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Abstract 

The combination of vision and sensor data together with the resulting necessity for formal representations builds a central 
component of an autonomous Cyber Physical System for detection and tracking of laborers in workplaces environments. This 
system must be adaptable and perceive the environment as automatically as possible, performing in a variety of plants and scenes 
without the necessity of recoding the application for each specific use. But each recognition system has its own inherent limits, 
especially those which task is to work in unidentified environments and deal with unknown scenarios and specifications. The 
platform described in this paper takes this into account by connecting the probabilistic area of event detection with the logical 
area of formal reasoning in a Cognitive Vision Platform for Hazard Control (CVP-HC). In order to support formal reasoning, 
additional relational scene information is supplied to the recognition system.  In this platform, the contextual knowledge is used 
to improve the recognition and interpretation of detected events. This relational data together with all collected information is 
represented explicitly as a Set of Experience Knowledge Structure (SOEKS), categorized and stored as a Decisional DNA 
(DDNA), a decisional safety fingerprint of a company. By these means, the systems assesses and addresses critical unsafe 
behaviors whilst gives support to an explicit long term culture change process. By the use of context the CVP-HC is capable 
adjust accordingly without the need of rewriting the application’s code every time conditions or specifications changes. 
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1. Introduction  

Hazard control is essential to ensure the occupational health and safety of workers1. In this context, monitoring of 
workers activities and identifying any risk present in the workplace emerged as a need.  
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The use of sensors data and computer vision techniques support the fast and automated monitoring for detection 
of potentially dangerous situations. This information can be used to predict any incident, to provide feedback and 
manage workers behavior to perform the work in a safe manner2. However, even with the advances in computer 
vision techniques, the accuracy of current visual sensing facilities when operating in real life scenarios, subject to 
change in illumination, variation in backgrounds, and different camera resolutions, still remains a challenge3. These 
technologies lack adaptability to the broad industrial environments and existing situations. As a result, the existing 
systems create case-based applications that work only for specific circumstances and any change in conditions 
would result in rewriting most of the application code.  

One of the most recent trends to overcome the limitation of computer vision systems is the coupling of cognition 
and vision into cognitive computer vision. Cognitive computer vision involves functionalities such as knowledge 
formalism, learning, recognition and categorization, reasoning about events for decision making, and goal 
specification, all of which are concerned with the semantics of the relationship between visual agents and their 
environment i.e. context. The visual information in combination with explicit symbolic models of context, can 
engage the system in purposive goal-directed behavior, adjusting to unforeseen changes of the visual environment, 
and anticipating the occurrence of events4.  

For instance, an automatic semantic and flexible annotation service able to work in a variety of video analysis 
with little modification to the code using Set of Experience Knowledge Structure (SOEKS) was proposed in 
Zambrano et al. work5. This system is a pathway towards cognitive vision and it is composed, basically, by the 
combinations of detection algorithms and an experience based approximation based on the Set of Experience 
Knowledge Structure (SOEKS). Results have shown enhancements in scalability, but the tool was designed for off-
line video analysis and does not have the capability of working in real time implementation. 

In the present approach we extend the idea of Zambrano et al. to a real time Cyber Physical System (CPS) for 
hazard control in industrial environments. Aiming at assisting the safety management process, especially in 
industrial environments we propose a Cognitive Platform for Hazard Control (CVP-HC). This CPS perceives critical 
safety behaviors in real time giving support for the behavior-based safety strategy whilst stores information in a 
structured way for latter access and to support an explicit long term culture change process that can be systematically 
assessed and shared. The CVP-HC is a scalable yet adaptable system capable of working in a variety of video 
analysis scenarios attending specific safety requirements of different industries by modifying its behavior 
accordingly. The proposed system is based on the Set of Experience Knowledge Structure (SOEKS or SOE in short) 
and Decisional DNA (DDNA), which were first presented by Sanin and Szczerbicki6-9 and later enhanced further for 
a number of dedicated domains10, 11. In order to support formal reasoning, additional relational scene information is 
sensed or provided to the recognition system through different sources of information.  In this paper we highlight 
how this contextual knowledge can be used to characterize and improve the recognition and interpretation of 
detected events. 

This paper is organized as follows: In Section 2, workplace safety management practices are presented with 
special focus to two main approaches: the behavior-based and culture change. In Section 3 the proposed Cognitive 
Vision Platform for Hazard Control (CVP-HC) to support the integration of both methods is introduced.  In section 
the importance of context to enhance the recognition and interpretation of dangerous situations are shown. In 
addition, it is also presented in Section 4 how this context is modeled and represented as in the Set of Experience 
knowledge Structure (SOEKS) which are grouped and stored as a Decisional DNA (DDNA) for later access and 
sharing. Finally, in Section 5 conclusions and future work are given. 

2. Managing Workplace Safety  

Managing safety is the best way to prevent injuries in workplace12. In industrial environments, workers are 
exposed to risks in a variety of unsafe situations, such as when accessing controlled zones without authorization, 
crossing yellow lines, not respecting safe distances from machines and areas, not wearing the required personal 
protective equipment (PPE), on track of moving machines or falling objects among others. There are basically two 
prominent and seemingly antagonistic safety management approaches: the behavior-based and culture change13. 
Behavior-based safety management is essentially a “bottom-up” approach. The focus of attention is directed at 
specific safety-related behaviors that are usually performed by frontline employees, for instance, workers on an 
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assembly line in a factory14. It is also an analytic or data-driven rubric, which means that critical behaviors are 
objectively identified and targeted for change. The objective goal is usually set to focus activity, and feedback is 
provided to measure performance, provide support, and foster continuous progress13. The behavior-based approaches 
are essentially setting specific which implies that identification of specific behaviors in a specific environment is 
central to this methodology. Behavior-based safety management experts claim that the overall approach is broadly 
applicable to different work environments, but each application needs to be specific and tailored to the setting in 
question13. For this reason, building a system capable of support behavior-based safety management of a variety of 
scenarios subject to their own settings at the same time as being specific and meaningful still remains a challenge.  

Furthermore, behavior-based safety are intended to be short-term or one shot efforts, which means it might not be 
sufficient to provide a long term change in perception of unsafe behaviors and must be a continuous effort15. For 
example, a behavior-based program may show that a positive reinforcement increases the usage of a specify PPE 
(for instance, protective hard hat at construction sites). However, when this reinforcement is no longer provided, the 
use of this equipment should gradually go back to baseline levels16.  

On the other hand, culture change methodologies to safety come mostly from management and organizational 
behavior theory and are more “top down”13. As well as groups of people, organizations also have cultures which can 
be characterized, for instance, as weak or strong, rigid or flexible, functional or dysfunctional, and which influence 
their employees17. The logic of the culture change approach is that the organization’s basic values or conventions 
about safety largely impact the level of effort and initiatives used by that organization to manage safety. As a 
consequence, these activities are used to guide and influence the perceptions of employees about the importance of 
safety and their expectations in relation to safe work practices, hazard control and incident reporting13.  

For the culture change approach, the focus is understanding and often modifying the central values and beliefs of 
the organization. Therefore, to make significant and lasting improvements in safety, the culture of the organization 
needs to be understood and changed. Organizations often share common practices and experience similar events in 
regards to safety. Yet, companies may share certain cultural values. However, the culture of each organization is 
thought to be unique and the safety behavior of their members and how it is approached must be understood in its 
own context13. It is important to point out that an organization culture can be resistant to change, leading to an 
exhausting and slow process. For this reason, a system that gives management support for this methodology must 
safely store information that can be easily accessed to delineate the culture change process in terms of stages and 
used to measure progress and impact of programs and practices. 

Finally, the behavior-based and culture change methodologies can be considered complementary to the extent that 
their respective strengths can be combined. By combining these two approaches into one unique platform, the 
objective and empirical analysis of critical safety-related behaviors strategy can be integrated with an organizational 
culture changing process. It results in a more comprehensive and potentially effective methodology to manage 
workplaces safety18.  

3. Cognitive Vision Platform for Hazard Control (CVP-HC)  

Aiming at assisting the safety management process especially in industrial environments a Cognitive Vision 
Platform for Hazard Control (CVP-HC) is proposed. The CVP-HC is a Cyber Physical System that gives support for 
the behavior-based safety strategy whilst stores structured information for later assessment, analysis and sharing, 
which can be used to assist a long term culture change process in the company. In addition, our platform aims to 
attend the fundamental property of cognitive vision systems: the extendability19. This implies that we propose to deal 
with more situations than exactly those which the platform has been foreseen and tested for it during the design and 
programming process. By this means, the system is designed to adapt to different scenarios and applications and at 
the same time being specific and meaningful. 

In this platform the critical safety-related behaviors are represented as rules and detected events are characterized 
by five main attributes:  

 
• Workers 
• Personal Protective Equipment (PPE) 
• Potentially Dangerous Object, Machinery or Area (PDOMA) 
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• Action/State 
• Context 

 
Workers, PPE and PDOMA are detected through a Convolutional Neural Network and represented as variables 

in our system. Action/State are represented as functions that model the relationship among those variables. Unsafe 
events occur when the Action/States violates one of the given rules and are represented as a probabilistic value. The 
Table 1 presents few examples of PPE, PDOMA and Action/State attributes. To support formal reasoning Context is 
evoked when an event occurs and can modify the state of the event or influence its interpretation.  

Table 1. Examples of PPE, PDOMA and Action/State attributes. 

PPE PDOMA Action/State 

Boots Falling objects Walking 

Ear plugs Cars Running 

Face masks Ladder Falling 

Gloves Machines Laying 

Goggles Robots Integrating 

Hard hats Restricted areas Standing 

High visibility clothing Yellow lines Wearing 

Respirators Dunnage Climbing 

Safety harnesses Wiring Lifting 

 
The Platform functioning is composed, basically by four layers: System Configuration, Central Reasoning, 

Experiences Validation, and System Monitoring, which will be described as follow: 
 
• System Configuration: This layer comprehends the selection of the attributes according to industry 

requirements; labelling of machinery, areas and plants of the workplace being captured by the camera and 
sensors; creation of the rules according to the safety requirements and configuration of other functionalities such 
as frame and learning rate. 

• Central Reasoning: The Central Reasoning layer is the intelligence of the entire system. It is composed by a 
Convolutional Neural Network arranged in a hierarchical structure to support detection of attributes, location 
and recognition of events, interpretation of the role (enhanced by the use of context) to determine the level of 
risk present in the recognized entity. 

• Experiences Validation: In this layer, the collected experiences structure are checked and a group is selected. 
According to the learning rate given on the System Configuration, the user is queried to check if the given 
solution for a SOE is reasonable.  Once accepted by the user as a correct solution, the SOE is stored in the 
decisional DNA repository. The stored experiences are used to calibrate the system and improve its specify 
when retrained from time to time. It ensures that the decision making provided by the CVP-HC is perfectly 
adjusted to the organization’s safety DNA. 

• Monitoring: This layer represents the monitoring of workers’ activities. When a hazard is identified by the 
system an alert message is shown on the application interface with details/recommendations about the existing 
risk.  

4. Context to Enhance Workplace Hazard Recognition and Interpretation  

The context in our platform is composed by additional relational knowledge information which can be sensed or 
provided to the reasoning system through different sources (sensors, input signals, user preferences, computer data, 
past experiences, extra visual information, etc.) and explicitly represented, as shown in Fig. 1. All the information 
that cannot be proceduralized is treated as external information and not accounted for reasoning. 
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Fig. 1. Different sources of Contextual Knowledge. 
 
This contextual knowledge is used for two main purposes: 

 
• Improve certainty and accuracy of events 
• Improve interpretation of events  

 
Context can disambiguate low quality inputs in recognition tasks improving accuracy20. We also connect our 

thoughts to Laplace’s view that the world is deterministic and we can increase the certainty of a probabilistic event if 
sufficient information is available21. The interpretation of an event and its implications is indispensable for a 
decision making process, especially in situations that require quick and accurate response due to the severity of their 
implications. 

In our platform we define safety context of a workplace as the set of all the contextual knowledge that can be 
explicitly represented to characterize the situation in which the event occurs. Context plays an important role in 
many domains, especially for activities such as foreseeing context changes and can be mobilized to understand a 
given situated problem, explaining unanticipated events, helping to handle them, or aiding to focus attention22. 

4.1 Context for modifying system behavior 

Many workplace hazards are context related. Context may influences the causality of events, i.e. unsafe events 
may occur with more or less frequency because of contextual settings. In addition, the interpretation of a detected 
event and also the level of risk it presents may also change according to contextual factors. Some common 
contextual elements connected to safety behaviors and that can possibly affect their causation and interpretation are 
presented in Table 2. 

The way how contextual knowledge influences events causation and interpretation depends on the nature of its 
characteristics and also past observations, which we call experiences. Experiences are added during design process 
(mostly common sense knowledge or available), gathered as the system runs or given as input entry (which can 
come from the user past observations, from result of accredited research; technical knowledge etc.).  

For example, Folkard, Lombardi, and Tucker show in their research that shift workers are more likely to be 
injured or involved in an incident at work because of the kind of activity they usually perform and the general 
conditions under which they work. For instance in Australia, the work-related injury rate of shift workers was found 
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113 per 1,000 employed people, which is almost twice the rate of those who worked regular day time hours (60 per 
1,000 employed people)23. This information can be feed into the system to increase the certainty of a detected 
situation or change the state of an uncertain event where the monitored worker is a shift worker or at last bring it to 
notice24. 

Table 2. Contextual elements connected to safety behaviors and that can affect their causation and interpretation. 

Contextual Element Examples 

Worker profile shift worker, function, age, experience 

Day of the week workday, weekend 

Shift morning, afternoon, night 

Season summer, spring, autumn, winter 

Industry Type construction, IT, manufacturing 

Location of Industry country, city, area 

Industry size small, medium, large 

Time since last safety training in months, days, weeks 

Machine or object status in operation, paused, switched off, in movement, falling 

Computer data date, time 

Other sensor data level of oxygen, temperature, air contamination, fire alarm, lightening 

Extra visual information worker identity, presence of other objects etc. 

 
The day of the week was also reported to have influence in injuries caused in workplaces. United States Bureau 

of Labor Statistics (BLS) estimated that in that 2004 Sundays had the highest rate overall – 40% higher than the 
average rate. Saturdays had the next greatest rate. Among the explanations for this trend are: higher alcohol/drug 
consumption, second jobs and less supervision available. Lower volunteer staff for patient handling was a 
complication for events occurring on the weekend according to this study25.   

A number of authors have observed that many of the headlines workplace catastrophes of the past few decades, 
such as Chernobyl, Bhopal, Exxon Valdez, Three Mile Island, and the Estonia ferry, have all happened in the very 
early hours of the morning. Furthermore, investigations of these disasters have concluded that they were, at least to 
some extent, due to fatigue leading to human error24. In addition, injury accident records collected during 38 years 
by the safety services in a steel plant in Cracow, Poland has shown that on the night shift, the accident rate was 
lower during and immediately after the meal breaks (from 02:00 to 04:00), which is when the workers usually try to 
slow the tempo of work. Subsequently, a distinct rise on accidents was observed in the last hours of the shift (which 
is when workers generally speed to get tasks accomplished on time). Still according to the study in Cracow, 
commonly, the number of accidents was significantly greater in summer than in winter26. 

Studies have also shown discrepancies among industries from different types and locations. A report 
characterizing work-related fatal injuries occurring in Louisiana from 2015 through 2016 and captured from a 
multisource work-related fatality surveillance system developed by the Louisiana Department of Health has shown 
that oil and gas extraction, agriculture and transportation together account for 63% of all fatalities on that period. 
Yet, each industry has rates consistently greater than the US rates, except for Oil and Gas extraction, which has 
greater variation in rates. The authors highlight multiple factors that may influence a state’s occupational injury rate, 
including the state’s industry profile, workplace regulations and enforcement, and the state’s overall economic and 
social condition27. 

Company’s size has also shown correlation with rate of accidents. According to Eurostat data for 1998 revealed 
that in the European Union (EU) the majority accidents resulting in more than three days’ absence from work or 
death occurred in companies with between 10 and 49 employees28. 

Other factors can also be connected to safety behaviors and help to evaluate cases of uncertainty or even alert the 
seriousness of a detected event. For instance, it is more immediately dangerous to life or health not wearing 
respirators in case of oxygen deficiency environments than when exposed to non-toxic particulate contaminants and 
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Table 2. Contextual elements connected to safety behaviors and that can affect their causation and interpretation. 

Contextual Element Examples 

Worker profile shift worker, function, age, experience 

Day of the week workday, weekend 

Shift morning, afternoon, night 

Season summer, spring, autumn, winter 

Industry Type construction, IT, manufacturing 

Location of Industry country, city, area 

Industry size small, medium, large 

Time since last safety training in months, days, weeks 

Machine or object status in operation, paused, switched off, in movement, falling 

Computer data date, time 

Other sensor data level of oxygen, temperature, air contamination, fire alarm, lightening 

Extra visual information worker identity, presence of other objects etc. 

 
The day of the week was also reported to have influence in injuries caused in workplaces. United States Bureau 

of Labor Statistics (BLS) estimated that in that 2004 Sundays had the highest rate overall – 40% higher than the 
average rate. Saturdays had the next greatest rate. Among the explanations for this trend are: higher alcohol/drug 
consumption, second jobs and less supervision available. Lower volunteer staff for patient handling was a 
complication for events occurring on the weekend according to this study25.   

A number of authors have observed that many of the headlines workplace catastrophes of the past few decades, 
such as Chernobyl, Bhopal, Exxon Valdez, Three Mile Island, and the Estonia ferry, have all happened in the very 
early hours of the morning. Furthermore, investigations of these disasters have concluded that they were, at least to 
some extent, due to fatigue leading to human error24. In addition, injury accident records collected during 38 years 
by the safety services in a steel plant in Cracow, Poland has shown that on the night shift, the accident rate was 
lower during and immediately after the meal breaks (from 02:00 to 04:00), which is when the workers usually try to 
slow the tempo of work. Subsequently, a distinct rise on accidents was observed in the last hours of the shift (which 
is when workers generally speed to get tasks accomplished on time). Still according to the study in Cracow, 
commonly, the number of accidents was significantly greater in summer than in winter26. 

Studies have also shown discrepancies among industries from different types and locations. A report 
characterizing work-related fatal injuries occurring in Louisiana from 2015 through 2016 and captured from a 
multisource work-related fatality surveillance system developed by the Louisiana Department of Health has shown 
that oil and gas extraction, agriculture and transportation together account for 63% of all fatalities on that period. 
Yet, each industry has rates consistently greater than the US rates, except for Oil and Gas extraction, which has 
greater variation in rates. The authors highlight multiple factors that may influence a state’s occupational injury rate, 
including the state’s industry profile, workplace regulations and enforcement, and the state’s overall economic and 
social condition27. 

Company’s size has also shown correlation with rate of accidents. According to Eurostat data for 1998 revealed 
that in the European Union (EU) the majority accidents resulting in more than three days’ absence from work or 
death occurred in companies with between 10 and 49 employees28. 

Other factors can also be connected to safety behaviors and help to evaluate cases of uncertainty or even alert the 
seriousness of a detected event. For instance, it is more immediately dangerous to life or health not wearing 
respirators in case of oxygen deficiency environments than when exposed to non-toxic particulate contaminants and 
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this knowledge can affect the interpretation of severity when a worker not wearing this equipment in any of those 
situations is detected. Yet, it is common sense that a worker is exposed to higher risks when the machine which they 
interact is in operation then when it is switched off; it can modify the state of and event, for instance, from hazard 
detected to safe if a worker not warning the appropriate PPE is detected interacting with a switched off machine. Fig. 
2 shows examples of attributes status, potentially hazardous events being or not detected and the role context may 
play in each of them. 

 

Fig. 2. Examples of potentially hazardous events being or not detected and the role context may play on each of 
them. 

 
In our platform, workers are continually monitored and, as shown on Fig 2, the status of events being captured 

(safe or unsafe) can be influenced by the context in which it occurs in real time. For a given set of attributes detected 
and classified by a Convolutional Neural Network, the safety status will depend on the set of safety rules given 
during the configuration process, as mentioned previously. When the rules are violated, the captured events are 
identified as unsafe. Their evaluation will, then, take into consideration the available contextual knowledge, so more 
accurate and detailed output can be provided to the user.  

To create experiences, the contextual knowledge must be represented in an explicit way so it can be readily 
articulated, codified, accessed and shared. The “explicitness” of a knowledge depends on its nature as well as on the 
capacity of the system to proceduralize it22.  Therefore a knowledge representation capable of storing experiences, 
facilitating sharing at the same time as allows their understanding inside different contexts is essential. 
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4.2 Modelling and representation of contextual knowledge 

Formalizing context has been a central issue of research in artificial intelligence and related areas. Even before 
acquiring contextual knowledge, the designer faces the representation problem22.  In our system contextual 
knowledge is represented explicitly as part of the Set of Experience Knowledge Structure (SOEKS), a knowledge 
representation structure designed to obtain and store formal decision events in an explicit way. Companies may 
share certain safety-related experiences, but behavior-based safety situations happening inside of an organization 
must also be understood in its own context. In addition, organizational safety cultures are usually self-perpetuating, 
i.e. it is passed along, and new members are coached into the prevailing culture and beliefs which influences their 
behavior in regards to safety practices. This self-sustaining and perpetuating feature, also means that poor safety 
cultures can be resistant to change and that modifying the culture can be a very slow process13. To create uniqueness 
contexts, validated SOEKS from each particular organization are grouped and stored as a Decisional DNA (DDNA) 
a decisional safety fingerprints of a company to support an explicit long term safety culture change process that can 
be systematically assessed and shared.  In addition, when similar events to those stored occurs a quicker and more 
precise response can be provided. 
 
4.2.1 Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA) 

 
Computers, unfortunately, are still not capable of forming representations of the world as a human being, and 

even simpler, representations of just formal decision events. Adequately, efficiently, and effectively representing 
information and knowledge inside a computer is not a trivial process. For this reason, our consideration of using 
SOEKS as carrier for decisions making is logically founded in the fact that experience has to be taken into account 
for developing a better cognitive vision system. 

The Set of Experience Knowledge Structure SOEKS is a knowledge representation structure designed to obtain 
and store formal decision events in an explicit way. It is based on four key basic elements of decision-making 
actions (variables, functions, constraints and rules). Variables are generally used to represent knowledge in an 
attribute-value form, following the traditional approach for knowledge representation. Given that, the set of 
Functions, Constraints, and Rules of SOEKS are different ways of relating knowledge variables, it is safe to say that 
the latter are the central component of the entire knowledge structure. Functions define relations between a 
dependent variable and a set of input variables; therefore, SOEKS uses functions as a way to create links among 
variables and to build multi-objective goals. Likewise, constraints are functions that act as a way to limit 
possibilities, limit the set of possible solutions and control the performance of the system in relation to its goals. 
Finally, rules are relationships that operate in the universe of variables and express the condition-consequence 
connection as “if-then-else” and are used to represent inferences and associate actions with the conditions under 
which they should be implemented8. 

The Decisional DNA consists is a structure capable of capturing decisional fingerprints of an individual or 
organization and has the Set of Experience Knowledge Structure SOEKS as its foundation. Multiple Sets of 
Experience, also known as SOE, can be collected, classified, organized and then grouped into decisional 
chromosomes, which accumulate decisional strategies for a specific area of an organization. The set of chromosomes 
comprise, finally, what is called the Decisional DNA (DDNA) of the organization28. 

SOEKS and DDNA can be used to solve the scalability issues found in current Computer Vision approaches by 
introducing an experience based approximation that aims to recognize events defined by the user using the 
association among variables, production rules, and context, adapting to different conditions, clients and situations. In 
addition, by creating the safety DDNA of organizations as the system runs, event can be precisely understood inside 
the companies’ context and information can be safely stored, accessed and shared among computer systems. Fig. 3 
illustrates the process of representation of the knowledge as SOEKS and storing as DDNA.  
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dependent variable and a set of input variables; therefore, SOEKS uses functions as a way to create links among 
variables and to build multi-objective goals. Likewise, constraints are functions that act as a way to limit 
possibilities, limit the set of possible solutions and control the performance of the system in relation to its goals. 
Finally, rules are relationships that operate in the universe of variables and express the condition-consequence 
connection as “if-then-else” and are used to represent inferences and associate actions with the conditions under 
which they should be implemented8. 

The Decisional DNA consists is a structure capable of capturing decisional fingerprints of an individual or 
organization and has the Set of Experience Knowledge Structure SOEKS as its foundation. Multiple Sets of 
Experience, also known as SOE, can be collected, classified, organized and then grouped into decisional 
chromosomes, which accumulate decisional strategies for a specific area of an organization. The set of chromosomes 
comprise, finally, what is called the Decisional DNA (DDNA) of the organization28. 

SOEKS and DDNA can be used to solve the scalability issues found in current Computer Vision approaches by 
introducing an experience based approximation that aims to recognize events defined by the user using the 
association among variables, production rules, and context, adapting to different conditions, clients and situations. In 
addition, by creating the safety DDNA of organizations as the system runs, event can be precisely understood inside 
the companies’ context and information can be safely stored, accessed and shared among computer systems. Fig. 3 
illustrates the process of representation of the knowledge as SOEKS and storing as DDNA.  
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Fig. 3. Representation of the Knowledge as SOEKS and creation of a Decisional DNA (DDNA). 

5. Conclusion and Future Work  

In this paper we presented a Cognitive Vision Platform for Hazard Control (CVP-HC) with focus in industrial 
environments. The Cyber Physical System aims to perceives critical safety behaviors in real time giving support for 
the behavior-based safety strategy whilst  stores information in an structured way to support an explicit long term 
culture change process that can be systematically assessed and shared. The CVP-HC is designed to be a scalable yet 
adaptable system capable of working in a variety of video analysis scenarios attending specific safety requirements 
of different industries by modifying its behavior accordingly without the need of recoding the system to better suit 
every specific application. Additionally, the system attend one of the main characteristics of Cognitive Vision: 
extendability; which means, it is planned to grown and attend more than what it is initially thought and tested for. 
The proposed system is based on the Set of Experience Knowledge Structure (SOEKS or SOE in short) and 
Decisional DNA (DDNA). We highlight in this research the importance of context knowledge to support formal 
reasoning. Contextual information is sensed or provided to the recognition system through different sources of 
information and represented explicitly as structured knowledge. These contextual knowledge is then used to 
characterize and improve the recognition and interpretation of detected events.  

At this point the exact influence of contextual knowledge in the decision making was not defined quantitatively. 
For next steps, tests to measure the gain in accuracy, certainty and interpretation simple events will be evaluated. In 
addition, the different sources of knowledge proposed in this paper will be thoroughly examined and flow for 
collection and representation of data designed. 
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