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Abstract 

A novel approach to determine conduction mechanisms in complex amorphous materials was 
presented and tested on a real system. According to the method, total electrical admittance of the 
material is separated to a couple of processes, which can be described by Jonscher’s universal dielectric 
response. In the next step, a temperature dependency of dielectric response parameters of each process 
is determined and compared with known models of conduction mechanisms in structural amorphous 
materials. Using this approach, a presence of two different conduction mechanisms describing electrical 
conductivity in a system was described. 
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1. Introduction

One of the characteristic properties of dielectric materials is a strong dispersion of the ac 

conductance (Y’). At low frequencies, one observes a frequency-independent dc conductance (Ydc), while 

at higher frequencies conductance usually varies as a power of the frequency, what overall may be written 

as Eq. 1: 

Y'(ω) = Ydc + Aωn, (1) 

where ω = 2πf is an angular frequency, and parameters A and n can be temperature dependent. The 

increase in conductance usually continues up to phonon frequency (ωph ≈ 1012 s−1) [1]. 

In a series of publications, Jonsher [1–4] proposed and demonstrated the utility of Eq. 1 in order to 

analyze the ac conductivity in amorphous systems. This relation found application in almost every 

disorder solid and therefore it was named as an universal dielectric response (UDR).  Further, it has been 

found [4] that UDR (Eq. 1) may be written in a full complex form in terms of admittance (Y*) as: 

𝑌∗(𝜔) = 𝑌0[1 + (𝑗𝜔𝜏)𝑛] = 𝑌0 [(𝜔𝜏)
𝑛 (𝑐𝑜𝑠 (𝑛

𝜋

2
) + 𝑗𝑠𝑖𝑛 (𝑛

𝜋

2
))],  (2) 
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where j is an imaginary unit, τ is a relaxation time of a conduction process and exponent parameter 
n is less than one.  The relaxation time τ is often replaced by a relaxation frequency (ω0  = τ-1) of charge 
carrier hopping between active sites. It can be seen, that a real part of Eq. 2 is equal to Eq. 1.  

Much effort was done to create theoretical models, which explain the frequency and temperature 
dependencies of electrical properties. Widely accepted models [5, 6] are based on an assumption that a 
charge carrier moves between localized sites separated by finite distances and energy barrier potentials. 
There are several popular models of electrical charge transport, which describe the conductivity 
behavior of amorphous materials: small polaron hopping (SPH) [8], overlapping large polaron hopping 
(OLPH) [9,10], correlated barrier hopping (CBH) [11], quantum mechanical tunneling (QMT) [9] and 
continuous time random walk (CTRW) [12,13]. For every of mentioned models, Elliott [6] calculated 
temperature dependency of the exponential factor n (Eq. 1). According to his calculations [6], parameter 
n for QMT and CTWR models should be temperature independent, while with an increase in temperature 
it should decrease for CBH or increase for SPH. Only for OLPH exponential factor n may increase or 
decrease with increase in temperature depending on conduction process parameters (like polaron 
radius, activation energy and decay of electron wave function). Since, in many materials [5-7] the 
exponential factor n, obtained by fitting admittance to Eq.2, is temperature dependent, it is possible to 
determine conduction process mechanisms by comparing experimentally obtained n = f(T) function with 
modeled functions [14]. 

Usually, to determine electrical properties of different relaxation processes, the admittance of the 

system is modeled by equivalent electrical circuits composed of discrete components like resistors, 

capacitors, constant phase elements (CPE) or Warburg’s elements. Although these elements can be 

arranged in many different configurations, two of them are commonly used i.e., Voigt and Maxwell 

networks (Fig. 1a and Fig. 1b respectively) [7]. Depending on the configuration, different information 

about the same analyzed system can be evaluated. For instance in Voigt network, each of Ri and CPEi 

elements in the circuit can be related to certain resistance and capacitance of conducting region. In 

Maxwell network, the global R1 and CPE1 parameters may be related to resistance and capacitance of 

process extended to the whole system, while Ri and CPEi (for i>1) refer only to the resistance and 

capacitance of electrical conduction process which is blocked. 

 

Figure 1: Scheme of simulated electrical circuits with two relaxation times: a) Voigt  and b) Maxwell networks 
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 A simple Voigt circuit characterized by a presence of two relaxation processes and built of two 

resistors and two CPEs is shown in Fig. 1a. As admittance of CPE is described by Eq. 3: 

 

𝑌𝐶𝑃𝐸
∗ (𝜔) = 𝐴(𝑗𝜔𝜏)𝑛 = 𝐴(𝜔𝜏)𝑛 (𝑐𝑜𝑠 (𝑛

𝜋

2
) + 𝑗𝑠𝑖𝑛 (𝑛

𝜋

2
)),     (3) 

 

then total admittance of a single R − CPE sub-circuit is defined by Eq. 4: 

 

𝑌∗(𝜔) = 𝑌𝑅 + 𝑌𝐶𝑃𝐸
∗ =

1

𝑅
+ 𝐴(𝑗𝜔𝜏)𝑛 =

1

𝑅
+ 𝐴(𝜔𝜏)𝑛 (𝑐𝑜𝑠 (𝑛

𝜋

2
) + 𝑗𝑠𝑖𝑛 (𝑛

𝜋

2
)) , (4) 

 

The admittance described by Jonscher’s UDR equation (Eq. 2) and of a simple R−CPE circuit (Eq. 4) 

are mathematically equivalent what has been shown by Macdonald [7]. In a consequence, the 

admittance of the whole Voigt circuit shown in Fig. 1a can be described by Eq. 5: 

 

𝑌∗ =
𝑌1
∗𝑌2

∗

𝑌1
∗+𝑌2

∗ =
(1+𝑅1𝐴1(𝑗𝜔𝜏1)

𝑛1)(1+𝑅2𝐴2(𝑗𝜔𝜏2)
𝑛2)

𝑅1(1+𝑅2𝐴2(𝑗𝜔𝜏2)
𝑛2)+𝑅2(1+𝑅1𝐴1(𝑗𝜔𝜏1)

𝑛1)
,                  (5) 

  

 while the admittance of equivalent Maxwell circuit (Fig. 1b) may be expressed by Eq. 6: 

 

𝑌∗ = 𝑌1
∗ + 𝑌2

∗ =
1

𝑅1
+ 𝐴1(𝑗𝜔𝜏1)

𝑛1 +
𝐴2(𝑗𝜔𝜏2)

𝑛2

1+𝑅2𝐴2(𝑗𝜔𝜏2)
𝑛2
,  (6) 

 

where n1 and n2 are constants, τ1 and τ2 define a characteristic time of a relaxation processes, while 

A1R1(jωτ)n1 and A2R2(jωτ)n2 have unit equal to 1.  

One of the examples of disordered materials, which exhibit two relaxation processes in their 

conductivity curves, are double-phase glasses. An interpretation of its electrical properties is especially 

interesting when they are produced without addition of alkali metal ions, because the most possible 

mechanism of charge movement in both phases is polaron hopping exhibiting different physical 

properties [5]. In the present article, the method of conduction mechanisms analysis is presented for any 

system characterized by two relaxation processes of charge transport. Next, this method was applied to 

a real glass system 50MnO – 30SiO2 – 20B2O3 (in mol%) not containing alkali ions and exhibiting uniform 

phases separation. Finally, models accurately describing the conductivity of founded processes were 

determined. 

2. Materials 

The glass of a composition of 50MnO - 30SiO2 - 20B2O3, was prepared using appropriate amounts of 

analytical grade: MnO2 (Sigma-Aldrich), SiO2 (POCH) and H3BO3 (POCH) powders. The stoichiometric 

composition was mixed manually in an agate mortar and heated up in a muffle furnace in a platinum 

crucible. The mixture was melted at 1500 K for 30 min in air. The melt was quenched by pouring on a 

preheated to about 500 K brass plate and pressing by another plate to obtain flat circular pellets of 1 - 
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1.3 mm thickness and 10 - 20 mm in the diameter. In order to study properties related to the bulk 

material, before a measurement, a surface layer was removed from pellets, by grinding with a dry 

sandpaper. Powder X-ray diffraction (XRD) measurement was done at room temperature on PANalytical 

X’Pert Pro MPD using the CuKα radiation in order to check the glass structure. The microstructure of the 

sample was investigated with FEI Quanta 250 FEG Scanning Electron Microscope (SEM). Before 

measurement, glass sample was covered by a 20 nm gold layer using vacuum evaporation.  

Electrical properties were examined by impedance spectroscopy measurements, which were carried 

out in the temperature range of 445 K - 760 K with a Novocontrol Concept 40 broadband dielectric 

spectrometer. The used frequency range was from 10 mHz to 1 MHz and the ac signal was 1 Vrms. Before 

the measurements, pellet of glass was polished to obtain plane parallel samples. Circular gold electrodes 

of 9 - 12 mm in the diameter were deposited by vacuum sputtering on sample basal surfaces. The 

measurement error of electrical properties were minimalized by calibration impedance spectrometer by 

a calibration procedure using 100 Ω resistor. On the other hand, random errors were minimalized by 

performed measurement for every point at least 3 times. 

3. Method 

An analysis of possible mechanisms of charge carrier movement in the glass, characterized by two 

relaxation processes, was performed. It was done based on the frequency and temperature behavior of 

admittance. The analysis of admittance parameters consisted of few steps. In the first step, an equivalent 

electrical circuit (combined of resistors and CPEs) is proposed, which  represents as many relaxation 

processes as are observed in a measured system. In the second step, the equation describing admittance 

of the equivalent circuit is used for fitting the measured data. Depending on the interesting properties of 

the system, equations describing Voigt (Eq. 5) or Maxwell (Eq. 6) networks can be fitted to the admittance 

data. For instance, using Voigt network to analyze two phases material R1 and R2 are resistances of these 

phases, while τ1 and τ2 – their relaxation time. It can be seen, that four parameters (i.e., Ai, Ri, τi and ni) 

are correlated with each relaxation process. The fitting procedure is performed simultaneously on both, 

the real and the imaginary parts of admittance using least-squares methods (Levenberg-Marquardt 

algorithm) [15]. Next, obtained parameters (especially n factors) are analyzed as a function of 

temperature. Finally, the relations describing different conduction mechanism models are fitted to ni = 

f(T) function and obtained parameters are compared with the real values. All measurement data were 

analyzed and fitted using OrignPro9.1 software with implemented complex numbers library. Standard 

errors for the derived parameters were estimated according to the Error Propagation formula, which in 

OroginPro9.1 is an approximate formula [16].  

 4. Results 

The obtained glass pellets were optically homogeneous, however SEM analysis shows that the 
material consists of two separated phases. Fig. 1 presents the SEM images of polished cross sections of 
the obtained pellet. In the sample uniformly dispersed phase is visible as circular granules in the matrix.  
Majority of dispersed granules have a diameter of about 1000 µm. An absence of XRD peaks and wide 
hump between 20° and 35° (Fig. 3) confirms amorphous structure of studied samples. More detailed 
discussion about structure of the 50MnO - 30SiO2 - 20B2O3 glass has been presented in our previous 
paper [17]. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


5 

 
Figure 2: SEM images of cross sections of the glass at room temperature. 

 

Figure 3: The XRD patterns of samples, typical of amorphous materials. 

The results of admittance measured at different temperatures for the 50MnO - 30SiO2 - 20B2O3 glass 

in a temperature range from 445 K to 745 K are presented in Fig. 2. The plots consist of three regions. 

One is a dc plateau dominating in a low-frequency region, which is equal to direct current conductance 

(Ydc). Another, observed at high frequencies is a region of fast increment of conductance, where a 

derivative dln(Y')/dln(f) changes toward 1. The last region at middle frequencies is characterized by a 

non-monotonic change of the data curve slope dln(Y')/dln(f). 
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Figure 4: The conductance (and admittance in inset) for 50MnO - 30SiO2 - 20B2O3 glass as a function of angular frequency at a 

temperature from 445 K to 745 K. The red lines represent the fitting results of Eq. 5 and 6, at 595 K. Error bars are smaller 

than a width of data points. 

Table 1: Results of an equivalent circuit fitting to acquired data at temperature of 595 K. R1 and R2 describe resistances of the first 

and second relaxation processes, while τ1, τ2, s1 and s2 describe CPE1 and CPE2, respectively according to Eq. 5 (Voigt circuit) or Eq. 

6 (Maxwell circuit). Numbers in bracket refer to a fitting error. 
Model R1 τ1 n1 R2 τ2 n2 

 Ω S - Ω s - 

Maxwell 5.5(1) ·107 5.7(1)·10−5 0.94(1) 7.9(4)·107 6.1(9)·10−5 0.99(1) 
Voigt 3.8(1)·107 1.4(1)·10−4 0.98(1) 1.7(1) ·107 2.1(1) ·10−5 0.95(1) 

 

As it is shown in Fig. 4, Ydc value and its maximum frequency range increase with temperature. The 

presence of the distortion suggests that an electrical circuit appropriate to simulate the spectrum should 

be characterized by, at least, two relaxation processes (like shown in Fig. 1). It can be seen, that an effect 

of the presence of two conduction processes on the conductance spectra is better visible at 745 K than 

445 K.  

The data of admittance as a function of frequency and at a temperature range from 445K to 745 K, 

were fitted, according to the method described in section 3, to equations 5 and 6 (the conductance is 

shown in Fig. 2). Obtained exemplary parameters R1, R2, τ1, τ2 and n1, n2 for data collected at 595 K are 

presented in Tab. 1, while values of parameters n1 and n2 as a function of temperature are shown in Fig. 

3. It can be seen, that obtained parameters for both models differ from each other by less than one order 

of magnitude. A similar ratio between the parameters was observed at a temperature range from 445 K 

to 745 K. 
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5. Discussion 

The 50MnO - 30SiO2 - 20B2O3 glass is composed of two amorphous phases, what provides a 

possibility to observe a few conduction processes related to conduction through the glass matrix, 

conduction through dispersed areas, conduction through interfaces between the matrix and the 

dispersed phase, and blocking of charge carriers on outer interfaces of the sample. A relaxation process 

related to blocking of charge carriers on electrode-sample and between phase boundaries interfaces are 

characterized by a long relaxation time (a few orders of magnitude higher than bulk τ) and low 

admittance (a few orders of magnitude lower than bulk Y) [7]. Differences between values of R1 and R2 

(as well as between τ1 and τ2) (Tab. 1), describing resistances of two processes, do not exceed one order 

of magnitude, so they may be linked with a fast movement of charge carriers. The blocking on the internal 

and external interfaces is not observed, what indicates that it is not present in the measured system or 

that relaxation time is very low (below 10-2 Hz at 745 K). Consequently, to further analysis of electrical 

properties of the glass, the Voigt equivalent circuit characterized by two relaxation processes (Fig. 1a) 

was chosen. 

 

 

Figure 5: The n1 and n2 parameters obtained from admittance data fitting to equivalent Voigt circuit as a function of temperature. 

The obtained values of factors n1 and n2 of admittance data fitted to equivalent Voigt circuit (Fig. 1a 

and Eq. 5) as a function of temperature are shown in Fig. 3. It can be seen, that the n1 decreases, while n2 

slightly increases, with an increase in temperature. Elliott's [6] calculations made for several models of 

conduction process (i.e., SPH, OLPH, CBH, CTRW, and QMT) showed, that OLPH and CBH may be applied 

to describe the decrement of exponential factor n1, while SPH, OLPH predict the increment of n2 [6]. 

If we assume SPH conduction model, then n2 parameter should change with temperature and 

frequency as shown in Eq. 7: 

 

𝑛 = 1 −
4

ln(
𝜔0
𝜔
)−

𝑊𝐻
𝑘𝑇

,                   (7) 
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where k is Boltzmann constant, WH an activation energy of polaron hopping barrier, and ω0 is 

characteristic phonon frequency (typically 1012 −1013 s−1). On the other hand, n1 and n2 parameters may 

also change according to OLPH model as shown in Eq. 8: 

 

𝑛 = 1 −
1

2𝛼𝑅𝜔

4+3𝑊𝑀𝑟0/𝛼𝑘𝑇𝑅𝜔
2

(1+𝑊𝑀𝑟0/2𝛼𝑘𝑇𝑅𝜔
2 )2

,                   (8) 

 

or assuming  CBH conduction model n1 parameter should change as shown in Eq. 9: 

 

𝑛 = 1 −
6𝑘𝑇

𝑊𝑀−𝑘𝑇𝑙𝑛(
𝜔0
𝜔
)
,                  (9) 

 

where α is an electron wave-function decay constant, r0 - polaron radius, Rω - tunneling distance for 

current frequency, and WM an activation energy barrier of charge carrier hopping between infinitely 

distanced neighboring sites. Parameters WM or WH and ln(ω0/ω) (Tab. 2.) are present in all of Eq. 7-9, so 

they were used to compare the chosen models. As WH in Eq. 7 does not depend on the inter-site 

separation length, it may be treated as well as the activation energy of hopping between infinitely 

distanced neighboring sites – WM. 

 

Table 2: Results of fitting n1 and n2 factors (in Voigt network) as a function of temperature according to OLPH, CBH, and SPH models. 

WM or WH and ln(ω0/ω) describe maximum barrier hopping energy for infinitely separated hopping sites and frequency separation 

between measured and phonon frequency. Numbers in bracket refer to a fitting error. 
n1 CBH OLPH 

WM (eV) 3.1(6) 7.4(8) 

ln(ω0/ω) 11(1) 23(2) 

n2 SPH OLPH 

WM or WH (eV) 7(2) 0.25(5) 

ln(ω0/ω) 320(35) 21(3) 

 

To obtain WM or WH and ln(ω0/ω) parameters, functions describing temperature dependency of the 

exponential factors (Eq. 8 and Eq. 9) were fitted to the data. As it can be seen in Tab. 2, WM varies from 

0.25 eV to 7.4 eV, while ln(ω0/ω) varies from 11 to 320. However, according to measurements performed 

on the glasses containing various transition metal oxides [18–20], the value of WM is expected to be 

between 0.5 eV and 10 eV, while ln(ω0/ω) should be observed between 1 and 23. Based on these limits, 

one may conclude that the temperature dependency of parameter n1 is well described by both (OLPH and 

CBH) models. Usefulness of both models is reasonable, as CBH and OLPH are complementary, where a 

macroscopic CBH may be treated as a generalization of microscopic OLPH. The obtained activation 

energy for OLPH is very low (0.25 eV). As the WM  should decrease when the structure becomes more 

ordered, one may conclude that the distance between active sites of charge carriers’ movement is almost 
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regular. On the other hand, the value of ln(ω0/ω) above 300 obtained for SPH model cannot be treated as 

a physical value and the model has to be excluded.  

Comparing results shown in Tab. 2, one may conclude that the values of exponential parameter n1 

obtained for Voigt equivalent circuit suits CBH or OLPH models, while parameter n2 suits OLPH. It can be 

concluded, that the conduction process in the glass is carried out by hopping of large polarons through 

strongly disordered areas where WM is in the order of a few eV, and through ordered areas where WM is 

below 0.5 eV. 

 

6. Conclusions 

A new approach to determine conduction mechanisms in the structural amorphous materials was  

presented. According to the method, total admittance is separated into a few processes, which can be 

imitated by an equivalent electrical circuit combined with several discrete elements. Next, parameters of 

the equivalent circuit are fitted to experimentally gathered data in a wide range of temperature. In the 

end, the temperature dependency of a value of parameters describing the exponential dependency of 

admittance as a function of frequency according to the universal dielectric response, are compared with 

known theoretical models describing the conductivity behavior in amorphous systems.  

This method was applied in order to identify mechanisms of conduction for 50MnO  - 30SiO2 - 20B2O3 

(in mol%) glass sample. Based on values of resistance and relaxation time of the observed relaxation 

processes, it was determined that the electrical properties of the glass are properly represented by Voigt 

equivalent circuit characterized by two R-CPE sub-circuits. The analysis of the temperature dependency 

of exponential parameters n1 and n2 has shown that conduction process through the one phase (strongly 

disorder) can be described by correlated barrier hopping and overlapping large polarons hopping 

models, while conduction through the other (almost ordered) can be described by overlapping large 

polarons hopping models. 
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