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Abstract: Process selection and sequencing, as one of the most complex issues when evaluated from a 

mathematical point of view and crucial in CAPP, still attract research attention. For the current trend of 

intelligent manufacturing, machining features (MFs) are the information carriers for workpiece geometry and 

topology representation. They are basically derived from CAD models and are used by downstream 

engineering applications. A feature-based reasoning approach for generating machining sequences in terms 

of part setups and  the assignment of machine alternatives is presented. The approach suggested in this 

research assumes a heavy reliance on a data input model incorporating functional requirements for parts and 

in particular GD&T references. An extended feature taxonomy corresponding to the needs of the rational 

process plan selection for the addressed category of  part types is proposed.  It is meant to be applicable to 

machining of both rotational and prismatic features using machines of various configurations. The developed 

taxonomy is based on the working directions for MFs and includes the identification of their location with 

respect to datum references. The developed taxonomy that involves feature tolerance relationships is at the 

core of the information data model utilised by the original algorithm which was aimed at generic process 

sequencing for the definite category of mechanical parts. Through the developed algorithm, adequate process 

alternatives can be generated by adaptive setup merging on a single machine or across multiple available 

machines under consideration of their respective process capabilities. The approach has been validated 

through an illustrative case study using a sample mill-turn part of considerable complexity. 

Keywords: CAPP, machining feature, process selection and sequencing, generic setup, machine 

assignment, reasoning scheme 
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Up-to-date manufacturing is realised in a dynamically changing environment by an increased demand for the 

development of customised, high quality products in reduced time cycles and with shortened lifecycles [1, 

2]. The efficiency of machining processes can be remarkably enhanced with the use of  highly sophisticated 

CNC multi-axis, or mostly multi-tasking  machine tools [3]. Machines of such configurations have enabled 

the realisation of the concept of one-hit machining, sometimes termed complete machining, that basically 

minimise the number of setups [4].  It might particularly refer to mill-turn part types, which contain both 

rotational and prismatic features. Both types of machining features (MFs) are most suitable for fabrication 

using multi-purpose machines. This machining technology can significantly reduce the  number of necessary 

part setups. Thus, it decreases the length of the process. Unlike its working time, however, this method 

usually consumes much more time for process planning, as long as its component tasks are performed 

manually. Hence, attempting to shorten the process-planning time implies the need to further automate its 

individual tasks while also tackling the entire problem in an integrative manner in order to respond quickly to 

current industrial demands. This might be particularly valid as far as process sequencing and machine 

selection issues are concerned which are addressed in this study with respect to mill-turn parts 

manufacturing. 

Process sequencing (operation sequencing) is a complex activity, especially when referring to the recognised 

MFs, and is the essential part of process planning. A proper MF sequence is fundamental for attaining 

process efficiency and high quality products [5]. For the current trend of  manufacturing, MFs are the basic 

information carriers for workpiece geometry and topology representation as derived from CAD models. In 

the latest concepts MFs have been supplemented with attributes of extended Geometric Dimensioning & 

Tolerancing (GD&T) as annotations in Product and Manufacturing Information (PMI) representation [6, 7].  

Hereby, they form a suitable foundation for solving crucial tasks of CAPP, including setup planning and 

machine selection.  

As reported, process plans are often generated regardless of resource availability on a definite shop floor. 

This is due to the missing interconnection with the downstream engineering functions like: scheduling or job 

dispatching [8, 9]. The recently launched concept of distributed process planning (DPP) implies however that 

process plans are created at the supervisory planning level by grouping features into setups based on tool 
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access directions (TADs) which is done independently of machines. Next, the generic setups and MFs within 

them are sequenced [10, 11].  

Most existing methods and algorithms crucial to CAPP are developed on the foundation of knowledge-

focused reasoning rules and heuristics utilising best applied manufacturing practices, as in expert-like 

systems. MF precedence in sequencing procedures is essentially determined in this manner, where part 

geometry and all tolerance annotations are represented in the underlying data model [12]. Such means of 

supporting the decision-making process exhibit numerous constraints and shortcomings. Firstly, the adopted 

rules tend to be subjective and are often disputable, especially while the conditions of tolerancing and MF 

interactions are considered. The difficulty with determining a proper machining sequence caused by MF 

interrelations are clearly presented in e.g. [13]. Ambiguity might also arise when selecting the appropriate 

TAD for multi-TAD features, in order to determine their precedence and assign to defined setups, as 

discussed by Manafi and Nategh [14] and Mokhtar and Xu [15]. Secondly, the  rules lack of generic 

applicability, as these can fail to be suitable for some parts with particular geometry and topology 

characteristics. Therefore, to avoid ambiguity with interpreting the precedence of interrelated MFs, impartial 

and more reliable decision making schemes in CAPP are needed,  that also involve using unified criteria. 

Targeting solving the above mentioned problems, the objective of this research is to develop a robust 

reasoning approach for adaptive process sequencing in terms of setups with  relevant datum selection, along 

with machine assignment alternatives, under conditions of distributed environment of parts manufacture. 

Moreover, the approach utilises the proposed classification scheme, and matrix representations of input data 

structures that enables optimised setup plan selection. Those are particularly intended to enable the 

avoidance of possible conflicts between geometric and technological rules based on attributes of processing 

technologies applied to machining mill-turn parts. 

The reminder of this paper is organised in the following order. Section 2 contains a brief review of research 

performed in the area of automated process planning, and particularly with regard to machining  process 

sequencing within CAPP framework. In Section 3, a decision making framework for rational process plan 

selection is reported, including a feature-based reasoning approach involving the designed algorithms for 

generating process sequence in terms of setups, along with  the assignment of machine alternatives. A novel 

feature classification for mill-turn part types considering processing capabilities of contemporary multi-axis 
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CNC machine tools is also proposed. Our approach is validated through a complex sample workpiece 

consisting of both turning and milling MFs. Finally, the authors’ contributions are summarised in Section 4. 

2. Review of related research work 

Despite more than two decades of intense research and remarkable progress, there is still considerable need 

for further research in many aspects of automated process planning. This largely concerns the issue of 

operation selection and process sequencing in the framework of CAPP [16]. Tackling the issues of  operation 

sequencing encounters particular difficulties and still remains a challenge due to their inherent complexity 

and adherence to the class of non-deterministic polynomial-time hard problems [15]. This finds its full 

confirmation in a  state-of-the art review on CAPP for machining provided by Xu et al. [17], with a clear 

emphasis on the role played by feature-based technologies in its recent developments.  A number of different 

approaches and algorithms have been proposed in the area of machining process sequencing, and various 

categories of research can be singled out. The majority of those is associated with the use of dedicated search 

techniques including integer programming, branch-and-bound, or dynamic programming. 

For process sequencing, a tree-structured precedence graph was assumed to represent the precedence 

relations and alternative operations [18]. Next, suitable algorithms were suggested that iteratively search for 

optimal or near-optimal solution for operation sequences, expressed in terms of total cost. Lee et al. [19] 

outlined  a process planning scheme in which operation sequences are generated based on the topological 

sorting of  recognised MFs and searching in adequate graph models.  

Other authors [11] discussed a method for process selection and sequencing in the context of developed 

approach to generating alternative process plans in integrated manufacturing. The objective function in this 

optimisation selection task was to minimise the fabrication time and cost, considering the constraints of 

processing capability for respective MFs in a knowledge-based fashion. Chung & Suh [20] considered  

operation sequencing termed as non-linear process planning in [17], involving process alternatives for 

complex machining instances based on STEP-NC and graph modelling. They developed an optimisation 

algorithm minimising the total cycle time, using the branch-and-bound method and heuristics from 

engineering insights. STEP-NC entities can be utilised for the representation of manufacturing process 

structure as shown in [21]. 
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Studying existing literature on machining process sequencing, it can be seen that much effort was also given 

to the use of AI methods. More recently [22], a GA algorithm was directly adopted for optimal operation 

sequencing in CAPP aimed at minimising cots. Precedence-constrained operation sequencing problem was 

formulated in there into a mixed integer programming model, incorporating a definite set of principles 

deduced from manufacturing capability. The edge selection-based encoding strategy was applied that 

significantly improve the converging efficiency of the reasoning scheme. In a manufacturing practice, 

decision-making frequently deals with uncertain and imprecise information.  

Setup planning, as one of pivotal functions in process sequencing in particular, has recently attracted the 

research attention. Accordingly, process plans are generically constructed in the unit of setups [14, 22]. 

Moreover, the setup planning activity plays an operating role, which deals with the optimisation of the shop-

floor operations [23], to cope with  increased product diversification in dynamic markets [24, 25]. Thus, 

some researchers have often taken into account the manufacturing resources in decision-making, and 

assumed MF-based planning with alternatives [17]. One notable approach, in response to the problems, was 

performed by Zhang & Lin [4], who utilised hybrid-graph theory, considering tolerance analysis as a critical 

step of setup planning. More importantly, Yao et al. [24, 25] introduced a procedure for setup planning that 

was based on not only the tolerance analysis but also the analysis of machine processing capabilities, 

including fixture planning and design. In [26] a setup planning module was reported for automatically 

generating the proper alternatives, through the identification of best datum surfaces, while considering 

machine capabilities and fixturing strategies. In parallel, rule-based MF sequencing approaches has gained 

ground in setup sequencing, as feature interactions became a critical factor for achieving the established 

goals. 

With reference to the given aspect [1, 3], an adaptive setup planning  (ASP) was proposed as applicable to 

various configurations of machine tools, and thus suitable for the conditions of dynamic system operation. 

The framework envisaged adaptive setup merging on both a single machine and across different machines, 

and the feasible setups for a given part are defined by examining the tool accessibility. To search effectively 

for an optimal or near-optimal solution an extended GA approach was applied to handle setup-specific 

issues. Later research reported by Ji et al [27] provided an interesting reachability based method for MF 

sequencing of increased adaptability which aims to reduce the number of tool changes and meet specific 
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machining demands. This method utilised an MF path graph, an adjacency matrix, and a reachability matrix, 

that were generated using appropriate mapping principles based on MF geometry, and also non-geometric 

technological attributes. 

In the field of feature-based CAPP, the issues of distributed or adaptive process planning [10, 11, 28], and its 

integration to the scheduling function [8, 9] have attracted the most of research attention. The latest research 

on distributed process planning focused, among others, on the implementation of functions blocks (FB) 

defined in an International Electrotechnical Commission (IEC) standard for process control systems, named 

IEC 61499 [29, 30]. This approach assumes that the generic process data be separated from the machine-

specific ones with the use of advanced machine monitoring techniques. Wang was among those who as the 

first used in the concept of FB for feature-based process planning and CNC machining [28].  

As widely reported, Cloud manufacturing might predominate as a trend of future manufacturing since it 

could provide cost effective, flexible and scalable solutions to companies by sharing manufacturing 

resources as services with lower support and maintenance costs [29, 30]. Targeting the Cloud manufacturing, 

Wang in [29] proposed an Internet - and Web-based system for machine availability monitoring and adaptive 

process planning. Particularly, this paper develops a tiered service-oriented framework and introduces an 

event-driven approach using IEC 61499 function blocks. The services include generating non-linear process 

plans and data acquisition from shop-floor machine tools through sensors, input from operators, and machine 

schedules. Next, the monitoring data undergo processing by an information fusion technique provided to 

feed the process planning function with the real-time status, specifications, and availability time windows of 

machine resources. The approach was further extended by Mourtzis et al. in [8]. 

A new Cloud-based approach for monitoring the manufacturing resources using a sensor network, 

dispatching jobs to the selected CNC machines, and generating the optimum part machining code is 

presented by Tapoglou et al. in [30]. A data acquisition system, as a component of the proposed system 

architecture, is utilized for monitoring the status of the manufacturing equipment which is determined after 

the analysis of acquired data. Event driven FBs with embedded optimization algorithms on the 

manufacturing equipment are employed that enable the optimal cutting parameters to be selected and the 

required toolpaths for parts machining to be generated while considering the latest information of the 

available machines and cutting tools.  
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One of the newest concept of dynamic machining feature which integrates the feature definition of a part to 

the capabilities of the selected machining resources was proposed by Liu et al. in [28]. By applying the event 

driven model of composite FBs, features can be generated adaptively and automatically during the whole 

dynamic manufacturing lifecycle and may be different in roughing, semi-finishing and finishing operations. 

This is of importance with regard to complex parts consisting of intersecting features. The dynamic feature 

concept is extended in such a way that each interim feature model of a part is defined along with the selected 

machine, cutter and cutting parameters, and updated adaptively according to changes to these machining 

resources. Changes of the selected resources and cutting parameters are sent as input events to the FB. In 

consequence, features of the un-machined geometry can be updated adaptively and automatically to support 

optimal process planning. 

The relevance of these trends and goals and the essence of proposed methodical solutions  have been  

adequately demonstrated in the most recent reports on the outcomes of the implementation of the EU-funded 

FP7 research project entitled “Collaborative and Adaptive Process Planning for Sustainable Manufacturing 

Environments - CAPP-4-SMEs”.  

Another notable direction of research in the area concerned is represented by studies focussed on systematic 

modelling and reusing of process knowledge. Research papers of  Zheng et al. [2], and later of Liu et al. [31]  

can  be given as appropriate examples. While the former proposed a visual approach to rapid process 

configuration by reusing knowledge-based rules, the latter outlined an algorithmic approach for reusing the 

manufacturing information in MF- based process creation, under conditions of changing part geometry. 

The possibilities for machining the mechanical components are directly determined by the functional 

characteristics of machine tools available for manufacturing. And so mill-turn machine tools are a subset of 

multi-tasking machines that can accomplish both milling and turning operations. Hereby, part types with 

both rotational turning and prismatic milling MFs are termed as mill-turn parts [3]. These part types have 

been also defined as prisronal ones in [32]. Mill-turn machines, being equipped with driven tools and 

increasingly utilized in metal-cutting industry, allow mill-turn parts to be completely machined in one single 

machine. As a result, work transfer between two (or even more) turning and milling machines can be 

avoided. The work transfer might be required, however, when a process alternative assume the use a mill-

turn machine of insufficient number of CNC-controlled axes. Since TAD is the inherent attribute of various 
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machining technologies [25], the significant issue with setup grouping is the proper assignment of relevant 

TAD to MFs. There are valid rules discussed in references that manage feature precedence and respective 

sequencing for setups [4]. It might be related to features having more than one TAD. TADs should be 

assigned to every feature according to the priorities of tight tolerance feature relationships, the number of 

features, and finally good machining practices. As reported also by the same authors, providing more TADs 

by a  machine tool can reduce the number of needed setups. However, MFs of one TAD are not necessarily 

machined in one setup, and MFs machined in one setup are not necessary accessible from the same TAD. 

Most of the research work on machining feature sequencing focused either on prismatic or rotational parts [3, 

33]. In any of the instances machining a feature requires the lining up between its working direction and 

machine tool Z-axis  that coincides with the spindle direction -the tool axis [26]. The feature working 

direction is equivalent to the TAD vector located along the machine spindle axis. Like e.g. in [23] as well as 

in [34] in regards to large- size parts, it can be represented by the direction cosines computed with respect to 

an assigned workpiece linear coordinate system. In this regard, planning potential part setups within 

machining process sequencing is affected by workpiece placement and its orientation in machine working 

space. The decision making on selecting a potential setup is in particular of importance with regard to 

machining features, whose working directions are rotated with respect to the workpiece coordinate system. It 

might be referenced to this kind of features made on both multi-axis milling centres and mill-turn (multi-

purpose) machines. In the latter case in particular, machining prismatic features on four- or five-axis 

machines need a proper part orientation with regard to the spindle axis of the driven milling or drilling tools. 

To sum up, many researchers have focused on feature sequencing problem but among the existing research 

only a few envisaged the machine-neutral (generic) formulation of feature clusters for adaptive CAPP. 

Commonly used TAD information seems to be insufficient for the effective setup planning and operation 

sequencing. Proposed by the authors, the unique information data model is based on formalised description 

of machining features for mill-turn parts. Consecutive setups as groupings of features are rapidly formulated 

in iterative fashion considering the factors of TAD and additionally the feature location as well as 

geometrical dimensioning and tolerance specification. Setups generated at supervisory level, are next merged 

on a single machine or across different machines in execution control, considering the availability and  

processing capabilities of machine resources.  
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3. Decision-making framework for optimal process plan selection in generative CAPP 

Coming ahead the advocated decentralisation in CAPP system architecture and the concept of DPP for 

increased system responsiveness in dynamic environments, a two-stage hierarchical approach to setup 

planning in generative CAPP was proposed by the authors (Fig. 1). Its former stage is primarily for generic 

process sequencing which involves grouping features into clusters correspondingly to formed setups. 

Machining process precedence is therein determined, using appropriate  machine-neutral reasoning scheme 

based on MF attributes, part functional relationships as well as rules underlying applied machining 

technologies (strategies). The latter stage in turn, is meant to make machine-specific decisions, associated 

with adaptive setup  merging and alternative machine allocation to definite setups, with more focus on such 

dynamic issues, as: the capability of available machine resources as well as real-time operational scheduling 

constraints. The setup-related planning stages are followed by machine-specific operation planning, once the 

determined setup plans are downloaded to appropriate CNC controllers via the execution control function of  

DPP. Apart from the detailed planning of operation, the two-tier hierarchy of supervisory CAPP might be 

considered suitable for separating generic decisions from those specific to machines. In the present paper a 

feature-based reasoning approach is provided for generating machining sequence  in the units of work setups, 

along with  the associated  assignment of machine alternatives (shown as shaded boxes in Fig.1), and 

presented in detail through following sections. 

3.1. Generic machining process sequencing scheme 

Capturing only geometric information of MFs themselves from a CAD model is insufficient for DPP, which 

also requires knowledge of technological rules and their suitable formalization. More recently, PMI 

representation is provided with modern CAD software to specify GD&T data which contains datum 

references, associated with edges and faces of a related part model. GD&T annotations become, after 

exporting to a STEP file, a part of the input information for CAPP. Digital form of  PMI representation, 

associated with a CAD model, allows automated usage of represented GD&T data by CAPP functions to 

designate the feature precedence and to set datum references. The approach suggested in this research also 

assumes heavily reliance on input data model incorporating part functional requirements and in particular 

GD&T references.  In this regards, currently available and suggested solutions, concerning the provision of 

necessary input data for supervisory CAPP  have been outlined in Fig. 2. 
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The supervisory planning function of CAPP  for machining the definite category of part types has been 

boiled down to determining generic setups, sequencing these setups and their constituent MFs. Generic 

process planning is accomplished in this research in the units of setups, utilising  developed classification 

scheme (presented in the following section), based on the differentiators related to geometric properties and 

spatial relations among features of a workpiece as well as those associated with applied machining strategies. 

Features in particular are grouped into subsequent setups based on respected working directions, predefined 

ranked datum references, correspondingly to workpiece locating directions (setup orientation). Sequencing 

setups and feature precedence are decided based on the trade-off among the known and often conflicting 

geometry- and technology-related rules, given in adequately formalised form. In essence, this applies mainly 

to the multi-TAD features. 

An extended feature classification for mill-turn part types, a.e. including both rotational and prismatic 

features was developed in this research, considering process capabilities of contemporary multi-axis CNC 

machine tools. The classification framework was assumed as underlying the reasoning approach to optimised 

process plan selection for parts with relatively high degree of complexity, commonly found in industrial 

practice. 

3.1.1. Mill – turn parts related feature taxonomy 

For process planning efficiency reasons, the authors propose an extended feature classification scheme 

correspondingly to the needs of rational process plan selection for addressed category of  part types. It is 

meant to be applicable to machining rotational and prismatic features present in those parts, considering the 

use of  machines of various configurations, and including  advanced multi-axis milling or turning centres as 

well as multi-purpose machines. As indicated yet, adaptive setup defining in computer supported process 

sequencing boils itself to examining the tool accessibility for different types of machine tools. Hence, the 

developed classification scheme is based on such attributes: as feature working directions and their location, 

to perform all the working steps required by a given work part.  

Thus, an individual feature Fi of a definite type can be denoted as an ordered four-tuple:  

gi = [cos {TADi, xwp}, cos {TADi, ywp}, cos {TADi, zwp}, Lid]                                                 (1) 

where: cos {TADi, xwp}, cos {TADi, ywp}, cos {TADi, zwp} are the cosines of the angles between the axes of 

the workpiece coordinate system and the TAD of the feature (feature z-axis), and Lid – the numeric 
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differentiator of feature location, set to 1 or 0:  Lid = 1 if the feature symmetry axis/plane coincide with part 

datum axis or plane respectively, Lid = 0 if the tool axis during cutting or the feature symmetry axis or plane 

be off-datum axis or off-datum plane (positional features) or if the feature is asymmetric.  

According to the feature location and orientation, commonly found turning and prismatic features can be 

classified into independent affiliation groups gh. As a result, the finite set G is formed of the generic feature 

affiliation groups gh , as follows:  

G = {gh}, where h = 1, …, hmax                                                                                               (2) 

 In the wake of the above, based on the analysis of processing capabilities of contemporary multi-axis CNC 

machines applied to machining mill-turn parts and related technological knowledge, a definite set of 

appropriate generic feature groups and classes could be designated, as reported in Table 1. Correspondingly, 

a mill-turn part shown in Fig. 3 was used as an example to illustrate the concept of the implied classification 

scheme. According to the workpiece coordinate system in Fig.3 there exist three working directions (3 

TADs) for machining the sample part. Two of them, and namely +Z and –Z also termed as “left” and  “right” 

working directions respectively, coincide with the axis of part rotation (the datum axis). The third one 

defined as “side” direction is perpendicular to the other two, that is basically typical for part types under 

consideration. It is to be noted that such a part orientation allows to machine the rotated features, placed on 

part circumference, by means of a mill-turn machine. The work part selected includes distinctive features of 

various type and specific placement, which can be adequately assigned to the distinguished groups and 

classes, as shown in Table 1. There are typical turning features placed in-datum axis (Lid = 1) and accessible 

to a tool either from +Z or –Z TADs, falling into the groups g1 or g2 respectively, that require at least 2-axis 

lathes to be machined. Different values of the direction cosine (cos {TAD, zwp}) related to those feature 

imply the need for a setup change either by using a counter spindle or changing the work part position in the 

chuck by 180 for clamping it of the other side. Hence, a face (F2), an axial hole (F3) and an outer cylindrical 

surface (F5)  might be assigned to the group g1, while a face (F1), outer cylindrical surface (F4) along with the 

F3 since it can be also accessed by a tool from -Z direction, to the group g2.  Due to the presence of features 

that have more than one TAD, like e.g. the feature F3 mentioned above, the adequate reasoning schema based 

on GD&T, technological rules and good manufacturing practices must be followed. This is intended in order 

to ensure the appropriate assignment of each feature to a definite TAD, and will be discussed later in the 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


12 

 

following sections. Two more groups, as  g3 and g4 of the C2 class generally include typical milling or 

drilling positional features with off-datum axis location (Lid = 0), and with tool accessibility along the axis of 

part rotation. Such features can be symmetric or asymmetric and might require a 3-axis lathe equipped with 

driven tools or a 3-axis milling machine at the least, to be machined. The exemplary compound feature F6 of 

four holes (Fig. 3) might be attributed both to the group g3 (cos {TAD6, zwp} = 1) and to g4 (cos {TAD6, 

zwp} = -1). The alternative assignments for F6 are allowed because of same reason like in case of the F3 

feature, where the most suitable feature allocation be decided considering precedence relations that arise 

from tolerance and technological constraints. As seen, the rectangular pocket (F7) has been assigned to the 

group g4 (Lid = 0) even though its symmetry plane coincides with  datum axis plane since while machining, 

the tool axis will move beyond the datum plane. The other two groups: g5 and g6, technologically similar to 

g3 and g4, are dedicated to features whose working directions are principally perpendicular to the main datum 

axis of a mill-turn part. Machining features attributed to the group g5 in particular would require at least a 3-

axis lathe with driven tools or a 3-axis milling machine. The through slot F8 (Fig. 3) whose symmetry plane 

passes through the part datum axis is due to be classified to g5 with Lid = 1, since the tool axis while its 

machining will be always in-datum axis. Wider slots whose machining need multi-passes of a tool in y-z 

plane would be qualified to the group g6 with Lid = 0, like the compound feature F9 of two off-axis plane 

holes. Features affiliated to group g6 might be symmetric or asymmetric and require the use of at least a 4-

axis turning centre with driven tools or a 4-axis milling machine for a complete part machining. The last of 

the listed features F10 which is a plane surface might be the representative one for a few groups including not 

only the most suitable g3 but also g5 or g6 groups. As suggested before its appropriate allocation would be 

chiefly decided by feature GD&T based relations, and manufacturing resource capabilities as indicated yet 

with regard to the assignment of the features F3 or F6. 

A proposed method of a description of features composing mill-turn parts is relatively simple and based on 

commonly used, mostly in 3-axis machining, TAD with additional identification of their location with 

respect to datum features. It is devoted to mill-turn parts with typical turning and milling features by STEP-

standard (AP224, AP 242). Its open architecture, however, allows for adding further groups and auxiliary 

identification numbers for new features of more complex parts requiring extended possibilities of machine 
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tools like 5-axis lathes or milling machines. It can be also developed individually for specific set of available 

machine tools.  

3.1.2. Representation scheme of feature relationships in an input data model 

As mentioned earlier feature relationships strictly depend on the PMI representation with annotations related 

to GD&T data extracted from  CAD models as the part of the input data for CAPP. The sample mill-turn 

workpiece, consisting of 16 MFs of definite technological requirements, is presented in Fig. 4. It is further 

used as an illustrative case study to explain the operation of developed reasoning approach to process 

selection and sequencing. The topological information accessible from a CAD model enables the 

determination of feature precedence relationships. For the sample workpiece, those relationships are 

represented by feature precedence graph and encoded in the feature precedence matrix FPM of 16 columns 

and 2 rows (Fig. 5). The matrix is formulated as: FPM = [fij] im, jn , where: m – the maximum number of 

required preceding features for a specific feature, n – the total number of features, and fij  n, as proposed by 

authors in [5]. The value of a single element of FPM matrix fij is strictly correlated with the readiness for 

machining corresponding feature #j. The numerical value 0 is assigned to the all initial features (of the 

highest level), in the first row of the FPM matrix. The child features are given then the values 

correspondingly to the numbers of directly preceding features. Hence, if the feature #u needs the feature #v 

to be completed, the value of f1,u = v; and if the feature #u has more than one parent, e.g. the features: #v and 

#w, two elements: f1,u = v, and f2,u = w occur in the column #u. The value of -1 for fij with 1im, jn, 

indicates no other relationships apart from those coded in the first row (i = 1). 

In order to determine the feature precedence, the data input model needs to be supplemented with working 

directions for individual MFs and related positional tolerances, such as: circular and total run-out, 

parallelism, perpendicularity, angularity, position, concentricity, symmetry as well as angle and linear 

dimensional tolerances. This supplementary input information acquired from STEP file and associated with 

the test part is given in Table 2.  

Clearly, interacting features make the determination of proper machining precedence more difficult. Hence, 

the detailed analysis of GPS specification is needed to streamline a decision making in generative setup 

planning and process sequencing. An appropriate datum reference frame (DRF) is designated as a reference 

coordination system, selected to secure the location of other features in the workpiece [26, 35, 36]. Owing to 
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this, MFs with functional relationships, expressed in terms of tolerance types can be grouped together to be 

machined in specific single setups. Considering the above, based on the GPS specification and using 

adequate good machining practices, all the reference features for the test part were identified. The established 

datum features are given in the last column of Table 2. As it can be noted in the drawing of a sample work 

part (Fig. 4), the axis of feature F3 coincides with the rotational reference axis of the part (indicated as the 

datum A). This might justify pointing out this entity as the primary datum axis. Moreover, machining 

features: F1 and F3 (as the adjacent face) were therefore selected as the primary locating surfaces. Those MFs 

are to be machined at the beginning of the process, with the reference to raw feature faces F2 and F6 located 

on the blank, which in turn were chosen as setup datum of a first rank.  

3.1.3. Algorithm for generic machining process selection and sequencing 

The alternative (generic) setup planning in CAPP applications not only needs to reason on the low-level 

CAD geometric and topology information including GD&T annotations but it also requires taking into 

account specific technological data. As indicated in the previous section (Table 2),  it involves in particular 

the need for the specification of such attributes for each of the part feature, as: the working direction and its 

location as well as the determination of feature datum references within the DRF. As suggested in this 

research, the former attribute is denoted by means of the ordered four-tuple. The latter one in turn, associated 

with feature datum references might be assigned also by the user, accordingly to GD&T data specification, 

based on tolerance relationships and the adequate rules of machining technology.  

A relevant algorithm for generic setup planning and process sequencing for the definite category of 

mechanical parts is discussed in this section, and depicted in the form of a flowchart in Fig. 6. Consequently, 

the developed algorithm utilises the implied input data components, along with the FPM matrix as its 

inseparable part, while assuming the procedure for simultaneous feature clustering and forming subsequent 

setups of generated process plan. 

In order to enable an appropriate MF grouping and take control over the entire decision making process in 

the algorithm, the sequence of the datum references for a work part and their dependency has to be 

determined. Hence, at its preliminary stage, the datum dependency hierarchy is formulated using  the matrix 

DHM = [frs] rrmax, ssmax , with the numbers of designated features as its entries, where: r – the rank of datum 

reference termed respectively, as: primary –, secondary datum reference, etc., s – the number of reference 
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(datum) features creating the specific datum reference. The related hierarchy of datum references (the rank 

order) can be established based on rules of machining practice and graph theory formulations [4]. The related 

task can be also accomplished by a suitable sorting algorithm, as reported in e.g. [1], where the item located 

at the top of sorting results would be the primary datum reference. As a matter of fact, a definite reference 

feature (RF) encompasses the set of all reference elements (faces). The appropriate DHM matrix determined 

by tolerance relationships among the MFs, and created for the illustrative instance based in particular on the 

specific data of  Table 2, is given formally in Fig. 7. 

It can be noted that for technological reasons, the reference faces (raw surfaces) of feature F6 and F2 have 

been selected as preliminary datum reference (of rank r = 1) and correspondingly a primary direction for 

workpiece locating, in prior to machined surfaces of  F3 and F1  which constitute the primary datum reference 

(r = 2). 

Thus, forming consecutive setups is strictly arranged according to the rank of datum references. Moreover, a 

significant role is attributed to the initiated feature placement and orientation matrix FPOM of 4x4 

dimensions. Therein, MF placement and orientation are determined within the workpiece coordinate system, 

defined through a set of workpiece linear coordinates and the direction cosines (each MF z-axis). Using that 

dummy matrix, respective features can be clustered by their attributes (the working direction and placement) 

into created subset(s) sl   associated with a relevant affiliation group (AG), and then the subsequent setups sui. 

The iterative clustering procedure entails checking the involved features for readiness and the accessibility to 

be machined. The former is associated with considering constraints included in the FPM matrix, and the 

latter with the check of respective RFs for the envisaged feature, and consistently with those given in the 

DHM matrix. It should be noted that the expected transition to the next setup occurs with the change of 

working direction, whereas the entire reasoning process is continued until the respective set of features is 

emptied. As a result, the iterative reasoning framework designated as inherent for mill-turn parts, assumes 

searching for adequate features accessible to tools first along the direction parallel to rotational reference 

axis, and next along the direction perpendicular to it. The respective analysis could further incorporate the 

direction oblique to the part rotational axis, however, considering the extended need for intelligent process 

planning for five axis mill-turn part components, using multi-purpose machine tools. The developed 

algorithm used for the data related to the illustrative case generates seven subsets sl  of features forming the 
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set SU of four setups sui as it is shown in Table 3. Rank of the datum reference is the key index controlling 

feature clustering into subsets and setups. For a preliminary datum reference (of rank r = 1) two subsets s1 

and s2 forming a subsequent setup su1 are generated during two first iterations of a loop FOR (k = 1, 2). No 

subset is generated for a preliminary datum reference when the loop FOR repeats for k = 3, 4, although 

attributes of features F14, F15 and F16 are coincided with adequate vectors v = FPOM(k, :). Consecutive 

subsets s3 ÷ s7 are found and setups su2 ÷ su4 formed during  iterations of a loop FOR after three successive 

changes of the working direction with respect to the reference z axis, using the formula 

(FPOM(1:2, 3) = (FPOM(1:2, 3)*(-1). In the illustrative case, the rank of the datum reference frame must be 

also changed (r = r + 1) after the transformation of the working direction, otherwise there is no access to the 

un-machined features. The detailed  procedure of the proposed algorithm with the elements of Matlab code is 

presented numerically in Appendix A. 

3.2. Setup merging for machining process alternatives 

Setup is the commonly used job dispatching unit to assigned machines which is the domain of CAM. In this 

context the matter of importance was the consideration of the possibility for linking setups among machine 

tools available in a definite machining facility.  

3.2.1. Modelling capabilities of machine resources 

With regard to machine-specific level of the implied process planning scheme, it is assumed that machines 

available and taken into account in the planning procedure for analysed mill-turn parts constitute a finite set 

M:  

M= {mn}, n = 1,…,nmax.                                                                                                            (1) 

The process capability of a single machine mn from the set M can be defined in terms of machining 

feasibility of generic feature groups gh, what can be formally written in a vector CMn:  

CMn = [gn,1, … ,gn,h] Mmn  , Ggh                                                                                  (2) 

where: gn,h = 1 if a group gh is feasible on a machine mn, and gn,h = 0,  if otherwise. 

It allows in turn to assess the unique distribution of processing capabilities among different machine tools 

available in an existing machining facility in terms of shared and exclusive sets of definite feature groups and 

classes [37]. That is particularly essential for adaptive process planning and in particular appropriate process 

plan selection. 
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Referring to a set of analysed feature affiliation groups gh (Table 1) the capabilities of four machine tools of 

a set M were defined using the notation of a vector CMn:  

m1: CM1 = [1 1 1 1 1 1] – four-axis mill-turn (M-T) centre with controlled axes x, y, z, c 

m2: CM2 = [1 1 1 1 1 0] – three-axis mill-turn (M-T) centre with controlled axes x, z, c, 

m3: CM3 = [0 0 1 1 1 1] – three-axis milling centre M with controlled axes x, y, z, 

m4: CM4 = [1 1 0 0 0 0] – two-axis lathe T with controlled axes x, z. 

The generic description of machine capabilities in terms of determined feature affiliation groups shows that a 

four-axis mill-turn centre (m1) has the highest technological possibilities and can be utilised for complete 

machining of mill-turn parts consisted of any feature corresponding to the set G – as outlined in Fig. 8. A 

two-axis lathe (m4) is limited to typical turning features and a three-axis milling centre (m3) to typical milling 

features. A three-axis mill-turn centre (m2) does not provide all necessary TADs for machining parts 

composed by any feature from a group g6. Complete machining of such parts is infeasible on a machine m2 

and requires another machine tool: m1 or m3. 

3.2.2. Adaptive setup merging and machine assignment 

Adequate process alternatives can be generated through adaptive setup merging, under consideration of 

availability and  processing capabilities of machine tools. The relevant algorithm developed and appropriated 

for machine assignments to generated setups is depicted in Fig. 9. This algorithm explores the possibility for 

allotting individual machines from a set M, with the capabilities encoded in the vector CMn, to the set SU of 

consecutive (generic) setups sui formed by the algorithm outlined in section 3.1.3. Accordingly, the single 

setup sui is included into the newly created set Sn related to a definite machine mn if all associated features 

belonging to the specific generic group(s) gh (see Table 3) can be machined on it. Merging the determined 

setups on a single machine mn is feasible if all setups from SU can be realised on that machine. Merging 

setups across different machines allows to distinguish other process alternatives, only if machining all 

designated features is feasible using those machines. If this condition is not met, such a concept of setup 

merging is infeasible in a specified system.  

The following sets Sn of setups sui, feasible on available machines respectively, are created by the algorithm 

for the illustrative case of machining a mill-turn part:  

S1 = {su1, su2, su3, su4} for m1, 
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S2 = {su1, su2, su3} for m2, 

S3 = { su3, su4} for m3, 

S4 =  for m4. 

Under the circumstance, both types of setup merging can be considered in studied case.  As seen, merging 

the setups sui on a single machine is feasible only for m1, as the set S1 has the cardinality of imax = 4. After 

excluding m1 from the set M, other process alternatives are possible with merging setups across machines m2 

and m3 due to the condition S2S3= 4. Setup realisation is  impossible on m4 because the set S4 has the 

cardinality of 0, although features from the subsets s1 and s3 can be made on that machine. Process 

capabilities of machines available for part fabrication in the provided case study are depicted  in Table 4.  

Consequently, all the feasible  process sequences for the exemplary part of the demonstrative case study can 

be depicted in the form of a graph model, based on formalism of the Business Process Modelling Notation 

(BPMN) [38], as shown in Fig. 10. Accordingly, the sequence model contains, in particular, such routing 

constructs, as: XOR decision gateways for selecting one out of a set of mutually exclusive machine 

alternatives for the determined (generic) part setups (i.e. XOR – split) as well as XOR merge gateways (XOR 

– join) for joining the mutually exclusive machine alternatives into a definite process sequence. As a result, 

24 process alternatives might be discerned for the discussed instance, which are denoted as  adequate 

machine sequences. Among them, there are 15 combinations of process sequences without unnecessary 

backtracking part moves to machines previously used in machining the part (machine repetitions). The 

proper decision on machine allocation to consecutive setups under the circumstances of  nonlinear process 

planning and dynamic environment is due to be made based on the criteria of maximised process efficiency 

and/or minimised total cost, as proposed in [13]. Searching for the optimum machine assignment alternatives 

can be accomplished by means of a branch and bound method that was successfully applied to solve this type 

of task in [5, 20]. 

Machining shops might be considered as Flexible Manufacturing Systems (FMSs) with inherent routing 

flexibility that basically operate in dynamic conditions and follow the Make-to-Order (MTO) strategy for 

handling orders in selected time periods. Thus, in the proposed approach, due-date short-term scheduling 

strategy is envisaged that allows for the resource pre-emptions. Therein, relevant schedules are developed at 

the stage of execution control, considering the constantly monitored status of available machine resources. 
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Consequently, operation sequencing can be successfully performed using the rule of minimum remaining 

slack, as the priority rule of parts at time t [39]. 

The rule can be formally defined, as given below: 

min)( )(,  tjkkk PtDtZ                                                                                                          (3) 

where: t – time at which a scheduling decision is to be made, k –part type index,  j – operation index, Dk – 

due date of a part of type k, and Pk, j (t) – sum of processing times for all operations following (and including) 

the j-th operation of a part type k. 

The Work-in-Next-Queue (WINQ) heuristic widely used with regard to operational planning of FMSs [39] is 

suggested as job dispatching rule to available machine tools. It entails selecting that machine to process the 

next operation for a definite part which has the least work, i.e. the machine with minimum priority value of 

Zm (t) at time t, defined as follows: 

1,,1, )()(   jkmjkm MmfortWtZ ,                                                                                   (4) 

where: m – machine index, Mk, j+1 – subset of machines capable of processing the (j+1)-th operation of the k-

th part type, Wk, j+1, m (t) – total work content of the m-th machine queue, i.e., the sum of the imminent 

operation times of the Nk, j+1, m (t) parts in that queue, correspondingly to the (j+1)-th operation of the k-th 

part type at time t. 

The developed approach assumes that decisions on merging generated setups into operations are made in a 

dynamic manner, based on the event driven approach. Thus, the remaining slack times for parts are 

computed at time intervals, determined by the termination time of consecutive part setups, and included in 

the prototyped schedule. The specific optimisation task boils itself to finding the best way of distributing the 

generic process plan among available machines and proper merging the assigned setups together. Thereby, 

the objective function of the optimization model is aimed at the minimising the total number of machine 

changeovers. In this light, the appropriate alternatives of process sequencing with respect to machining the 

part type used in the illustrative case study have been outlined in Fig. 11, as the excerpts of prototyped 

operational schedules. 

4. Discussions  

In production engineering practice, process planning is often accomplished irrespective of resource 

availability on a definite shop floor. This is due to the missing interconnection with the downstream 
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engineering functions including scheduling or job dispatching. Hence, targeting decentralisation in CAPP 

system should be recognised as the appropriate strategy. Considering the above and the class of parts 

represented by the test part of the case study, a multi-level hierarchical approach to setup planning and 

operation sequencing in generative CAPP was developed by the authors. The proposed algorithmic 

framework possesses similar functionalities, including the aspects of adaptability, as compared to systems 

presented in outcomes of the EU-funded FP7 project, and reported in detail in e.g. [3, 28-30]. It remains in 

effect except for the issues related to monitoring the manufacturing resources via a sensor network which is 

beyond the scope of the research work. The novelty of the proposed system, relative to aforementioned ones, 

lies in supporting process planning activity with the use of the data information model that includes machine 

related feature taxonomy and the generic description of the machine tool capabilities in terms of determined 

feature affiliation groups.  The consecutive benefit of our approach is a dynamic merging generated setups 

into operations at the execution control level considering capability and availability of machine resources. 

This can significantly increase the productivity owing to rapid adjustment to changing manufacturing 

environment. As a result, machines downtime in a machining facility and the impact of uncertainty can be 

minimised under dynamic environment of system operation. Machine alternatives in routing constructs are 

denoted with the use of XOR decision gateways. Those might be readily implemented using the technology 

of FBs with embedded optimization algorithms on the manufacturing equipment, as advocated in papers 

dealing with distributed adaptive CAPP based on FBs and Cloud concept  [3, 28-30]. 

5. Conclusions 

The feature-based reasoning approach for generating machining sequence along with the dynamic 

assignment of machine alternatives is provided in this research considering the adaptability as the essential 

principle. It assumes the reliance on input data model incorporating part functional requirements and GD&T 

references. The extended feature classification for addressed category of part types, with the unique encoding 

manufacturing and topological information as an ordered four-tuple are proposed.  It is meant to be 

applicable to machining of both rotational and prismatic features present in mill-turn parts, with regard to the 

use of  machines of various configurations. The developed classification scheme is based on such attributes 

as feature working directions and their location, to efficiently perform all the working steps required by a 

given work part. With the use of the proposed taxonomy and based on the analysis of processing capabilities 
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of contemporary multi-axis CNC machines applied to machining mill-turn parts and related technological 

knowledge, a definite set of appropriate generic feature groups and classes could be designated.  

Data related to machining and the attributes of datum features, represented in numerical form and used in the 

relevant algorithm, allow for the allocation of MFs to determined affiliation groups, and generating 

subsequent of setups. Moreover, a unique algorithm, appropriated for the assignment of machine resources to 

generated setups has been proposed. Adequate alternatives of process solutions can be generated through 

adaptive setup merging on a single machine or across available machines under consideration of related 

processing capabilities. As a result, machines downtime in a machining facility and the impact of uncertainty 

can be minimised under dynamic system operation environment. The main contribution and benefits of this 

work can be summarised as:  

  Unique information data model based on formalised description of machining features for mill-turn parts, 

including feature tolerance relationships as well as the feature location and orientation irrespective of 

machine tool coordinate system; 

  Rapid formulation of generic consecutive machine-neutral (generic) setups as feature clusters by 

established working directions, using the reasoning scheme of an iterative algorithm; 

  Provision of robust process planning and job dispatching facility under consideration of the availability 

and the capabilities of machine resources in order to minimize machines downtime and the impact of the 

uncertainty factor under dynamic environment of the system operation;  

  Possibility for merging generated setups into operations in a dynamic manner, based on the event driven 

approach and FMS-related mechanical parts manufacturing;  

  Development of relevant operational schedules for machines at the execution control level, considering 

their capabilities and the availability status in definite time frames.  

 

Our further research aims at coupling the developed process selection and sequencing approach with DPP 

activities, through expanding the modelling scheme and in particular the extension of proposed feature 

classification by more complex multi-axis parts. Part routings modelled with the use of XOR decision 

gateways can be transformed into event driven FBs with embedded optimization algorithms on the 

manufacturing equipment. The application of an appropriate data acquisition system as a supplement to the 
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developed framework might allow for the utilization of a Cloud-based manufacturing approach to support 

optimal process planning.   

 

 

Appendix A 

The following calculations with the elements of Matlab code describe the developed algorithm presented in 

Figure 6, using numerical data related to the illustrative case.  
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Figure and Table captions: 

Fig. 1. Outline of the system solution for optimal process plan selection in CAPP applications 

Fig. 2. Extracting the input data from CAD models for supervisory process planning 

Fig. 3. Exemplary mill-turn sample part type inclusive various feature types and the working directions 

(designated as the vectors of computed direction cosines), and used with MF taxonomy 

Fig. 4. A sample work part used in an illustrative case study with selected technological and some 

geometrical requirements, along with the specification of present machining features Fi 

Fig. 5. Feature precedence graph (a) and the related FPM matrix for the sample workpiece (b), utilised as an 

illustrative case study 

Fig. 6. Flowchart of the algorithm for generic process selection and sequencing for mill-turn parts 

Fig. 7. Datum dependency hierarchy matrix (DHM) for the instance case study 

Fig. 8. Distribution of individual machine capabilities in terms of definite feature affiliation groups (and 

classes) 

Fig. 9. Flowchart of the algorithm for the assignment of machine alternatives to generated setups 

Fig. 10. Graph model of alternative process sequences for the workpiece of the illustrative case study 
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Fig. 11. Prototype schedule solutions with alternative process sequences related to machining the part of the 

case study; merging all setups into a single operation performed on m1 machine (a), merging setups across m2 

and m3 machines and forming two operations (b), a variant with setup merging across m2 and m3, with the 

pre-emption of the former resource (c) 

 

 

Table. 1. Specification of distinctive (generic) feature affiliation groups and classes 

Table. 2. Machining feature oriented information data model of the test part 

Table. 3. Results of feature clustering and their assignment into the setups determined in the provided case 

study 

Table. 4. Process capabilities of available machine tools with respect to part setups determined in the 

illustrative case study research 
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Fig. 1. Outline of the system solution for optimal process plan selection in CAPP applications 
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Fig. 2. Extracting the input data from CAD models for supervisory process planning 
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Fig. 3. Exemplary mill-turn part type inclusive various feature types and the working 

directions (designated as the vectors of computed direction cosines), and used with MF 

taxonomy 
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Fig. 4. A sample work part used in an illustrative case study with selected technological and 

some geometrical requirements, along with the specification of present machining features Fi  

 

“Machining process sequencing and machine assignment in generative feature-based CAPP 

for mill-turn parts” 

M. DEJA & M. S. SIEMIATKOWSKI
 

y z 

0wp 

x 

F11 

F2 

F6 

F3 2xF4 

F5 F10 

F8 

3xF9 

F7 

F1 

F12 

F15 
F13 

F16 

F14 

Figure 4



 1 

Figure 5 

 
 

 

 

 
 

 
Feature # F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16  

FPM = 
 0 0 0 3 0 5 1 7 7 7 2 6 6 6 12 13  

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 11 -1 -1 -1  

 

Fig. 5. Feature precedence graph (a) and the related FPM matrix for the sample workpiece (b), 

utilised as an illustrative case study  
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Fig. 6.  Flowchart of the algorithm for generic process selection and sequencing for mill-turn 

parts 
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Fig. 7. Datum dependency hierarchy matrix (DHM) for the instance case study 
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Fig. 8. Distribution of individual machine capabilities in terms of definite feature affiliation 

groups (and classes)  
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,,...,1,:{subsets create,...,1 maxmax ijandjjsussSiiforSUsuMm ijjnin  if all 

generic groups gh  (if any) associated with sui , are non-zero coordinates of the CMn vector} 

STOP 

Finite set of machines M = {mn}, n = 1, … , ,nmax; 

Finite set of generic feature affiliation groups G = {gh}, h = 1, …, hmax ; 

Finite set of setups formed SU = {sui}, i = 1, …, imax ; 

Vector of a machine capability, in terms of generic groups: CMn = [gn,1, …, gn,h] Mmn  ,  

where: gn,h = 1 if group gh is feasible on machine mn, and gn,h = 0,  if otherwise. 

List the alternative solutions concerning machine allocation to the setups formed 

START 

Checking setup merging on a single machine according to the decision frame given below: 
 

,:if maxiSMm nn   
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Fig. 9. Flowchart of the algorithm for the assignment of machine alternatives to generated setups 
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Figure 10 
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Fig. 10. Graph model of alternative process sequences for the workpiece of the illustrative case 

study 
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Figure 11 
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Fig. 11. Prototype schedule solutions with alternative process sequences related to machining the 

part of the case study; merging all setups into a single operation performed on m1 machine (a), 

merging setups across m2 and m3 machines and forming two operations (b), a variant with setup 

merging across m2 and m3, with the pre-emption of the former resource (c) 
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Table. 1. Specification of distinctive (generic) feature affiliation groups and classes 

Feature class and 

affiliation group 

Feature working direction and 

location*
)
 

Representative features 

denoted for a sample part in 

Fig. 3 

C1 
g1 [0, 0, 1, 1] F2, F3, F5 

g2 [0, 0, -1, 1] F1, F3, F4  

C2 
g3 [0, 0, 1, 0] F6, F10 

g4 [0, 0, -1, 0] F6, F7 

C3 g5 [a, b, 0, 1] F8, F10 

C4 g6 [a, b, 0, 0] F9, F10 

*)
 given with respect to workpiece linear coordinate system Owp , as the ordered four-tuple; 

a, b  <-1, 1> 
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Table 2. Machining feature oriented information data model of a test part  

Feature surface face #/ type 

Feature attributes 

(working direction and 

feature placement) as an 

ordered four-tuple: 

[x, y, z, location id.] 

Feature relationships by GPS specification in GD&T 

scheme given as a tolerance type 
Reference (datum) 

feature(s) in 

determined DRF  

Angle / 

linear 

dimensional 

tolerance 

Positional tolerance 

Orientation tolerance Location tolerance 

┴ //    

1 2 3 4 5 6 7 8 9 

F1/Face** [0, 0, 1, 1] F2 (raw) F3     F6 (raw)  F2 (raw) 

F2/Face** [0, 0, -1, 1] F1  F1    F3  F1 

F3/outer cylindrical* [0, 0, 1, 1] F6 (raw)      F6 (raw)  F2 (raw) 

F4/cylindrical outer groove [0, 0, 1, 1] F1   F3   F6 (raw)  F2 (raw) 

F5/ outer cylindrical [0, 0, -1, 1] F2   F3   F3  F1 

F6/ outer cylindrical* [0, 0, -1, 1] F2   F3   F3  F1 

F7/cylindrical pocket [0, 0, 1, 1] F1      F6 (raw)  F2 (raw) 

F8/compound feature (3 tapped holes) [0, 0, 1, 0] F7    F14  F6  F2  F14 

F9/tapped hole [0, 0, 1, 0] F7    F14  F6  F2  F14 

F10/off-datum axis hole* [0, 0, 1, 0] F3 F1 F3    F6 (raw)  F2 (raw) 

F11/eccentric hole [0, 0, -1, 0] F2   F10   F10  F1  F14 

F12/three-sided pocket [0, 0, -1, 0] F10, F11    F14  F10  F1  F14 

F13/three-sided pocket [0, 0, -1, 0] F10, F11    F14  F10  F1  F14 

F14/blind slot in datum axis plane*** [1, 0, 0, 1] F5     F3 F3  F1 

F15/off-axis plane hole  [-0,9962, -0,0872, 0, 0] F10, F11      F10  F1  F14 

F16/off-axis plane hole [-0,9962, 0,0872, 0, 0] F10, F11      F10  F1  F14 

Note: *
)
 – primary datum axis, incl. A&B; **

)
 – secondary datum plane; ***

)
 – tertiary datum feature (C) 

Table 2



 

 

Table. 3. Results of feature clustering and their assignment into the setups determined in the provided 

case study 
Rank of the setup datum 

and related feature(s) 

Generic feature 

affiliation group (gh) 
Feature cluster 

Feature subset 

designated (sl) 
Setup # (sui) 

r = 1: F6 (raw)  F2 (raw) 
g1 {F1, F3, F4, F7} s1 su1 g3 {F10} s2 

r = 2: F3  F1 
g2 {F2, F5, F6} s3 su2 g5 {F14} s4 

r = 3: F6  F2  F14 g3 {F8, F9} s5 su3 

r = 4: F10  F1  F14 
g4 {F11, F12, F13} s6 su4 g6 {F15, F16} s7 

 

 

“Machining process sequencing and machine assignment in generative feature-based CAPP 

for mill-turn parts” 

M. DEJA & M. S. SIEMIATKOWSKI
 

 
 

Table 3



 

Table. 4. Process capability of available machine tools with respect to part setups determined 

in the illustrative case study research 

Determined setup # (sui) 
Machine set M 

m1 m2 m3 m4 

su1 
s1 s1  s1 

s2 s2 s2  

su2 
s3 s3  s3 

s4 s4 s4  

su3 s5 s5 s5  

su4 
s6 s6 s6  

s7  s7  

where: m1 - 4-axis mill-turn centre, {x, y, z, c}; m2 - 3-axis mill-turn, {x, z, c}, m3 – 3-axis 

mill centre, {x, y, z}, m4 – CNC lathe {x, z} 
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Appendix A 

 

START 

INPUT: 

Feature attributes Datum features 

a=0.9962 

b=0.0872 

 

F_ATTR=[... 

    0 0  1 1 

    0 0 -1 1 

    0 0  1 1 

    0 0  1 1 

    0 0 -1 1 

    0 0 -1 1 

    0 0  1 1 

    0 0  1 0 

    0 0  1 0 

    0 0  1 0 

    0 0 -1 0 

    0 0 -1 0 

    0 0 -1 0 

    1 0  0 1 

  -a -b  0 0 

  -a  b  0 0] 

 

 

 

F_Datum=[... 

    -6 -2  0 

     3  1  0 

    -6 -2  0 

    -6 -2  0 

     3  1  0 

     3  1  0 

    -6 -2  0 

     6  2 14 

     6  2 14 

    -6 -2  0 

    10  1 14 

    10  1 14 

    10  1 14 

     3  1  0 

    10  1 14  

    10  1 14] 

FPM =[0  0  0  3  0  5  1  7  7  7  2  6  6  6 12 13 ... 

     -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 11 -1 -1 -1] 

 

Step #1: Determination of DHM matrix – explained in a text 

 

DHM=[... 

    -6 -2  0 

     3  1  0 

     6  2 14 

    10  1 14] 

 

Step #2: r=1 

 

FPOM=[... 

      0 0 1 1 

      0 0 1 0 

      a b 0 1 

      a b 0 0], where: a,b <-1,1> 

 

Step #3: l = 1, i = 1 

 

START loop for  

 

Actual datum references: DHM(r,:) = DHM(1,:) = [-6 -2 0] 

 

First iteration of a loop for, k = 1 

v = FPOM(k,:) = FPOM(1,:) = [0 0 1 1] 

  

Relevant features found? 

function: relevant1(r,k,F_ATTR,FPOM,F_Datum,DHM) 

 

function [F_number] = relevant1(r,k,F_ATTR,FPOM,F_Datum,DHM) 

F_number=find(F_ATTR(:,1)==FPOM(k,1)& F_ATTR(:,2)==FPOM(k,2)... 

    & F_ATTR(:,3)==FPOM(k,3) & F_ATTR(:,4)==FPOM(k,4) ... 

    & F_Datum(:,1)==DHM(r,1) & F_Datum(:,2)==DHM(r,2) ... 

    & F_Datum(:,3)==DHM(r,3)) 

end 

 

F_number = 

 

     1 

     3 
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     4 

     7 

Yes: F1, F3, F4, F7 

 

Features ready for machining?  

Checking FPM matrix – the detailed algorithm in (Deja & Siemiatkowski 2013) 
 

FPM =[ 0  0  0  3  0  5  1  7  7  7  2  6  6  6 12 13 ... 

      -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 11 -1 -1 -1] 

Yes: F1, F3, F4 (after F3), F7 (after F1) 

 

sl = s1 = { F1, F3, F4, F7} 

 

l = 2 

 

second iteration of a loop for, k = 2 

v = FPOM(k,:) = FPOM(2,:) = [0 0 1 0] 

 

Relevant features found? 

function: relevant1(r,k,F_ATTR,FPOM,F_Datum,DHM) 

Yes: F10 

 

Features ready for machining?  

Checking FPM matrix 

 

FPM =[ 0  0  0  3  0  5  1  7  7  7  2  6  6  6 12 13 ... 

      -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 11 -1 -1 -1] 

Yes: F10(after F7) 

 

sl = s2 = {F10} 

 

l = 3 

   

Third iteration of a loop for, k = 3 

v = FPOM(k,:) = FPOM(3,:) = [a b 0 1], a>=-1 & a<=1, b>=-1 & b<=1 

 

Relevant features found? 

function: relevant2(r,k,F_ATTR,FPOM,F_Datum,DHM) 

 

function [F_number] = relevant2(r,k,F_ATTR,FPOM,F_Datum,DHM) 

F_number=find(F_ATTR(:,1)>=-1 & F_ATTR(:,1)<=1 & F_ATTR(:,2)>=-1 ... 

    & F_ATTR(:,2)<=1 & F_ATTR(:,3)==FPOM(k,3) & F_ATTR(:,4)==FPOM(k,4) ... 

    & F_Datum(:,1)==DHM(r,1) & F_Datum(:,2)==DHM(r,2) ... 

    & F_Datum(:,3)==DHM(r,3)) 

end 

 

ans = 

   Empty matrix: 0-by-1 

No 

 

Fourth iteration of a loop for, k = 4 

v = FPOM(k,:) = FPOM(4,:) = [a b 0 0], a>=-1 & a<=1, b>=-1 & b<=1 

 

Relevant features found? 

function: relevant2(r,k,F_ATTR,FPOM,F_Datum,DHM) 

No 

 

END loop for 

 

Step #4: New non-machined features enabled? No 

 

Step #5: sui = su1 = {s1, s2} 

 

Step #6: i = 2 

 

Step #7: Dataset of non-machined features empty? No 

  

Step #8: FPOM(1:2,3)=FPOM(1:2,3).*(-1) 

 

FPOM=[... 

      0 0 -1 1 
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      0 0 -1 0 

      a b  0 1 

      a b  0 0], where: a,b <-1,1> 

 

Step #9: Any other features accessible from datum of r-order? NO 

 

Step #10: r  = 2 

 

Step #11: r  >  rmax? NO 

 

START loop for  

 

Actual datum references: DHM(r,:) = DHM(2,:) = [3 1 0] 

 

First iteration of a loop for, k = 1 

v = FPOM(k,:) = FPOM(1,:) = [0 0 -1 1] 

  

Relevant features found? 

function: relevant1(r,k,F_ATTR,FPOM,F_Datum,DHM) 

   Yes: F2, F5, F6 

 

Features ready for machining?  

Checking FPM matrix 

 

FPM =[ 0  0  0  3  0  5  1  7  7  7  2  6  6  6 12 13 ... 

      -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 11 -1 -1 -1] 

Yes: F2, F5, F6 ( after F5) 

 

sl = s3 = {F2, F5, F6} 

 

l = 4 

 

Second iteration of a loop for, k = 2 

v = FPOM(k,:) = FPOM(2,:) = [0 0 -1 0] 

 

Relevant features found? 

function: relevant1(r,k,F_ATTR,FPOM,F_Datum,DHM) 

No 

 

Third iteration of a loop for, k = 3 

v = FPOM(k,:) = FPOM(3,:) = [a b 0 1], a>=-1 & a<=1, b>=-1 & b<=1 

 

Relevant features found? 

function: relevant2(r,k,F_ATTR,FPOM,F_Datum,DHM) 

Yes: F14 

 

Features ready for machining?  

Checking FPM matrix 

 

FPM =[ 0  0  0  3  0  5  1  7  7  7  2  6  6  6 12 13 ... 

      -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 11 -1 -1 -1] 

 

Yes: F14 (after F6) 

  

sl = s4 = {F14} 

 

l = 5 

 

Fourth iteration of a loop for, k = 4 

v = FPOM(k,:) = FPOM(4,:) = [a b 0 0], a>=-1 & a<=1, b>=-1 & b<=1 

 

Relevant features found? 

function: relevant2(r,k,F_ATTR,FPOM,F_Datum,DHM) 

No 

 

END loop for 

 

Step #4; New non-machined features enabled? NO 

 

Step #5; sui = su2 = {s3, s4} 
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Step #6; i = 3 

 

Step #7; Dataset of non-machined features empty? NO 

 

Step #8; FPOM(1:2,3)=FPOM(1:2,3).*(-1) 

 

FPOM=[... 

      0 0 1 1 

      0 0 1 0 

      a b 0 1 

      a b 0 0], where: a,b <-1,1> 

 

Step #9; Any other features accessible from datum of r-order? NO 

 

Step #10; r  = 3  

 

Step #11; r  >  rmax? NO 

 

Actual datum references: DHM(r,:) = DHM(3,:) = [6 2 14] 

 

First iteration of a loop for, k = 1 

v = FPOM(k,:) = FPOM(1,:) = [0 0 1 1] 

  

Relevant features found? 

function: relevant1(r,k,F_ATTR,FPOM,F_Datum,DHM) 

No 

 

second iteration of a loop for, k = 2 

v = FPOM(k,:) = FPOM(2,:) = [0 0 1 0] 

 

Relevant features found? 

function: relevant1(r,k,F_ATTR,FPOM,F_Datum,DHM) 

Yes: F8, F9 

 

Features ready for machining?  

Checking FPM matrix 

 

FPM =[ 0  0  0  3  0  5  1  7  7  7  2  6  6  6 12 13 ... 

      -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 11 -1 -1 -1] 

 

Yes: F8(after F7), F9 (after F7) 

 

sl = s5 = {F8, F9} 

 

l = 6 

 

Third iteration of a loop for, k = 3 

v = FPOM(k,:) = FPOM(3,:) = [a b 0 1], a>=-1 & a<=1, b>=-1 & b<=1 

 

Relevant features found? 

function: relevant2(r,k,F_ATTR,FPOM,F_Datum,DHM) 

No 

 

Fourth iteration of a loop for, k = 4 

v = FPOM(k,:) = FPOM(4,:) = [a b 0 0], a>=-1 & a<=1, b>=-1 & b<=1 

 

Relevant features found? 

function: relevant2(r,k,F_ATTR,FPOM,F_Datum,DHM) 

No 

 

END loop for 

 

Step #4; New non-machined features enabled? NO 

 

Step #5; sui = su3 = {s5} 

 

Step #6; i = 4 

 

Step #7; Dataset of non-machined features empty? NO 

 

Step #8; FPOM(1:2,3)=FPOM(1:2,3).*(-1) 
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FPOM=[... 

      0 0 -1 1 

      0 0 -1 0 

      a b  0 1 

      a b  0 0], where: a,b <-1,1> 

 

Step #9; Any other features accessible from datum of r-order? NO 

 

Step #10; r  = 4  

 

Step #11; r  >  rmax? NO 

 

Actual datum references: DHM(r,:) = DHM(4,:) = [10 1 14] 

 

First iteration of a loop for, k = 1 

v = FPOM(k,:) = FPOM(1,:) = [0 0 -1 1] 

  

Relevant features found? 

function: relevant1(r,k,F_ATTR,FPOM,F_Datum,DHM) 

No 

 

Second iteration of a loop for, k = 2 

v = FPOM(k,:) = FPOM(2,:) = [0 0 -1 0] 

 

Relevant features found? 

function: relevant1(r,k,F_ATTR,FPOM,F_Datum,DHM) 

Yes: F11, F12, F13 

 

Features ready for machining?  

Checking FPM matrix 

 

FPM =[ 0  0  0  3  0  5  1  7  7  7  2  6  6  6 12 13 

      -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 11 -1 -1 -1] 

 

Yes: F11 (after F2), F12 (after F6 and F11), F13 (after F6 and F11) 

 

sl = s6 = {F11, F12, F13} 

 

l = 7 

 

Third iteration of a loop for, k = 3 

v = FPOM(k,:) = FPOM(3,:) = [a b 0 1], a>=-1 & a<=1, b>=-1 & b<=1 

 

Relevant features found? 

function: relevant2(r,k,F_ATTR,FPOM,F_Datum,DHM) 

No 

 

Fourth iteration of a loop for, k = 4 

v = FPOM(k,:) = FPOM(4,:) = [a b 0 0], a>=-1 & a<=1, b>=-1 & b<=1 

 

Relevant features found? 

function: relevant2(r,k,F_ATTR,FPOM,F_Datum,DHM) 

Yes: F15, F16 
 

Features ready for machining?  

Checking FPM matrix 

 

FPM =[ 0  0  0  3  0  5  1  7  7  7  2  6  6  6 12 13 

      -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 11 -1 -1 -1] 

 

Yes: F15 (after F12), F16 (after F13)  

 

sl = s7 = {F15, F16} 

 

l = 8 

 

END loop for 

 

Step #4; New non-machined features enabled? NO 
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Step #5; sui = su4 = {s6, s7} 

 

Step #6; i = 5 

 

Step #7; Dataset of non-machined features empty? YES 

 

Listing of the reasoning process results: 

 

Feature subsets: 

 

s1 = {F1, F3, F4, F7} 

s2 = {F10} 

s3 = {F2, F5, F6} 

s4 = {F14} 

s5 = {F8, F9} 

s6 = {F11, F12, F13} 

s7 = {F15, F16} 

 

Setups: 

 

su1 = {s1, s2} 

su2 = {s3, s4} 

su3 = {s5} 

su4 = {s6, s7} 

STOP 
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