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1 Abstract
The paper is a continuation of [1] where the foratioh of the elastic constitutive law for
functionally graded materials (FGM) on the grounfisonlinear 6-parameter shell theory with

the 6" parameter (the drilling degree of freedom) wassgmnéed. Here the formulation is
extended to the elasto-plastic range. The matkavalis based onJ, Cosserat plasticity and

employs the well-known Tamura-Tomota-Ozawa (TTQO) f@xture model with additional
formulae for Cosserat material parameters. Formaulats verified by solving a set of
demanding analyses of plates, curved and multidhrash shells, including geometry, thickness
and material distribution variation parameter asaty

Keywords: A. Functionally graded materials (FGMs), B. piasteformation, C. Finite element

analysis (FEA).
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2 Introduction

The progress in material science and technologyltess in the so-called functionally
graded materials (FGMs). The concept of FGMs wibhtinuous change of the constituent
materials in the given direction was proposed ih [8 breakthrough in development of
functionally graded materials was established leyvilorks of Japanese scientists performed in
the 80s and 90s [4]. The characteristic propedfdsGMs are: no stress concentration aroused
by discontinuity of material properties (typicalrfaiscrete composite layerwise material
distribution [5]), resistance to heat, oxidationdawcorrosion typical of ceramics with
simultaneous strength, ductility and toughnessesgntative for metals [6]. The wide range of
applications of FGMs in engineering results moétym their thermal properties [7,8]. Most
notably, the FGMs are applied in 2-dimensional ne@dé structures such as plates e.g. [9-11]
and shells e.g. [12-15]. For such structural elésjem lot of research, either analytical or
numerical, was conducted towards better undersigrafi FGMs’ behavior in various load and
boundary conditions [16-19]. Stability analysis B6G sandwich beams and thin-walled
functionally graded I-shaped beam was performef2@} and [21], respectively. Rizov [22]
evaluated the effect of material nonlinearity otadenation fracture in a functionally graded
multilayered beam. Rational use of FGMs in thinfealstructures requires the knowledge
about the stability, buckling loads and, last bat least, limit load capacity. Papers [23-25]
provide a decent account of what has been donarsn these areas. Free vibration analysis of
FGM plates and shells is topic of few recent papers26][27][28][29], results obtained there
could be applied in aerospace design, one of peds(BM shells area of application.

This work presents the elastoplastic numericalyaiglbased on Finite Element Method,
FEM) of FGM shells. The elastoplastic analysis &fMs was described for the first time in
paper [30]. The Authors applied FE method to complérmal residual stresses induced during
cooling at graded ceramic-metal interfaces. Theey investigated in [31] the influence of a
gradient exponent and graded interlayer thicknesstoess residual reduction. Aboudi and
Pindera [32] studied thermo-inelastic responseunttionally graded metal matrix composites
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with nonuniform fiber spacing in the thickness dtren. The influence of packing arrangements
of metal and ceramic phases on the thermomechatéfalmation and the local strains and
stresses was analyzed in [33]. The material prigzeof FGM shell are usually computed using
modified rule of mixtures (TTO model) proposed fmetal alloys by Tamura et al. [2].
Determination method of TTO model parameters foiMsGwvas described in [34,35]. The
method was based on inverse analysis and microvatien tests.

Jin et al [6] proposed an extension of the TTO rhadel presented the analysis of
elastoplastic crack growth in the specimen witlchoThe problem of elastoplastic deformation
and residual thermal stresses induced in the fatiwic process of FGM plates was analyzed in
[7]. Baghani and Fereidoonnezhad [9] provided satutor circular plates loaded with arbitrary
rotationally symmetric loads. The elasto-plastibdeaor of FG circular plate under low velocity
impact was investigated numerically and experimbnta [36,37]. Kalali et al [38] and Akis
[12] discussed the elastoplastic behavior of fumaily graded spherical vessels subjected to
pressure. The elastoplastic analysis of FGM plateleu termomechanical loading was
performed in [11,39]. Huang and Han [5] comparearthnalytical solution with FEM solution
for the functionally graded cylindrical shell sutfied to axial compression. The stability of
cylinders made of FGMs under various load conditinas studied in [18,40,41]. Xu et al. [42]
and Kleiber et al. [43] analyzed elastoplastic tiagkbehavior of rectangular FGM plates. In
contrast to the works described above, deformatfoRGM plates with in-plane variation of
material properties was described in [44]. Then,irfour et al. [8] developed elastoplastic
damage model, discussed implementation and integradf constitutive relation using
predictor-corrector scheme.

The aforementioned papers presented elastoplastlysass of FGM plates, vessels and
cylindrical shells. There seems to be a lack oéaesh on elastoplastic behavior of shells with
geometry other than flat and cylindrical. Hence, &#m of this paper is to provide several new

numerical results for shells with orthogonal ineatson as those used in thin-walled members.


http://mostwiedzy.pl

The materially and geometrically nonlinear analysiis be performed for irregular functionally
graded shells under mechanical loads.

The study is based on the shell theory that nayuiratiudes the 8 rotation parameter
known as the drilling rotation. Theoretical aspeatsthe theory such as strong form of the
initial-boundary value problem, jump conditions amelak forms were described for instance in
[45-48]. One of the main aspects of the formulai®ithat the shell strain measures are not
symmetric so that the theory falls into the catggof materials with internal structure e.g.
[49,50]. Particularly, here we deal with the cas&€osserat shell with rigid directors [51]. In

addition, the theory is not limited by magnitude diEplacements or rotations. Numerical

analyses are based on the sh@éfl 16-node finite elements CAM [52], with full Gauss-
Legendre integration (4x4 point rule) of the eletremays in the element surface. The elements
have 6 engineering degrees of freedom per nodearihkes them suitable tool for analysis of
shells with various intersections undergoing fimagations. Technically, the elements are based
on Lagrange interpolation polynomials. However, th&tions are interpolated using special
procedure as described in [53].

The elastoplastic constitutive law for the FGM 6gmaeter shell is formulated in the
course of the through-the-thickness integratioalastic Cosserat plane stress [49,54], using the
concept of the first order shear deformation the@gnsequently the formulation is naturally
endowed with characteristic length, since the Gasg#ane stress is assumed in each layer of
the shell. Further assumptions pertaining the féatran of the material law are as follows (cf.
e.g. [55,56]): additive decomposition of small &d@éastic strain rate and associative flow rule.

In our previous studies the elastic constitutiviatiren of FGM shells based on 2-D
Cosserat plane stress was formulated with respetttet middle [57] and neutral [1] reference
surface. The influence of: choice of material outred surface and characteristic length on the
response of the shell was evaluated in paper [@ieHhe elastoplastic constitutive model for
functionally graded shells, consistent with useeligheory, is presented. At a single layer level
plane stress Cosserat continua is assumed, withpandent fields of in-plane translations and
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drilling rotation. This results in non-symmetriéaiplane shear stresses and additional coupling
stresses, taken into account in a natural way.
3 Elastoplastic constitutive relation

We briefly summarize the formulation of the FGM stia constitutive relation as

obtained in [1] in the range necessary to statelistoplastic formulation.

3.1 Cosserat plane stress

As mentioned in previous section, assumption ofs€ad plane stress in each layer of the
shell and then, integration through thickness isatural and intuitive way of formulation
material law in nonlinear 6-parameter shell theoBopsserat continua and their various
applications were described in many papers in teiees, e.g. [58][59][60][61]. In Cosserat
media, not only position of point is defined, bugaaits orientation, thus at the given point
displacements and rotations are independent. Eadslto lack of symmetry stress and strains
tensor and additional couple stress and curvaéunsots are present. Details could be found e.g.
in [62] along with reduction of 3D Cosserat conérto plane stress or strain cases.

Let e and stressee be the generalized strains defined at each laofittee FGM shell

T

e = {em | ed} :{ €1 €, €, €|k 3k 2} ,

o’ :{om | O'd} :{0'11 020150 53| MM 2} .

(1)

The Cosserat material law between vec®rand o is described by the following matrix [1]

[Ea, Ea, O 0 0 0 |
Ea, Ea 0 0 0 0
. | Com o 0 0 G+k G-« 0 0
c=l g | , 2)
Cam | Ca 0 0 G-k G+k 0
0 0 0 0 Gl? 0
e 0 0 0 0 ol |
_ 1 _ _ N? : :
wherea, = =7 a, =va,, k(2) —G(z)m. Here the symboN , following [63], is referred

to as the Cosserat coupling number. Equation @ysltlearly the placement of thacropolar

characteristic length
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3.2 Strains in the shell space, stress and couple retauits

Employing the Reissner-Mindlin type kinematical wsgption (the First Order Shear
Deformation Theory, FOSDT) the membrane componeintise strain vectoe,, are computed
from the following equation
e,=§&,tz,, 3

where zO[-h"*, +h"] is the coordinate in the thickness directigypande, are the known
strains at the shell reference surface

€ ={en 208108l 42 Jlic 6 20 15 ek ¥ =g Jelg, 1€} (4)
In (4) labelsm, s, b, andd denote respectively: the membrane, shear, beraiddrilling part.
For the drilling part we assume that relatiep =€, holds in the shell space. It should be

stressed that the FOSDT assumption (3) is not usqaresent formulation of 6-parameter
theory anywhere else but only in postulated fortmohaof the material law in present approach.

The stress and couple resultants vector is definegspondingly to (4) as
s={N"N”N”N’QQIM M M ¥ M M ¥ ={s |sls,|s.} . (5)
The membrane, bending and drilling stress resutarg derived by integration of stresses

through the shell thicknessJ[-h", +h"]

S, =,[+h’ ode:J"'h_ [C,.(g,+2z€,)+C ,€,]dz
-h -h ﬁ,_/ T ' (6)
N Anmsm +me£b +cmd£d

Sy =J._+hh— o,zdz= J‘_*hh [Com(Z€,+ Zzsb) +2C 4€,] dz

(7)
=B, *E, &, +F &,
+h* +h*
Sy = j_h_ o,dz= J_h_ [Cin(€t 28,) +C i€ ] dz @)
=C,.E, tFy&, tH &,
where the following arrays are defined
A..=[C.dz, B,=B] =["C,zdz, C,=C] = C.dz, )
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E,=[" C.Zdz F,=F,=[" C,zdz, H,=[ " C,dz. (10)
Note that the equations (6)-(10), unlike in ourviiwas work [1], cannot be explicitly
integrated. Instead, Gauss-Legendre or Gauss-loohatdrature rule will be employed in the
calculations. As far as the transverse shear isezoed the following equation is used, with
as the shear correction factor

G O +h*
C.= , S,=D.g, =aSI h C.dze,. (11)
0 G -h

That is, the transverse shear stress-strain relasidreated as purely elastic in the present

formulation. Finally, the structure of the condiite relation is

mm

A

, s=C°e. 12

Sy B, 0 E, STHE (12)
Cc 0 F

dm

3.3 TTO formulation

Let (c) stands for ceramic anch) for metal constituent. The shell section is asstias
ceramic rich on the top surfag¢eh™) and metal rich on the bottom surfagéh”) . The power

law

v;(ﬁ%)n, V, =1-V,, n=0 (13)
describes the distribution of material constituantshe thickness direction Here n denotes
the power-law exponent. Material constituents cdddlistributed along thickness according to
various laws, detailed description and their inficee on free vibration of FGM shells is
collected in [29].

In the assumed TTO model, see e.g. [2,5,15], nasérnixture is treated as elastoplastic

with isotropic linear hardening, with propertiesdebed by the following relations
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_[atE qtE
E(2) = (q+Em EnVin * ECVCJ/(quEme +VCJ - (14)

V(Z) _chc +Vme! G(Z) - 2(1+V(Z)) ’ GY(Z) GYm( q+ Ec Emvc +ij (15)
_| a+E q+E

In the above equationk(z) is the effective Young modulug,(z) is the effective Poisson’s
ratio, G(2) is the shear modulus} denotes the so-called [5] ratio of stress to stia@insfer and
H(z) is the multilinear hardening modulus. Cosseratipaters in mixture are defined as

follows:

NZ
1-N?°

(D) =1V, +lVn,  K(2=G(2) 17)

3.4 Yield function for TTO Cosserat shell
Within the framework ofd, plasticity for Cosserat material ([64]) we asswisd function f

in the form
f=y3J,-0,, J, =aS§ tas5s; +a3m;m,-/|2' S; = 0 _%Sijckk' (18)

In (18) m, are the components of the Cosserat couple ten§of65]. The effective plastic

strain is defined as

=p _ oD 2D e . . 2 1/2 . . .

e’ _[blqrqu +bijpej[i) +b iijiij } G T _%Sij‘gkk (19)
where the dot denotes the rates of: the deviasir@in ¢, and of the 3D Cosserat micro-

curvatures;’. In calculations we assume that constamt®) , i =1,2,3 take on the following

values:a =5, 8, =%, a,=3, b =%, b,=1, b, =% but other options are also possible, see e.g.
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[64]. Thus, assuming also plane stress in each lafyhe FGM shell, we obtain from (18) and
(19)

1 3 3 3
J, 25(0’121"'0';2_0'1? 22+Z(0'212+0'22) +_20 ) Zf?(mzlé_ ngsJ (20)

;p_Z.pz 02 1-p22-'p 1.p2 2D\ 2 .p21/2
€ _|:§((e_|_1) +(€5,) )+§(612) +7361§21+_3(62) +_§((K 3K )} (21)

Classical plasticity formulae [56] is used with fassociated flow rule and isotropic linear

hardening
&P =j—, o,=c+Hy. (22)

Equations of plasticity are integrated using thasest point projection algorithm, e.g. [56], [66]
[67] which in the context of the present shellaityehas been already discussed thoroughly in

[55], therefore the details are omitted here.

4 Results

All calculations presented in this section are Hagse the own FEM code CAM [52],
written in Fortran. The used finite elements (CAMehre 16-node elements with full 4x4
Gauss-Legendre integration in the shell referenciace. Through the thickness integration of
the constitutive relation is carried out using Gausgendre or Gauss-Lobatto quadrature.
Shear correction factor, =5/6 is used in present calculations. In each calanatmiddle
reference surface approach is applied [1] whichnmadéaat integration in (9)-(10) runs from

-h"=-h/2 to +h" =h/2, where h denotes shell thickness. All quantities are giireminit

systemN, mm, MPa.

4.1 Rectangular plate under in-plane compression (I typ)
FGM rectangular plate, compressed in one directiortaken into consideration. The

dimensions, material data and reference resultobir@ined from [43]. Geometry and FEM

9
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discretization is shown in Fig. 1. Plate thicknassconstant and equal td=3.175.

Discretization makes use of the symmetry of: geoyndbading and deformation. Material

parameters are: n0{0, 0.5, 1.0, 2.0, 5.00}, E =34000C, v,=0.25 | =0.000]

E, =20620C, v, =0.3, | ,=0.0001, H, =0, gy =250, q=4500, x =G.

At first, comparison of present results and thosgaioed from [43] is presented.
Reference solution was obtained by FEM analysigeltl parameters variation with respect to
thickness is defined by equations (14)-(16) whiidg smooth distribution from pure metal to
pure ceramic layer. Here, following concept presénn [43] an initial geometrical, zero-stress

imperfection is introduced. Initial displacementroiddle point is assumed ag, ; =b/1000,

with imperfection shape provided by linear stattusion for plate deflection.

The obtained results are compared to referencei@ol{#3]. Integration in the direction
of thickness is performed using 7-point Gauss-Ldgemuadrature. Various rectangular plates
are analyzed which differ in assumédh and a/b ratios. This gives a spectrum of plates
from nearly square with width =40h to rectangulab =80h (see table 1).

Results will be presented as equilibrium curves the following coordinates

(e/&,,S1S,), where:

e = 2U, is relative shortening of plate;
a
Oy o . : : 3
. & =§ is axial strain at which metallic plate startslgieg;

m

e S= bPEXIh is average stress, wheR is total reaction collected form edge=0 ;

» § =0, isyielding stress for metallic constituent.
The computations are performed for plates with etspatios collected in table 1 and
following values of power law exponenhD{o, 0.5, 1.0, 2.0, 5.0:;0}. Limit values of

parameten give homogenous perfectly plastic metallic plate=@o) or elastic ceramic plate (

n=0).
10
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Graphs presented in the Fig. 2-Fig. 7, show thesstratioS/ S, with respect tog/ &,
and displacementy, of center point B. The authors’ curves are compaoereference solution,

only results for variant D weren't provided in [43] is worth to notice that for long plates

(variants D-F) in some analyzes, initial deformatido not conform with the failure mode
which leads to turning of the curves back to negadiirection ofw;, displacement. The present

results are in good agreement with reference swidtir variant A, B and C (short plates). For
long spans (variants E, F) larger differences asiéle, especially in equilibrium paths after
limit load point is reached. Additionally, contopliots of displacement at the end of analysis

for variant F are shown in Fig. 8.

As an additional study, convergence analysis fiewint rules of through-the-thickness
integration is conducted. The following methods aoepared: Gauss-Legendre quadrature,
Gauss-Lobatto quadrature and thickness divisiom @gjual layers (single integration point at
the center of each layer). The influence of numifeintegration points on the limit load is
investigated. Compressed plate with dimensidngt =40, a/b=2.625 and power-law
exponentn=2.0 is analyzed. Results collected in Fig. 9, Figah@ Fig. 11 show that in every
case the limit loads converge however in differ@ainner. When Gauss-Lobatto quadrature is
used, convergence “from top” is observed, as tkegmation point is placed exactly on purely
ceramic elastic layer in every simulation. As tladue of weight assigned to this points becomes
smaller, the limit load reduces. In Gauss-Legenguadrature and equal thickness layers
calculations, integration point closest to ceramiter surface is assumed to be elasto-plastic
with relatively high hardening modulus. Consequenthtter two methods of through-the-
thickness integration gives convergence “from butto The algorithm used to integrate
elastoplastic material law implemented in authoFEM code was not able to obtain
convergence in Gauss-Legendre quadratures with9@nd 21 integration points in those limit
points, due to relatively high value of tangentdegring modulus in highest fraction of ceramic

constituent.

11
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It can be argued that usage of Gauss quadratugesres less integration points in
comparison to equal-layer method to obtain comparadsults. On the other hand, differences
are relatively small, thus the equal thickness iaiyeethod is acceptable where application of

classical quadratures for FGM shell is not posgqjlite in commercial codes).

4.2 Rectangular plate under in-plane compression (Il tpe)

We analyze the compressed plate proposed in [4i.pfoblem is similar to previous one
(with different geometry and material data) yetehéne reference solutions are obtained by
analytical derivations. Geometrical dimensions @ecording to notation in Fig. 1& =200,

b=100, b/t0{20, 25, 30, 40, 50, 60, 80, 10. Perfect flat initial geometry is assumed in

analysis. Material data is defined as0{0.2, 5.9, E, =37500C, v, =0.14, | =0.00g,

E, =10700(, v,,=0.34, | ,=0.005, H,, =4600, o3 =450, q=4500, x =G.

Equilibrium paths obtained in geometrically and enaily nonlinear FEM analysis are
presented in Fig. 12 and Fig. 13. Our nonlineavesirare compared to analytically obtained
critical loads from paper [42]. In this case it ltbhe assumed that buckling occurs when central
point displacementy, become non-zero. Results show good agreement &etweéerence and
present values of buckling load. Contour plots isplhcementv, placed on right sides of Fig.
12 and Fig. 13, reveal the same final deformatio@ps in every case, namely 3 half waves
along compression direction and 1 half wave in gedicular direction.

Additionally, the present investigations give fthinsight into behavior of the
compressed plate. Namely, stable postbuckling asmeof strength of whole structure for
n=0.2 and clear limit load points obtained m=5.0 cases can be noticed. For thin plates (

b/t 0{60, 80, 109), buckling occurs prior to the first yielding waifor thicker plates buckling

is in partially yielded structure.

12
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4.3 Elastoplastic bucking of axially loaded cylindricalshell

Cylindrical shells are often used in engineeringctice. Their statics and dynamics has
been extensively studied in the literature andvilags is a challenge. Theoretical foundations
may be traced back to the book by [68]. Static mizakanalysis of such shells requires special
techniques to trace the equilibrium path, suchoagntance arc-length control or displacement
control, see for instance Ramm or Crisfield in [68hother approach is to employ dynamic
analysis e.g. [70,71][72]. However, such analysialso demanding and theoretical results are
therefore always important. The present exampteken from [5] and is used to validate the

present formulation. Axially loaded cylindrical $h&as considered there both analytically and

numerically. The material parameters are=1.0, E =3.75(10, EA =1.07(10, v, =0.14,
v, =0.34, H_ =1400C, a$m:450, q=4500, k=G, characteristic length of metal and
ceramic are equal  =1.=0.0lh. The inner surface is ceramic-rich. Proportionz&d is
assumed a®(4)=AP,, P, =1000. The geometry of the shell is presented in Fig. Tide

number of CAMel6 elements along the height is 52lenvim the circumferential direction
equals to 64.

The displacement control was used to trace theliequm path with the control
displacementv of the top of the shell. The load is understoodh&ssum of reaction at upper
edge. The present results are compared with rafersolution from [5] and with own Abaqus
commercial code calculations in Fig. 15 and Tabllm2Abaqus, 31715 nodes, 31400 elements
S4R and 20 or 7 layers (with single integrationnpan the middle of each layer in thickness
integration) were used in simulation. It can bacwmt that all the results are in good agreement.

In addition, in Fig. 16, we present load-deformatjmath for thicknes$=0.2. Abaqus
results were obtained with different types of fnglements and number of composite layers
whereas CAM results with 7 integration points (Galegendre rule) in the thickness direction.

It can be observed that once the limit point ihea there appear some discrepancies among

13
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the results which are attributed to different elamdormulations and depend on the
approximation of the material structure in the khiess direction.

Moreover, to investigate the jump observed on CA8Meduilibrium path we analyze two
deformation states indicated in Fig. 16 as poi@nél point A’. The results are shown in Fig. 17
and in Fig. 18. It is visible that the observed fjuns attributed to the presence of new
deformation wave localized close to the bottom o edge. The contour plot of effective
plastic strains is presented in Fig. 18 for thetfand last through-the-thickness integration
point. In Gauss-Legendre quadrature those poietdogated closely to inner and outer surface
but not directly on them.

Shell deformation at limit load point is compareihwdeformation at the end of analysis
(final point of curves in Fig. 15) for different s of shell thickness in Fig. 19. The plots

show that whenh({0.15, 0.2, 0.3, 0}4, the final deformation is asymmetric, however

deformation is still axially symmetric. Obvioushyaves forms along the ruling of cylinder, but
those are far from being regular sine-type functik@ assumed in analytical solution, see [5].
These results show indeed that present exampleris demanding test, because of complex

deformation at final configuration.

4.4 Box section column under axial load
In this example we analyze the shell with orthodgadntersections. Nonlinear response

and load capacity of axially loaded box sectioruoui is studied. The geometry and boundary
conditions are shown in Fig. 20. The material patans are:E, =3.75(10, E, =1.07(10,

v, =0.14, v,,=0.34, HA,=4600, o, =450, q=4500, k=G, |, =I.=0.000z. Dimensions

of the structure are assumed as: width of the csession a=100 , depth b=50, height

L =200, uniform shell thicknessh=2. The inner surface is metal-rich. The displacement
control was used to trace the equilibrium path wiid control displacement of the top edge

of the column. The study of the influence of thevpolaw exponentn on the results is

performed. The equilibrium paths with respect te tlisplacements, and w;, for variablen

14


http://mostwiedzy.pl

are shown in Fig. 21. With the decreasenathe limit points become less pronounced, however
the curves exhibit plateau-like shape. For5.0 and n=c it was possible to find the

maximum of the curve, the respective values oftlloads are given in Fig. 21. It is also worth

noticing, that in casé =o displacemenw, changes sign, namely at the beginning of analysis

point B is moving outwards the box section, howeaen load levell.041x 16 direction of
movement rapidly changes and finally point B iscplhinside section, like for other values of
n.

In Fig. 22 typical deformation is presented, witth@f-waves along axis of the box.
Contours of reduced, Huber-Mises-Hencky type st®g20) (purely ceramic material) or
equivalent plastic strain (mixed material) are shawinner most, metallic layer.

5 Conclusions

We have successfully formulated elastoplastic cutisie relation for FGM shells with
Cosserat-type kinematics with associated FEM implaation. The formulation is capable of
dealing with unlimited translations and rotatiommsparticular, due to the natural presence of the
so-called drilling rotation at the element nodee firesented formulation is particularly well-
suited for the simulations where orthogonal shedinbhes appear. The obtained results are in
good correspondence with analytical ([5,42]) andhercal reference solution ([43] and own
Abaqus calculations). The presented results supipefiollowing conclusions:

« Numerical stability analysis of cylindrical shells the post-limit range is particularly
demanding, the results may depend on the FEM fatiom and discretization. Thus,
analytical or experimental results are indispersébhalidate the formulation.

* Application of different quadrature rules in theckmess direction provides lower or
upper bound of the result.

* Nonlinear FEM analysis gave insight in postbucklidgformation of compressed
structures. In case of cylindrical geometry, defation is more complicated than
described by the product of the sine and cosinetifums, like in analytical solutions

[5,42].
15
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In papers by Huang and co-workers [5,42] criticglds were calculated. The values of
our critical loads are in good agreement with refiee values in case of compressed
plate, but for cylindrical shell these meet withnili loads, even though buckling is not
observed at this point (deformation gradually formisce start of loading, without

noticeable change of its shape). Sudden changbagfesis noticed after load passes

limit load point.

Acknowledgements

The research reported in this paper was supposteldebNational Science Centre, Poland

with the grant UMO-2015/17/B/ST8/02190. Paralldiveo for CAM elements is developed on

the basis of HSL, a collection of Fortran codes farge-scale scientific computation.

http://www.hsl.rl.ac.uk. Abaqus calculations weggreed out at the Academic Computer Centre

in Gdask.

References

(1]

(2]

(3]

(4]

(5]

(6]

Burzynski S, Chrécielewski J, Daszkiewicz K, Witkowski W. Geometflganonlinear FEM
analysis of FGM shells based on neutral physiceflasa approach in 6-parameter shell theory.
Compos Part B Eng 2016;107:203-13. doi:10.1016/jpasitesh.2016.09.015.

Tamura |, Tomota Y, Ozawa M. Strength and Dlitgtof Iron-Nickel-Carbon Alloys Composed
of Austenite and Martensite with Various Streng8rd Int. Conf. Strength Met. Alloy.,
Cambridge: Institute of Metal and Iron; 1973, p163.

Shen M, Bever MB. Gradients in polymeric mat¢si J Mater Sci 1972;7:741-6.
doi:10.1007/BF00549902.

Koizumi M. FGM activities in Japan. Compos P&tEng 1997;28:1-4. d0i:10.1016/S1359-
8368(96)00016-9.

Huang H, Han Q. Elastoplastic buckling of akidbaded functionally graded material cylindrical
shells. Compos Struct 2014;117:135-42. doi:10.j@bdhpstruct.2014.06.018.

Jin ZH, Paulino GH, Dodds RH. Cohesive fractanedeling of elastic-plastic crack growth in
functionally graded materials. Eng Fract Mech 20@03885-912. doi:10.1016/S0013-

7944(03)00130-9.

16


http://mostwiedzy.pl

A\ MOST

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Shabana YM, Noda N. Thermo-elasto-plastic seeesn functionally graded materials subjected
to thermal loading taking residual stresses off#ifigication process into consideration. Compos
Part B Eng 2001;32:111-21. doi:10.1016/S1359-8358@49-4.

Amirpour M, Das R, Bickerton S. An elasto-plasiamage model for functionally graded plates
with in-plane material properties variation: Ma&rimodel and numerical implementation.
Compos Struct 2017;163:331-41. doi:10.1016/j.cornps2016.12.020.

Baghani M, Fereidoonnezhad B. Limit analysisKM circular plates subjected to arbitrary
rotational symmetric loads using von-Mises yieldtesion. Acta Mech 2013;224:1601-8.
doi:10.1007/s00707-013-0828-z.

Ghannadpour SAM, Alinia MM. Large deflectiorltavior of functionally graded plates under
pressure loads. Compos Struct 2006;75:67—71. d@D16/j.compstruct.2006.04.004.

Sharma K, Kumar D. Elastoplastic analysis GINF plate with a central cutout of various shapes
under thermomechanical loading. J Therm Stress ;201141741
doi:10.1080/01495739.2017.1323566.

Akis T. Elastoplastic analysis of functionalfjyaded spherical pressure vessels. Comput Mater
Sci 2009;46:545-54. doi:10.1016/j.commatsci.2009.04.

Arciniega RA, Reddy JN. Large deformation asséd of functionally graded shells. Int J Solids
Struct 2007;44:2036-52. doi:10.1016/j.ijsolstr.2Q@85035.

Han SC, Lee WH, Park WT. Non-linear analysit laminated composite and sigmoid
functionally graded anisotropic structures usinghigher-order shear deformable natural
Lagrangian shell element. Compos Struct 2009;8®8ei:10.1016/j.compstruct.2008.08.006.
Zhang Y, Huang H, Han Q. Buckling of elastatia functionally graded cylindrical shells under
combined compression and pressure. Compos Part Bg ER015;69:120-6.
doi:10.1016/j.compositesb.2014.09.024.

Zhang DG, Zhou HM. Mechanical and thermal gastkling analysis of FGM rectangular plates
with various supported boundaries resting on nealirelastic foundations. Thin-Walled Struct
2015;89:142-51. doi:10.1016/j.tws.2014.12.021.

Taczata M, Buczkowski R, Kleiber M. Nonlinedruckling and post-buckling response of
stiffened FGM plates in thermal environments. CompBart B Eng 2017;109:238-47.

doi:10.1016/j.compositesb.2016.09.023.
17


http://mostwiedzy.pl

A\ MOST

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

Huang H, Chen B, Han Q. Investigation on bingklbehaviors of elastoplastic functionally
graded cylindrical shells subjected to torsionahd®. Compos Struct 2014;118:234-40.
doi:10.1016/j.compstruct.2014.07.025.

Woo J, Meguid SA. Nonlinear analysis of funcially graded plates and shallow shells. Int J
Solids Struct 2001;38:7409-21. doi:10.1016/S00283{®1)00048-8.

Fazzolari FA. Generalized exponential, polymainand trigonometric theories for vibration and
stability analysis of porous FG sandwich beamsirrgstn elastic foundations. Compos Part B
Eng 2018;136:254—71. doi:10.1016/j.compositesb.2(.322.

Nguyen TT, Lee J. Optimal design of thin-wdlléunctionally graded beams for buckling
problems. Compos Struct 2017;179:459-67. doi:1GA@bmpstruct.2017.07.024.

Rizov V. Delamination fracture in a functiohalgraded multilayered beam with material
nonlinearity. Arch Appl Mech 2017;87:1037—-48. d6i:1142/S0219455418500517.
Swaminathan K, Naveenkumar DT, Zenkour AM, r€ea E. Stress , vibration and buckling
analyses of FGM plates — A state- of-the-art revieBompos Struct 2015;120:10-31.
doi:10.1016/j.compstruct.2014.09.070.

Jha DK, Kant T, Singh RK. A critical review oécent research on functionally graded plates.
Compos Struct 2013;96:833-49. doi:10.1016/j.comips2012.09.001.

Birman V, Byrd LW. Modeling and analysis ofrfctionally graded materials and structures.
ASME Appl Mech Rev 2007;60:195-216. doi:10.1115/7.2164.

Fazzolari FA. Reissner’s Mixed Variational Tiem and variable kinematics in the modelling of
laminated composite and FGM doubly-curved shellem@os Part B Eng 2016;89:408-23.
doi:10.1016/j.compositesb.2015.11.031.

Tornabene F, Fantuzzi N, Bacciocchi M, ReddyAd Equivalent Layer-Wise Approach for the
Free Vibration Analysis of Thick and Thin Laminatedd Sandwich Shells. Appl Sci 2016;7:17.
doi:10.3390/app7010017.

Tornabene F, Brischetto S, Fantuzzi N, Baadid®. Boundary conditions in 2D numerical and
3D exact models for cylindrical bending analysisfurfictionally graded structures. Shock Vib
2016;2016. d0i:10.1155/2016/2373862.

Tornabene F, Fantuzzi N, Bacciocchi M. Freeraiions of free-form doubly-curved shells made

of functionally graded materials using higher-ordquivalent single layer theories. Compos Part

18


http://mostwiedzy.pl

A\ MOST

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

B Eng 2014;67:490-509. doi:10.1016/j.compositesb4208.012.

Williamson RL, Rabin BH, Drake JT. Finite elent analysis of thermal residual stresses at
graded ceramic-metal interfaces. Part I. Model digison and geometrical effects. J Appl Phys
1993;74:1310-20. doi:10.1063/1.354910.

Drake JT, Williamson RL, Rabin BH. Finite elent analysis of thermal residual stresses at
graded ceramic-metal interfaces. Part Il. Interfapimization for residual stress reduction. J
Appl Phys 1993;74:1321-6. doi:10.1063/1.354911.

Aboudi J, Pindera M-J, Arnold SM. Thermo-irgia response of functionally graded composites.
Int J Solids Struct 1995;32:1675-710. doi:10.1008037683(94)00201-7.

Weissenbek E, Pettermann HE, Suresh S. Efaasiic deformation of compositionally graded
metal-ceramic composites. Acta Mater 1997;45:340161i:10.1016/S1359-6454(96)00403-X.
Nakamura T, Wang T, Sampath S. DeterminatioRroperties of Graded Materials. Acta Metall
2000;48:4293-306.

Gu Y, Nakamura T, Prchlik L, Sampath S, Wadlak Micro-indentation and inverse analysis to
characterize elastic—plastic graded materials. Mateci Eng A 2003;345:223-33.
doi:10.1016/S0921-5093(02)00462-8.

Gunes R, Aydin M, Apalak MK, Reddy JN. The sttaplastic impact analysis of functionally
graded circular plates under low-velocities. Compo$truct  2011;93:860-9.
doi:10.1016/j.compstruct.2010.07.008.

Gunes R, Aydin M, Kemal Apalak M, Reddy JN.@eximental and numerical investigations of
low velocity impact on functionally graded circulplates. Compos Part B Eng 2014;59:21-32.
doi:10.1016/j.compositesb.2013.11.022.

Kalali AT, Hassani B, Hadidi-Moud S. Elastitaptic analysis of pressure vessels and rotating
disks made of functionally graded materials ush@isogeometric approach. J Theor Appl Mech
2016:113. doi:10.15632/jtam-pl.54.1.113.

Sharma K, Kumar D. Elastoplastic stability afladlure analysis of FGM plate with temperature
dependent material properties under thermomecHani@ding. Lat Am J Solids Struct
2017;14:1361-86. doi:10.1590/1679-78253747.

Zhang DG, Zhou HM. Mechanical and thermal gastkling analysis of FGM rectangular plates

with various supported boundaries resting on nealirelastic foundations. Thin-Walled Struct

19


http://mostwiedzy.pl

A\ MOST

[41]

[42]

(43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

2015;89:142-51. doi:10.1016/j.tws.2014.12.021.

Huang H, Zhang Y, Han Q. Inelastic BucklingFg&M Cylindrical Shells Subjected to Combined
Axial and Torsional Loads. Int J Struct Stab Dyn 1207:1771010.
doi:10.1142/S0219455417710109.

Xu G, Huang H, Chen B, Chen F. Buckling andtpackling of elastoplastic FGM plates under
inplane loads. Compos Struct 2017;176:225-33. @di16/j.compstruct.2017.04.061.

Kleiber M, Taczala M, Buczkowski R. Elasto-Bia Response of Thick Plates Built in
Functionally Graded Material Using the Third Ordate Theory. Adv. Comput. Plast., vol. 46,
2018, p. 185-99. do0i:10.1007/978-3-319-60885-3.

Amirpour M, Das R, Saavedra Flores El. Anagti solutions for elastic deformation of
functionally graded thick plates with in-plane ftéss variation using higher order shear
deformation theory. Compos Part B Eng 2016;94:109-2
doi:10.1016/j.compositesb.2016.03.040.

Reissner E. Linear and nonlinear theory ofllshén: Fung YC, Sechler EE, editors. Thin Shell
Struct., Englewood Cliffs: Prentice-Hall; 1974,29—44.

Libai A, Simmonds JG. The Nonlinear Theory Bfastic Shells. Cambridge: Cambridge
University Press; 1998.

Chré&cielewski J, Makowski J, Pietraszkiewicz W. Statykaynamika Powtok Wieloptatowych.
Nieliniowa teoria i metoda elementow skaonych. Warszawa: Wydawnictwo IPPT PAN; 2004.
Chr&cielewski J, Sabik A, Sobczyk B, Witkowski W. Namdiar FEM 2D failure onset prediction
of composite shells based on 6-parameter shellrghdichin-Walled Struct 2016;105:207-19.
doi:10.1016/j.tws.2016.03.024.

Nowacki W. Couple-stresses in the theory arithoelasticity. In: Parkus H, Sedov LI, editors.
Irreversible Asp. Contin. Mech. Transf. Phys. Clar®ov. fluids. IUTAM Symp. Vienna 1966,
Wien: Springer-Verlag; 1968, p. 259-78.

Eringen AC. Microcontinuum Field Theories.Houndations and Solids. New York: Springer-
Verlag; 1999.

Altenbach J, Altenbach H, Eremeyev VA. On gatized Cosserat-type theories of plates and
shells: A short review and bibliography. Arch Agygkech 2010;80:73-92. doi:10.1007/s00419-

009-0365-3.
20


http://mostwiedzy.pl

A\ MOST

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

(60]

(61]

(62]

(63]

Chrécielewski J, Makowski J, Stumpf H. Genuinely reanttshell finite elements accounting for
geometric and material non-linearity. Int J Numerethbds Eng 1992;35:63-94.
doi:10.1002/nme.1620350105.

Chr&cielewski J, Kreja |, Sabik A, Witkowski W. Modetjrof composite shells in 6-parameter
nonlinear theory with drilling degree of freedom.eéh Adv Mater Struct 2011;18:403-19.
doi:10.1080/15376494.2010.524972.

Burzyaski S, Chrdcielewski J, Witkowski W. Geometrically nonlineaEM analysis of 6-
parameter resultant shell theory based on 2-D Caftssenstitutive model. ZAMM - J Appl Math
Mech / Zeitschrift Fir Angew Math Und Mech 2016;8%1-204. doi:10.1002/zamm.201400092.
Burzynski S, Chroscielewski J, Witkowski W. Elastopladtev of Cosserat type in shell theory
with drilling rotation. Math Mech Solids 2015;20078B05. doi:10.1177/1081286514554351.
Neto EA de S, Peric D, Owen DRJ. Computatiohddthods for Plasticity: Theory and
Applications. 2009. doi:10.1002/9780470694626.

Daszkiewicz K, Chrécielewski J, Witkowski W. Geometrically Nonlinear nalysis of
Functionally Graded Shells Based on 2-D Cosserastiiative Model. Eng Trans 2014;62:109—
30.

Tornabene F, Fantuzzi N, Bacciocchi M. Meclkahbehaviour of composite Cosserat solids in
elastic problems with holes and discontinuities. mpos Struct 2017;179:468-81.
doi:10.1016/j.compstruct.2017.07.087.

Fantuzzi N, Leonetti L, Trovalusci P, TornabeR. Some Novel Numerical Applications of
Cosserat Continua. Int J Comput Methods 2017;1%8168i:10.1142/S0219876218500548.
Tang H, Sun F, Zhang Y, Dong Y. Elastoplasticsymmetric Cosserat continua and modelling
of strain localization. Comput Geotech 2018;101-%5R doi:10.1016/j.compge0.2018.05.004.
Godio M, Stefanou I, Sab K, Sulem J. Multi;eé plasticity for Cosserat materials: Plate
element implementation and validation. Int J Numilethods Eng 2016;108:456-84.
doi:10.1002/nme.5219.

Nowacki W. Theory of asymmetric elasticity. fosd: Pergamon Press; 1986.

Jeong J, Ramezani H, Minch |, Neff P. A nucegrstudy for linear isotropic Cosserat elasticity
with conformally invariant curvature. ZAMM Zeitsdfir Fur Angew Math Und Mech

2009;89:552—69. doi:10.1002/zamm.200800218.
21


http://mostwiedzy.pl

A\ MOST

(64]

[65]

[66]

(67]

[68]

(69]

[70]

[71]

[72]

de Borst R. Simulation of strain localizatioa: reappraisal of the Cosserat continuum. Eng
Comput 1991;8:317-32.

Nowacki W. Teoria niesymetrycznej gpystasci. Warszawa: IPPT PAN; 1971.

Simo JC, Hughes TJR. Computational Inelasticpringer-Verlag New York, Inc.; 1998.
Belytschko T, Liu N-W, Moran B. Nonlinear Ftgei Elements for Continua and Structures. John
Wiley & Sons, Ltd.; 2003.

Timoshenko S, Gere JM. Theory of elastic digbi2nd ed. New York: McGraw-Hill; 1961.
Wunderlich W, Stein E, Bathe KJ. Nonlinear iE@nElement Analysis in Structural Mechanics.
Springer; 1981.

Kotakowski Z. Some aspects of dynamic interacbuckling of composite columns. Thin-Walled
Struct 2007;45:866—71. doi:10.1016/j.tws.2007.08.00

Iwicki P, Tejchman J, Chégéielewski J. Dynamic FE simulations of buckling gess in thin-
walled cylindrical metal silos. Thin-Walled Struct 2014;84:344-59.
doi:10.1016/j.tws.2014.07.011.

Kolakowski Z, Kubiak T. Interactive dynamic ¢kling of orthotropic thin-walled channels
subjected to in-plane pulse loading. Compos Struck007;81:222-32.

doi:10.1016/j.compstruct.2006.08.012.

Figures’ captions

Fig. 1. Compressed plate: geometry, imperfectioad land boundary conditions.

Fig. 2 Compressed plate: equilibrium paths forasriA (b/t =40, a/b=0.875).

Fig. 3 Compressed plate: equilibrium paths foraratrB (b/t =55, a/b=0.875).

Fig. 4 Compressed plate: equilibrium paths foramtriC (b/t =80, a/b=0.875).

Fig. 5 Compressed plate: equilibrium paths forararD (b/t =40, a/b=2.625).

Fig. 6 Compressed plate: equilibrium paths foraratrE b/t =55,a/b=2.625).

Fig. 7 Compressed plate: equilibrium paths foramtrF (0/t=80,a/b=2.625).

Fig. 8 Compressed plate: final contour plots opléisementv for variant F o/t =80,

a/b=2.625).

22


http://mostwiedzy.pl

AN\ MOST

Fig. 9 Compressed plate: limit load point convergestudy with respect to relative shortening
£l &, , the influence of number of integration pointghitkness direction.

Fig. 10 Compressed plate: limit load point convergestudy with respect to center point
deflectionwsg, the influence of number of integration points.

Fig. 11 Compressed plate: limit load point convergestudy with respect to number of
integration points.

Fig. 12 Compressed plate: average stress vs. tdeftaction curves fom=0.2, contour plots
of displacementv at the end of analysis (right side)

Fig. 13 Compressed plate: average stress vs. tdeftaction curves fom=5.0, contour plots
of displacementv at the end of analysis (right side).

Fig. 14. Cylindrical shell under action of axiahth geometry and boundary conditions.

Fig. 15. Cylindrical shell under action of axiahth authors’ load-deformation curves, the
influence of thicknesh.

Fig. 16. Cylindrical shell under action of axiahth load-deformation patin=0.2

Fig. 17. Cylindrical shell under action of axiahthy deformation detail and radial displacement
before (point A) and after (point A’) the jump oguélibrium path.

Fig. 18. Cylindrical shell under action of axiahth effective plastic strain closely to inner and
outer surface.

Fig. 19. Deformation of cylindrical shell in radidirection along its ruling (line parallel fo
axis).

Fig. 20. Axially loaded box section colungeometry and boundary conditions

Fig. 21. Axially loaded box section column, infleenofn on load-displacement path of

Fig. 22. Axially loaded box section column, defotiba shape and contours of H-M-H stress
and equivalent plastic strain

Table 1 Dimensions of analyzed variants of comg@ggate.

: 1/4 plate
variant | b/h alb h a b Wit giseretaation
A 40 0875  3.475 111.125 1270 0127  8x8 CAMel6
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B 55
C 80
D 40
E 55
F 80

0.875
0.875
2.625
2.625
2.625

3.175 152.8 174.625 0.175
3.175 222.25 254 0.254
3.175 333.375 127.0 0.127
3.175 458.4 174.625 0.175
3.175 666.75 254 0.254

8x8 CAMell6
8x8 CAMel6
24x8 CAMg16
24x8 CAMe16
24x8 CAMel6

Table 2. Limit loads for axially loaded cylindricsthell, the influence of thicknebs

h

0.05] 01| 0.45] 020 0.3d 0.40 0.5(

agz']}’ﬂsc]a' 1.854 7.412 14.472 22.757 44.716 75.232 117.459

prese”&"'\rﬂm“'a“or 1.862 7.027 14.298 23.538 46.619 72.705 103.530

Abaqus 1.841 7.020 14.309 22.827 46.855 74.482 108.218
S4R, 20 layers

Abaqus
S4R. 7 layers | 1817 6.848 13.898 22756 45188 70.183 102.968
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Standard TTO formulation of elastoplastic functionally graded material is extended to
Cosserat type shell theory, with asymmetric membrane strain measures and drilling
rotation,

Numerical results contain vital information about the use of different quadrature rules
used to integrate the stress components in the through-the-thickness direction of the
shell,

The influence of finite element discretization and formulation is studied, specifically on

the post-peak response of the shell
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