the corre-
sponding excitation signals {u(t)} (observable) and {€(t)}
(unobservable) are independent realizations of {u(¢)} and
{e(t)}, respectively.

Following [15], as an instantaneous measure of fit we will
adopt the following final prediction error statistic

= E{[F(0) — TT 00,k (D]F (1) — TT()8(0)])" }

where the expectation is carried out with respect to Z(t) and
E(t). According to this measure, the quality of the model is
checked on an independent data set, different from that used
for identification purposes.

We will derive a stationary approximation of dy,;(t). Sup-
pose that the analyzed system is stationary and that the
sequence of regression vectors {(,,(t)} is zero-mean, station-
ary and ergodic with covariance matrix cov(p,(t)] = ®p.
Since identification is carried out using exponential forgetting,
estimation results practically do not depend on very ’old’ data
samples, namely on samples collected 2L (00) time instants
prior to ¢, or earlier [10]. This means that in fact only the local
stationarity is required.

Denote by A@,,;(t) = 60,,,(t) — 0, the parameter estima-
tion error. Observe that

Y(t) = L ()8, (t) = &(1) — WL (£) MG,k (2).

Furthermore, since the quantities €(t) and W, (t) are mutually
independent and independent of A@,,, (%), it holds that

O k() =

= E{[6(t) - TL (A0, k())[E(t) — TT(H)A8,.(1)]" }
=p+E {@Z(t)Aénw(t)Aéglk(t)\i,n(t)}

=p+tE {‘T’E(t)COV[én\k(t)]ifn(t)}

where p = cov[e(t)] = cov[e(t)]. If the true system order
n is not underdetermined, it can be shown that the estimator
0,,1:(t) is (approximately) unbiased and [26]

6. (= PE® (1
cov[0,,,(1)] = Ni(?) + (Nk(t))

where Ni(t) is given by (8). Combining the last two results,
one arrives at

O (1)

= p+ 5 EAlLn, 9 F50ll0© B, 5.0}
= o+ 5 Ele @ 8108 2.0)

— b+ o P UEEBOFT N = |14 575 o
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where the second transition follows from the identity (A ®
B)(C® D) = (AC) ® (BD).
Since it holds that [12]
Blpue(t] = |1~ 1

the unbiased estimate of §,,;(¢) can be obtained in the form

< L+ Ndnt ~
O (t) = 1755) Prji(t) = Pp(t) .
T Ne(D)
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