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Abstract
We propose a new modified primal–dual proximal best approximation method for
solving convex not necessarily differentiable optimization problems. The novelty of
the method relies on introducing memory by taking into account iterates computed
in previous steps in the formulas defining current iterate. To this end we consider
projections onto intersections of halfspaces generated on the basis of the current aswell
as the previous iterates. To calculate these projections we are using recently obtained
closed-form expressions for projectors onto polyhedral sets. The resulting algorithm
withmemory inherits strong convergence properties of the original best approximation
proximal primal–dual algorithm. Additionally, we compare our algorithm with the
original (non-inertial) one with the help of the so called attraction property defined
below. Extensive numerical experimental results on image reconstruction problems
illustrate the advantages of including memory into the original algorithm.
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1 Introduction

Motivated by problems arising in the field of inverse problems, signal processing,
computer vision andmachine learning, there has been an increasing interest in primal–
dual methods [12,32,33]. Over the last years, substantial progress has been made.
Among others, the recent advances concern block algorithms [18,24], asynchronous
methods [21,43], generalizations of projection algorithms [22,28] and introduction of
memory effect.

While versions with memory of several proximal primal–dual algorithms already
exist [16,17,34,41,46], in this paper we propose a new way of introducing memory
effect in projection algorithms by studying algorithm [2]. We consider the following
convex optimization problem

min
p∈H

f (p) + g(Lp), (1)

where H and G are two real Hilbert spaces, f : H → R∪{+∞}, g : G → R∪{+∞}
are proper convex lower semi-continuous functions and L : H → G is a bounded
linear operator. Under suitable regularity conditions problem (1) is equivalent to the
problem of finding p ∈ H such that

0 ∈ ∂ f (p) + L∗∂ g(Lp), (2)

where ∂(·) denotes the subdifferential set-valued operator. Problem (2) is of the form

0 ∈ A(p) + L∗ B(Lp), (P)

where A : H ⇒ H and B : G ⇒ G are maximally monotone set-valued operators.
Different approaches to solve (P) have been proposed e.g. in [5,26,48]. In particular,

primal–dual approaches to solve (1)may lead to formulationswhich can be represented
as in (P), see e.g. [1,2,9,10,13,15,23] and the references therein. Recently, the primal–
dual approach has been applied in [54] to a more general form of (P) involving the sum
of two maximally monotone operators and a monotone operator. The case when A is
maximal monotone and B is strongly monotone was considered in [48]. The overview
of primal–dual approaches to solve (P) has been recently proposed in [32].

Some algorithms to solve (1) which rely on including xn−1 into the definition of
xn+1 were proposed in [3,4,9,15,30,31,35–39,41,42]. They are mostly based on dis-
cretizations of the second order differential system related to the problem (2). This
system, called heavy ball with friction, is exploited in order to accelerate conver-
gence. Indeed, the introduction of the inertial term was shown to improve the speed
of convergence significantly [30,31].

In [46] Pesquet and Pustelnik proposed a primal method to solve (1) with inertial
effect introduced through inertia parameters. The method explores information from
more than one previous steps and allows finding zeros of the sum of an arbitrary finite
number of maximally monotone operators (see also [26]).

For monotone inclusion problems (P) inertial proximal algorithms and fixed-points
iterations have been proposed in [3,4,8,9,11,34,39,40,48].
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In the present paper we propose a new projection algorithmwithmemory.We intro-
duce a memory effect into projection algorithms by relying on successive projections
onto polyhedral sets constructed with the help of halfspaces originating from current
and previous iterates. To the best of our knowledge this way of introducing memory
has not been considered yet.

By applying to problem (P) the generalized Fenchel–Rockafellar duality framework
[44, Corollary 2.12] (see also Corollary 2.4 of [45]) we obtain the dual inclusion
problem which amounts to finding v∗ ∈ G such that

0 ∈ −L A−1(−Lv∗) + B−1v∗. (D)

By [44, Corollary 2.12], a point p ∈ H solves (P) if and only if v∗ ∈ G solves (D)
and (p, v∗) ∈ Z , where

Z := {(p, v∗) ∈ H × G | − L∗v∗ ∈ Ap and Lp ∈ B−1v∗}. (3)

In the case when L = I d and H = G, the set Z reduces to the extended solution set
Se(A, B) as defined in [25]. The set Z is a closed convex subset of H × G (see e.g.
[7, Proposition 23.39]).

The Fenchel–Rockafellar dual problem of (1) takes the form (see [45])

min
v∗∈G

f ∗(−L∗v∗) + g∗(v∗), (4)

where f ∗ denotes the conjugate function [47]. In this case set Z is of the form

Z = {(p, v∗) ∈ H × G | − Lv∗ ∈ ∂ f (x) and v∗ ∈ ∂g(Lx)}. (5)

1.1 Projectionmethods

The idea of finding a point in Z is based on the fact that

Z ⊂ {(p, v∗) ∈ H × G | ϕ(p, v∗) ≤ 0} := Hϕ,

whereϕ(p, v∗) := 〈p−a |a∗+L∗v∗〉+〈b∗−v∗ | Lp−b〉, (a, a∗) ∈ graphA, (b, b∗) ∈
graphB. This suggests the following iterative scheme for finding a point in Z based
on projections onto Hϕ : for any (p0, v∗

0) ∈ H × G and relaxation parameters λn ∈
(0, 2), n ∈ N let

(
pn+1, v

∗
n+1

) := (pn, vn) + λn
(
PHn (pn, v∗

n) − (
pn, v∗

n

))
, (6)

where Hn := {(pn, v
∗
n) ∈ H × G | ϕ(pn, v∗

n) ≤ 0} with ϕn defined for suitably
chosen (an, a∗

n ) ∈ graphA, (bn, b∗
n) ∈ graphB ([1, Proposition 2.3], see also [25,

Lemma 3]) and PD(x) denoting the projection of x onto the set D. For L = I d this
iteration scheme has been proposed by Eckstein and Svaiter [25] and its fundamental
convergence properties has been investigated in [25, Proposition 1, Proposition 2].
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Further convergence properties of (6) have been investigated in [1] and [6, Theorem
2]. The sequence generated by (6) is Fejér monotone with respect to set Z and, in
general, only its weak convergence is guaranteed.

Modifications of (6) to force strong convergence have been proposed in [2,51,52,
54,56]. Recently, asynchronous block-iterative methods are proposed in [21,24].

1.2 The aim

In the present paper we propose a primal–dual projection algorithm with memory to
solve (P) which relies on finding a point in the set Z defined by (3). The origin of our
idea goes back to the algorithm of Haugazeau [7, Corollary 29.8], who proposed an
algorithm for finding the projection of x0 ∈ H onto the intersection of a finite number
of closed convex sets by using projections of x0 onto intersections of two halfspaces.
These halfspaces are defined on the basis of the current iterate xn (see also [51–53]).

In our approach we take into account projections of x0 onto intersections of three
halfspaces which are defined on the basis of not only xn but also xn−1.

The contribution of the paper is as follows.

– We apply formulas for projections onto intersections of three half-spaces inHilbert
spaces derived in [50]. We show that in the considered cases (Proposition 4) the
complete enumeration is not required (Proposition 5).

– We propose a number of iterative schemes with memory for solving primal–dual
problems defined by (P) and (D).

– We apply our iterative schemes to propose a proximal algorithm with memory to
solve minimization problem defined by a finite sum of convex functions.

– We provide convergence comparison of the proposed algorithm with its non-
memory version in terms of attraction property (Proposition 7).

– We perform an experimental study aiming at comparing the best approximation
algorithm proposed in [2] and our algorithm.

The organization of the paper is as follows. In Sect. 2 we propose the underlying
iterative schemes with memory and we formulate basic convergence results. In Sect. 3
we provide several versions of the iterative scheme with memory. One of the main
ingredients is a closed-form formula for projectors onto polyhedral sets introduced
in [50]. In Sect. 4 we perform the convergence comparison of the proposed iterative
schemes. In Sect. 5 we cast our general idea so as to be able to solve optimization
problem of minimization of the sum of two convex, not necessarily differentiable
functions. In Sect. 6 we present the results of the numerical experiment.

2 The proposed approach

In Sect. 2.1we recall generic FejérApproximation Scheme for finding an element from
the set Z defined by (3) and its basic properties. In Sect. 2.2 we propose refinements
of Fejér Approximation Scheme which are based on the idea proposed by Haugazeau
[27], see also [7, Corollary]. The crucial issue of the proposed refinements is to improve
convergence properties.
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In the sequel, for any x ∈ H × G we write x = (p, v∗), where p ∈ H and v∗ ∈ G.

2.1 Successive Fejér approximations iterative scheme

Let H , G be real Hilbert spaces and let Z be defined by (3). Let {Hn}n∈N ⊂ H × G,
be a sequence of convex closed sets such that Z ⊂ Hn, n ∈ N. The projections of any
x ∈ H onto Hn are uniquely defined.

Iterative Scheme 1 Generic Fejér Approximation Iterative Scheme
Choose an initial point x0 ∈ H × G
Choose a sequence of parameters {λn}n≥0 ∈ (0, 2)
for n = 0, 1 . . . do

xn+1 = xn + λn(PHn (xn) − xn)

end for
return

Theorem 1 ([1, Proposition 3.1], see also [20]) For any sequence generated by Itera-
tive Scheme 1 the following hold:

1. {xn}n∈N ⊂ H × G is Fejér monotone with respect to the set Z, i.e.

∀n∈N ∀z∈Z ‖xn+1 − z‖ ≤ ‖xn − z‖,

2.
∑+∞

n=0 λn(2 − λn)‖PHn (xn) − xn‖2 < +∞,
3. if

∀x ∈ H × G ∀{kn}n∈N ⊂ N xkn ⇀x �⇒ x ∈ Z ,

then {xn}n∈N converges weakly to a point in Z.

In [1] the sets Hn appearing in Iterative Scheme 1 are defined as closed halfspaces
Han ,b∗

n
,

Han ,b∗
n

:=
{

x ∈ H × G |
〈
x | s∗

an ,b∗
n

〉
≤ ηan ,b∗

n

}
,

s∗
an ,b∗

n
:= (

a∗
n + L∗b∗

n, bn − Lan
)
,

ηan ,b∗
n

:= 〈
an | a∗

n

〉 + 〈
bn | b∗

n

〉
,

(7)

with

an := Jγn A
(

pn − γn L∗v∗
n

)
, bn := Jμn B

(
Lpn + μnv∗

n

)
,

a∗
n := γ −1

n (pn − an) − L∗v∗
n , b∗

n := μ−1
n (Lpn − bn) + v∗

n ,

where for any maximally monotone operator D and constant ξ > 0, Jξ D(x) = (I d +
ξ D)−1(x). Parameters μn, γn > 0 are suitable defined. It easy to see Hϕn = Han ,b∗

n
,

where ϕn = ϕ(an, b∗
n).
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772 E. M. Bednarczuk et al.

For Hn = Han ,b∗
n
Theorem 1 can be strengthened in following way.

Theorem 2 [1, Proposition 3.5] For any sequence generated by Iterative Scheme 1
with Hn defined by (7) the following hold:

1. {xn}n∈N = {(pn, v
∗
n)}n∈N is Fejér monotone with respect to the set Z,

2.
∑+∞

n=0 ‖a∗
n + L∗b∗

n‖2 < +∞ and
∑+∞

n=0 ‖Lan − bn‖2 < +∞,
3.

∑+∞
n=0 ‖pn+1 − pn‖2 < +∞ and

∑+∞
n=0 ‖v∗

n+1 − v∗
n‖2 < +∞,

4.
∑+∞

n=0 ‖pn − an‖2 < +∞ and
∑+∞

n=0 ‖v∗
n − b∗

n‖2 < +∞,
5. {xn}n∈N converges weakly to a point in Z.

2.2 Best approximation iterative schemes

Here we study iterative best approximation schemes in the form of Iterative Scheme 2.
For any x, y ∈ H × G we define

H(x, y) := {h ∈ H × G | 〈h − y | x − y〉 ≤ 0}.

As previously, let {Hn}n∈N ⊂ H × G be a sequence of closed convex sets, Z ⊂ Hn

for n ∈ N.

Iterative Scheme 2 Generic primal–dual best approximation iterative scheme
Choose an initial point x0 = (p0, v

∗
0 ) ∈ H × G

Choose a sequence of parameters {λn}n≥0 ∈ (0, 1]
for n = 0, 1 . . . do

Fejérian step
xn+1/2 = xn + λn(PHn (xn) − xn)

Let Cn be a closed convex set such that Z ⊂ Cn ⊂ H(xn , xn+1/2).
Haugazeau step
xn+1 = PH(x0,xn )∩Cn (x0)

end for
return

The choice ofCn = H(xn, xn+1/2) has been already investigated in [2]. There it has
been shown that this choice allows to achieve strong convergence of the constructed
sequence {xn}n∈N under relatively mild conditions.

Our aim is to propose and investigate other choices of Cn defined with the help
of not only xn, xn+1/2 but also xn−1 and/or xn−1+1/2. For such choices of Cn with
memory the Iterative scheme 2 becomes an iterative scheme with memory, i.e. in the
construction of the next iterate xn+1 not only current iterate xn but also xn−1 is taken
into account. In the sequel we refer to the Iterative Scheme 2withCn = H(xn, xn+1/2)

as a scheme without memory and we compare it with Iterative Scheme 2, where Cn

are with memory (see Proposition 4 below).
The Fejérian step in Iterative Scheme 2 coincides with what has been defined in

Iterative Scheme 1 and was previously discussed in [1,20].
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Convergence properties of sequences {xn}n∈N generated by Iterative Scheme 2 are
summarized in Proposition 1 based on Proposition 2.1. of [2] which, in turn, is based
on Proposition 3.1. of [19].

Proposition 1 Let Z be a nonempty closed convex subset of H × G and let
x0 = (p0, v∗

0) ∈ H × G. Let {Cn}n∈N be any sequence satisfying Z ⊂ Cn ⊂
H(xn, xn+1/2), n ∈ N. For the sequence {xn}n∈N generated by Iterative Scheme 2
the following hold:

1. Z ⊂ H(x0, xn) ∩ Cn for n ∈ N,
2. ‖xn+1 − x0‖ ≥ ‖xn − x0‖ for n ∈ N,
3.

∑+∞
n=0 ‖xn+1 − xn‖2 < +∞,

4.
∑+∞

n=0 ‖xn+1/2 − xn‖2 < +∞.
5. If

∀x ∈ H × G ∀{kn}n∈N ⊂ N xkn ⇀x �⇒ x ∈ Z ,

then xn → PZ (x0).

Proof The proof follows the lines of the proof of Proposition 2.1 of [2]. The proof of
assertion 3 and 5 coincide with the respective parts of the proof of Proposition 2.1 of
[2] and is omitted here. We provide the proofs of assertions 1, 2, 4 for completeness.

1. First we show that Z ⊂ H(x0, xn). For n = 0, x1 = PH(x0,x0)∩C0(x0), so Z ⊂
H(x0, x1). Furthermore, H(x0, xn) ∩ Cn ⊂ H(x0, PH(x0,xn)∩Cn (x0)) and

Z ⊂ H(x0, xn) �⇒ Z ⊂ H(x0, xn) ∩ Cn

�⇒ Z ⊂ H(x0, PH(x0,xn)∩Cn (x0))

⇔ Z ⊂ H(x0, xn+1)

2. By construction, for n ∈ N, xn+1 = PH(x0,xn)∩Cn (x0) and xn+1 ⊂ H(x0, xn)∩Cn ,
so xn+1 ∈ H(x0, xn). This implies ‖xn − x0‖ ≤ ‖xn+1 − x0‖.

4. Cn ⊂ H(xn, PCn (xn)) ⊂ H(xn, xn +λn(PCn (xn)− xn)) = H(xn, xn+1/2). Since
xn+1 ∈ Cn ⊂ Hn ⊂ H(xn, xn+1/2), we deduce that

‖xn+1/2 − xn‖2 ≤ xn+1 − xn+1/2‖2 + ‖xn+1/2 − xn‖2
≤ xn+1 − xn+1/2‖2 + 2〈xn+1 − xn+1/2 | xn+1/2 − xn〉 + ‖xn+1/2 − xn‖2
≤ ‖xn+1 − xn‖2.

By item 3,
∑+∞

n=0 ‖xn+1 − xn‖2 < +∞, hence
∑+∞

n=0 ‖xn+1/2 − xn‖2 < +∞.

��
Remark 1 Note that for Cn = H(xn, xn+1/2) and Hn = Han ,b∗

n
we obtain the primal–

dual best approximation algorithm introduced by Alotaibi et al. in [2], involving
projections onto the intersections of two halfspaces H(x0, xn) ∩ H(xn, xn+1/2) stud-
ied in [7, Section 28.3]. Condition Z ⊂ Cn ⊂ H(xn, xn+1/2), n ∈ N allows one to
consider choices of Cn other than Cn = H(xn, xn+1/2).
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When Hn := Han ,b∗
n
n ∈ N, where Han ,b∗

n
are defined by (7), Proposition 1 takes

the following form.

Proposition 2 Let Z be a nonempty closed convex subset of H × G and let x0 =
(p0, v∗

0) ∈ H × G. Let {Cn}n∈N be a sequence of closed convex sets satisfying the
condition Z ⊂ Cn ⊂ H(xn, xn+1/2) and Hn := Han ,b∗

n
,∈ N. For any sequence

{xn}n∈N generated by Iterative Scheme 2 the following hold:

1. ‖xn+1 − x0‖ ≥ ‖xn − x0‖ for all n ∈ N,
2.

∑+∞
n=0 ‖pn+1 − pn‖2 < +∞ and

∑+∞
n=0 ‖v∗

n+1 − v∗
n‖2 < +∞,

3.
∑+∞

n=0 ‖pn − an‖2 < +∞ and
∑+∞

n=0 ‖Lpn − bn‖2 < +∞,
4. pn → x̄, v∗

n → v̄∗ and ( p̄, v̄∗) ∈ Z.

Proof 1. The statement follows directly from item 2 of Proposition 1.
2. By Proposition 1,

+∞∑

n=0

‖pn+1 − pn‖2 +
+∞∑

n=0

‖v∗
n+1 − v∗

n‖2 =
+∞∑

n=0

‖xn+1 − xn‖2 < +∞.

3. and 4. The proof is similar to the proof of [1, Proposition 3.5].
��

Remark 2 Proposition 2 shows the importance of the condition Z ⊂ Cn ⊂
H(xn, xn+1/2) in proving the strong convergence of Iterative Scheme 2.

3 The choice of Cn

One of the main contributions of the paper is to consider Cn which use the information
from the previous step. In this way Iterative Scheme 2 becomes a schemewithmemory
in the sense that the construction of xn+1 depends not only on xn+1/2, xn, but also on
xn−1+1/2, xn−1.

We start with the following propositions.

Proposition 3 Let x, u, v ∈ H. Then H(x, u) ∩ H(x, v) ⊂ H(x, τu + (1 − τ)v) for
all τ ∈ [0, 1].

Proof Let h ∈ H(x, u) ∩ H(x, v), i.e.

〈h − u | x − u〉 ≤ 0 and 〈h − v | x − v〉 ≤ 0.
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For any τ ∈ [0, 1] we have

〈h − τv − (1 − τ)w | x − τv − (1 − τ)w〉
= 〈h | x〉 − τ 〈h | v〉 − τ 〈v | x〉 − (1 − τ)〈h | w〉 − (1 − τ)〈w | x〉

+ τ 2〈v | v〉 + (1 − τ)2〈w | w〉 + 2τ(1 − τ)〈v | w〉
= τ 〈h | x〉 − τ 〈h | v〉 − τ 〈v | x〉 + τ 〈v | v〉

+ (1 − τ)〈h | x〉 − (1 − τ)〈h | w〉 − (1 − τ)〈w | x〉 + (1 − τ)〈w | w〉
+ τ 2〈v | v〉 + (1 − τ)2〈w | w〉 + 2τ(1 − τ)〈v | w〉 − τ 〈v | v〉 − (1 − τ)〈w | w〉

≤ τ 2〈v | v〉 + (1 − τ)2〈w | w〉 + 2τ(1 − τ)〈v | w〉 − τ 〈v | v〉 − (1 − τ)〈w | w〉
= τ(τ − 1)〈v | v〉 + (1 − τ)(−τ)〈w | w〉 + 2τ(1 − τ)〈v | w〉
≤ τ(τ − 1)‖v‖2 + (1 − τ)(−τ)‖w‖2 + 2τ(1 − τ)‖v‖‖w‖
= τ(τ − 1)(‖v‖2 − 2‖v‖‖w‖ + ‖w‖2) = −τ(1 − τ)(‖v‖ + ‖w‖)2 ≤ 0.

Thus h ∈ H(x, τu + (1 − τ)v). ��
The following proposition provides examples of sets Cn with memory satisfying

requirements of Proposition 2 (see Remark 2).

Proposition 4 For Cn defined as

Cn := H(xn, xn+ 1
2
) ∩ H(xn−1, xn− 1

2
) for n ≥ 1 and C0 = H(x0, x1/2), (8)

Cn := H(xn, xn+ 1
2
) ∩ H(x0, xn−1) for n ≥ 1 and C0 = H(x0, x1/2), (9)

Cn := H(xn, xn+ 1
2
) ∩ H(x0, τn xn + (1 − τn)xn−1)) for τn ∈ (0, 1), n ≥ 1

and C0 = H(x0, x1/2) (10)

the assertions 1–5 of Proposition 1 holds.

Proof To apply Proposition 1 we need only to show that Cn are closed and convex
and Z ⊂ Cn ⊂ Hn . The sets Cn are closed and convex as intersections of finitely
many closed halfspaces. By construction of xn+1/2 we have Z ⊂ H(xn, xn+1/2) for
all n ∈ N.

1. For Cn given by (8) we have Z ⊂ H(xn, xn+1/2) ∩ H(xn−1, xn−1+1/2) since
Z ⊂ H(xn, xn+1/2).

2. Let Cn be given by (9). By construction, Z ⊂ H(x0, x1/2) = H(x0, x1) = C0. Let
n ∈ N and suppose Z ⊂ Ck = H(xk, xk+1/2) ∩ H(x0, xk−1) for all 1 ≤ k ≤ n.
We have

Z ⊂ H(x0, xn−1) ∩ H(xn−1, xn−1+1/2) ∩ H(x0, xn−2) = Cn ∩ H(x0, xn−2)

�⇒ Z ⊂ H(x0, PCn∩H(x0,xn−2)(x0))

⇔ Z ⊂ H(x0, xn) ⇔ Z ⊂ H(x0, xn) ∩ H(xn+1, xn+1+1/2) = Cn+1.

By induction, Z ⊂ Cn for all n ≥ 0.
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3. Let Cn be given by (10). By construction, Z ⊂ H(x0, x1/2) = H(x0, x1) = C0.
By Proposition 3, we have

Z ⊂ H(x0, xn) ∩ H(x0, xn−1)

�⇒ Z ⊂ H(x0, τn xn + (1 − τn)xn−1) for all τn ∈ (0, 1).

Let n ∈ N and suppose Z ⊂ Ck = H(xk, xk+1/2) ∩ H(x0, xk−1) and Z ⊂
H(x0, xk) for all 1 ≤ k ≤ n. Then

Z ⊂ Cn = H(xn, xn+1/2) ∩ H(x0, τn xn + (1 − τn)xn−1))

�⇒ Z ⊂ H(xn, xn+1/2) ∩ H(x0, τn xn + (1 − τn)xn−1)) ∩ H(x0, xn)

�⇒ Z ⊂ H(x0, PH(x0,H(xn ,xn+1/2)∩H(x0,τn xn+(1−τn)xn−1))∩H(x0,xn)(x0))

⇔ Z ⊂ H(x0, PCn∩H(x0,xn)(x0)) = H(x0, xn+1)

⇔ Z ⊂ H(x0, xn) ∩ H(xn+1) �⇒ Z ⊂ H(x0, τn+1xn+1 + (1 − τn+1)xn).

Thus Z ⊂ Cn for all n ∈ N.

��

3.1 Closed-form expressions for projectors onto intersection of three halfspaces

In this subsection we recall the closed-form formulas for projectors onto polyhedral
sets as given in [50]. These halfspaces are given in a form

Ai = {h ∈ H × G | 〈h | ui 〉 ≤ ηi }, i = 1, . . . , m (11)

where ui �= 0, ηi ∈ R, i = 1, . . . , m, m ∈ N.
Letwi := 〈x | ui 〉−ηi , i ∈ M := {1, . . . , m} and let G := [〈ui | u j 〉]i, j∈M . For any

sets I ⊂ M, J ⊂ M, I , J �= ∅ the symbol G I ,J denote the submatrix of G composed
by rows indexed by I and columns indexed by J only. Let sI (a) := {b ∈ I | b ≤ a}.
We define

Ba
I :=

{
(−1)|sI (a)| if a ∈ I ,
(−1)|I |+1 if a /∈ I .

Theorem 3 [50, Theorem 2] Let m ∈ N, m �= 0 and let M = {1, . . . , m}. Let

A =
m⋂

i=1
Ai �= ∅, x /∈ A. Let rank G = k. Let ∅ �= I ⊂ M, |I | ≤ k be such that

det G I ,I �= 0. Let

νi :=
{∑

j∈I w j B j
I Bi

I det G I\ j,I\i if |I | > 1,
wi if |I | = 1

for all i ∈ I (12)
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and, whenever I ′ := M\I is nonempty, let

νi ′ :=
∑

j∈I∪{i ′}
w j B j

I Bi ′
I det G I ,(I∪i ′)\ j for all i ′ ∈ I ′. (13)

If νi > 0 for i ∈ I and νi ′ ≤ 0 for all i ′ ∈ I ′, then

PA(x) = x −
∑

i∈I

νi

det G I ,I
ui . (14)

Moreover, among all the elements of the set � of all subsets I ⊂ M there exists at
least one I ∈ � for which: (1) det G I ,I �= 0, (2) the coefficients νi , i ∈ I given by
(12) are positive, (3) the coefficients νi ′ , i ′ ∈ I ′ given by (13) are nonpositive.

To obtain the closed-form expression formula for projection of a point on intersection
of three halfspaces we propose the following finite algorithm for finding νi as given
in formula (14).

Iterative Scheme 3 Algorithm for finding ν = [νi ]i∈{1,2,3}
Let K be a set of all nonempty subsets of K={1,2,3}
while K �= ∅ do

Choose randomly I ∈ K
if det G I ,I �= 0 then

Find ν = [νi ]i∈I such that G I ,I ν = [〈x | ui 〉 − ηi ]i∈I
if ν > 0 then

if for all i ∈ K\I , 〈x − ∑
k∈I νkuk | ui 〉 − ηi ≤ 0 then

Terminate, put νi = 0 for i ∈ K\I
end if

end if
end if
K := K\I

end while

Note that Iterative Scheme 3 can be easily parallelized. For three halfspaces (i.e.
m = 3 in (11)) at most 7 subsets I ∈ K need to be checked to calculate coefficients
νi , i = 1, 2, 3 of formula (14). Note that the above defined Iterative Scheme 3 can be
useful for several algorithms, i.e. for computation of next iterate in [55].

On the other hand, when considering Iterative scheme 2 with halfspaces generated
as

H(x0, xn) ∩ Cn,

where Cn are as in Proposition 4 the number of iterations can be reduced to 4. This is
the content of the following Proposition.
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778 E. M. Bednarczuk et al.

Let W := H(x0, xn)∩ H(xn, xn+1/2)∩ A3, where A3 is given by one the following

⎧
⎨

⎩

H(xn, xn+1/2),

H(x0, xn−1),

H(x0, τn xn + (1 − τn)xn−1), τn ∈ (0, 1).
(15)

For simplicity, in Proposition 5 we use H(a, b) = A3.

Proposition 5 For finding projection of x0 onto W with the help of Iterative Scheme 3
at most 4 subsets I ∈ K need to be checked.

Proof We show that the projection of x0 onto W does not require the cases I =
{1}, I = {3}, I = {1, 3} to be checked.
1. Suppose I = {1}. Then ν1 = 〈x0−xn | x0−xn〉

‖x0−xn‖2 = 1, η2 = 〈xn+1/2 | xn − xn+1/2〉
and for 2 ∈ K\I we have

〈x0 − ν1(x0 − xn) | xn − xn+1/2〉 − η2 > 0.

2. Suppose I = {3}. Then

ν3 = 〈x0 − b | a − b〉
‖a − b‖2

and for 1 ∈ K\I we have

〈x0 − ν3(a − b) | x0 − xn〉 − η1

= 〈PH(a,b)(x0) − xn | x0 − xn〉
= 〈PH(a,b)(x0) − xn | x0 − PH(a,b)(x0)〉

+ 〈PH(a,b)(x0) − xn | PH(a,b)(x0) − xn〉 ≥ 0. (16)

If equality in (16) holds then PH(a,b)(x0) = xn . Then for 2 ∈ K\I we have

〈x0 − ν3(a − b) | xn − xn+1/2〉 − η2

= 〈PH(a,b)(a, b) − xn+1/2 | xn − xn+1/2〉
= 〈xn − xn+1/2 | xn − xn+1/2〉 > 0.

3. Suppose, I = {1, 3}. Then

ν3 = −‖x0 − xn‖2〈a − b | x0 − xn〉 + 〈x0 − b | a − b〉‖x0 − xn‖2
= ‖x0 − xn‖2〈xn − b | a − b〉 ≤ 0

because xn ∈ H(a, b).

This shows that the choices I = {1}, I = {3}, I = {1, 3} do not lead to suitable
projection weights νi ≥ 0, i = 1, 2, 3. ��
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Proximal primal–dual best approximation... 779

4 Convergence analysis

In this section we analyse convergence properties of Iterative Scheme 2. To this aim
we introduce attraction property (Proposition 7). The proposed results provide:

– new measure of quality of the solution generated by Iterative Scheme 2. Note that
it was shown in [2,19] that with every iteration, xn is further from x0. However,
there was no results relating xn and the solution PZ (x0). By attraction property,
the distance from xn to the solution PZ (x0) need not be decreasing, however, xn

remain in a ball centred at PZ (x0) with radius which is a nonincreasing function
of n (by (ii) of the Proposition 6);

– new evaluation criteria allowing to compare algorithms (we use them to compare
experimentally algorithms with different choices of Cn) (Proposition 7).

We start with the following technical lemma.

Lemma 1 Let U be a real Hilbert space and let u1, u2, u3 ∈ U , u3 ∈ H(u1, u2), w =
1
2 (u1 + u3), r := ‖w − u1‖. Then

(i) ‖w − u2‖ ≤ 1
2‖u1 − u3‖,

(ii) ‖u2 − u3‖2 ≤ b(u2), where b(·) := 4r2 − ‖ · −u1‖2.
(iii) Moreover, if u4 ∈ H and u2 ∈ H(u1, u4), then b(u2) ≤ b(u4).

Proof (i) We have

r = ‖w − u1‖ = ‖1
2

u1 + 1

2
u3 − u1‖ = 1

2
‖u3 − u1‖

= ‖1
2

u1 + 1

2
u3 − u3‖ = ‖w − u3‖.

By contradiction, suppose ‖w − u2‖ > 1
2‖u1 − u3‖. Since u3 ∈ H(u1, u2) we

have

‖u3 − u2‖2 + ‖u1 − u2‖2
= ‖u3 − u2‖2 + ‖u1 − u2‖2 + 2〈u3 − u2 | u2 − u1〉 + 2〈u3 − u2 | u1 − u2〉
= ‖u3 − u1‖2 + 2〈u3 − u2 | u1 − u2〉 ≤ ‖u3 − u1‖2 = 4r2.

On the other hand

4r2 = ‖u3 − u1‖2 ≥ ‖u3 − u2‖2 + ‖u1 − u2‖2
= ‖u3 − w‖2 − 2〈u3 − w | u2 − w〉 + ‖u2 − w‖2

+ ‖u1 − w‖2 − 2〈u1 − w | u2 − w〉 + ‖u2 − w‖2
= 2r2 + 2‖u2 − w‖2 − 2〈u3 + u1 − 2w | u2 − w〉 > 4r2,

a contradiction.
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780 E. M. Bednarczuk et al.

(ii) We have

‖u3 − u2‖2 = 〈u3 − u2 | u3 − u2〉 = 〈u3 − u2 | u1 − u1 + u3 − u2〉
= 〈u3 − u2 | u1 − u2〉 + 〈u3 − u2 | u3 − u1〉
≤ 〈u3 − u2 | u3 − u1〉 = 〈u3 − u2 − u1 + u1 | u3 − u1〉
= 〈u3 − u1 | u3 − u1〉 + 〈u1 − u2 | u3 − u1〉
= 4r2 + 〈u1 − u2 | u2 − u2 + u3 − u1〉
= 4r2 + 〈u1 − u2 | u2 − u1〉 + 〈u1 − u2 | u3 − u2〉
≤ 4r2 − ‖u1 − u2‖2.

(iii) The assertion (iii) stems from the fact that u2 ∈ H(u1, u4) implies ‖u1 − u2‖2 ≥
‖u1 − u4‖2 and

‖u3 − u2‖2 ≤ ‖u1 − u3‖2 − ‖u1 − xn‖2 ≤ ‖u1 − u3‖2 − ‖u1 − u4‖2.

��

Weshow that all the points xn, n ∈ N, generated by Iterative Scheme 2 are contained
in the ball centred at w := 1

2 (x0 + x̄) with radius r := ‖w − x0‖ = 1
2dist (x0, Z)

and the distance from xn to the solution x̄ is bounded from above by a nonincreasing
sequence.

Proposition 6 Let x0 ∈ H ×G. Any sequence {xn}n∈N generated by Iterative Scheme 2
satisfies the following:

(i) ‖w − xn‖ ≤ 1
2‖x0 − x̄‖, n ∈ N.

(ii) ‖xn − x̄‖2 ≤ bn, where bn := 4r2 − ‖xn − x0‖2 ≥ 0, n ∈ N.
(iii) Moreover, if xn ∈ H(x0, xn−1) for all n ≥ 1, the sequence {bn}n∈N is nonin-

creasing. If for some n ≥ 1 we have xn−1 �= xn, then

‖x̄ − xn‖2 < ‖x0 − x̄‖2 − ‖x0 − xn−1‖2,
bn < bn−1.

(17)

Proof Let n ∈ N. We have x̄ ∈ H(x0, xn). We obtain (i) and (ii) by applying Lemma 1
with u1 = x0, u2 = xn and u3 = x̄ .

The assertion (iii) follows from (iii) of Lemma 1 with u1 = x0, u2 = xn, u3 = x̄
and u4 = xn−1. Moreover, if for some n ≥ 1 we have xn−1 �= xn , then ‖x0 − xn‖2 >

‖x0 − xn−1‖2, which follows from 2 of Proposition 1. ��

Let us note that Iterative Scheme 2 is sufficiently general to encompass algorithm
2.1 of [2] as well as any algorithm with memory introduced by Cn satisfying the
requirements of Proposition 2. In consequence, Proposition 6 provides properties of
sequences {xn}n∈N constructed in these algorithms.
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Corollary 1 For any x0 ∈ H × G and xn, xn+1/2, n ≥ 1 generated by Iterative
Scheme 2 we have

‖xn+1/2 − x̄‖2 ≤ ‖x0 − x̄‖2 − ‖xn − x0‖2 − ‖xn+1/2 − xn‖2

for any x̄ ∈ H(x0, xn) ∩ H(xn, xn+1/2).

Proof Let n ∈ N. Applying (ii) of Lemma 1 to u1 = x0, u2 = xn, u3 = x̄

‖xn − x̄‖2 ≤ ‖x0 − x̄‖2 − ‖xn − x0‖2. (18)

Applying again (ii) of Lemma 1 to u1 = xn, u2 = xn+1/2, u3 = x̄ we obtain

‖xn+1/2 − x̄‖2 ≤ ‖xn − x̄‖2 − ‖xn+1/2 − xn‖2. (19)

In consequence, we have ‖xn+1/2 − x̄‖ ≤ ‖xn − x̄‖. Combining (18) and (19) we
obtain

‖xn+1/2 − x̄‖2 ≤ ‖xn − x̄‖2 − ‖xn+1/2 − xn‖2
≤ ‖x0 − x̄‖2 − ‖xn − x0‖2 − ‖xn+1/2 − xn‖2.

��
ToproveProposition 7,which is ourmain result in this sectionweneed the following

Lemma.

Lemma 2 Let U be a real Hilbert space and let D ⊂ U be a nonempty subset of U.
Let u1, u2, u3, u4 ∈ U and u3 ∈ H(u1, u2) ∩ H(u2, u4) ∩ D, w = 1

2 (u1 + u3), r :=
‖w − u1‖.

Let q̄ ∈ H(u1, u2) ∩ H(u2, u4) ∩ D. Then q̄ ∈ H(u1, q), where q =
Q(u1, u2, u4) := PH(u1,u2)∩H(u2,u4)(u1) and

‖u1 − q̄‖2 ≥ ‖u1 − q‖2 + ‖q̄ − q‖2,
‖u3 − q̄‖2 ≤ 4r2 − ‖u1 − q̄‖2 ≤ 4r2 − ‖u1 − q‖2 − ‖q̄ − q‖2.

Proof It is immediate that q̄ ∈ H(u1, q). Thus

‖u1 − q̄‖2 = ‖u1 − q‖2 + 2〈u1 − q | q − q̄〉 + ‖q̄ − q‖2 ≥ ‖u1 − q‖2 + ‖q̄ − q‖2.

By Lemma 1, since u3 ∈ H(u1, q̄), we have ‖u3 − q̄‖ ≤ 4r2 − ‖u1 − q̄‖2 which
completes the proof. ��

To compare best approximation algorithms as defined in [2] with the Iter-
ative Scheme 2 with memory we concentrate on single step gains. To this
end let us denote qn := PD(n)(x0), xn := PD(n−1,n)(x0), where D(n) =
H(x0, xn−1) ∩ H(xn−1, xn−1+1/2) as e.g. in [2] and D(n − 1, n) = H(x0, xn−1) ∩
H(xn−1, xn−1+1/2) ∩ Cn−1 with Cn−1 as in Proposition 4.
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Proposition 7 (Attraction property) Sequences {xn}n∈N, {xn+1/2}n∈N generated by
Iterative Scheme 2 satisfy the following:

(i) ‖x0 − xn‖2 ≥ ‖x0 − qn‖2 + ‖xn − qn‖2,
(ii) ‖x̄ − xn‖2 ≤ ‖x0 − x̄‖2 −‖x0 − xn‖2 ≤ ‖x0 − x̄‖2 −‖x0 −qn‖2 −‖xn −qn‖2,

where qn := PH(x0,xn−1)∩H(xn−1,xn−1+1/2)(x0) and x̄ = PZ (x0).

Proof The proof follows directly from Lemma 2 with u1 = x0, u2 = xn−1, u3 =
x̄, u4 = xn−1+1/2, q̄ = PH(x0,xn−1)∩Cn−1(x0) and D = Cn−1. ��
Let us note that, in the case when xn = qn , by (ii), we have ‖x̄ − qn‖2 ≤
‖x0 − x̄‖2 − ‖x0 − qn‖2. Hence, in the Iterative Scheme 2 we are interested in
choices of Cn which make the difference xn − qn large. Note that in case of
Cn−1 = H(xn−1, xn−1+1/2), ‖xn−qn‖2 = 0. For other choices ofCn−1 theworst case
leads to ‖xn − qn‖2 = 0, however, we can expect some improvement. Consequently,
the proposed attraction property may serve as an evaluation criterion for comparing
various versions of Iterative Scheme 2.

5 Proximal algorithms

Let H and G be real Hilbert spaces, let f : H → (−∞,+∞] and g : G →
(−∞,+∞] be proper lower semicontinuous convex functions and let L : H → G
be a bounded linear operator. Iterative Scheme 4 defined bellow is an application
of Iterative Scheme 2 to optimization problem (1)–(4), i.e. we consider the pair of
problems,

min
p∈H

FP (p) := f (p) + g(Lp) (20)

and the dual problem to (20),

min
v∗∈G

FD(v∗) := f ∗(−L∗v∗) + g∗(v∗). (21)

If (20) has a solution p̄ ∈ H and the regularity condition holds, e.g.

0 ∈ sqri(dom g − L(dom f )),

where dom denotes the effective domain of a function and for any convex closed set
S

sqriS :=
{

x ∈ S |
⋃

λ>0

λ(S − x) is a closed linear subspace of H

}

,

there exists v̄∗ ∈ G solving (21) and

( p̄, v̄∗) ∈ Z = {(p, v∗) ∈ H × G | − Lv∗ ∈ ∂ f (x) and v∗ ∈ ∂g(Lx)}. (22)
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Conversely, if ( p̄, v̄∗) ∈ Z , then p̄ solves (20) and v̄∗ solves (21). The set Z defined
by (22) is of the form (3), when A = ∂ f and B = ∂g.

Recall that for any x ∈ H and any proper convex and lower semi-continuous
function f : H → R ∪ {+∞} the proximity operator Prox f (x) is defined as the
unique solution to the optimization problem

min
y∈H

(
f (y) + 1

2
‖x − y‖2

)
.

Theorem 4 [7, Example 23.3] Let f : H → R ∪ {+∞} be a proper convex lower
semi-continuous function, x ∈ H and γ > 0. Then

Jγ ∂ f (x) = Proxγ f (x).

Iterative Scheme 4 Proximal primal–dual best approximation iterative scheme
Choose an initial point x0 = (p0, v

∗
0 ) ∈ H × G and ε > 0

Choose sequences of parameters {λn}n≥0 ∈ (0, 1] and {γn}n≥0, {μn}n≥0 ∈ [ε, 1/ε]
for n = 0, 1 . . . do

an = Proxγn f (pn − γn L∗v∗
n )

bn = Proxμn g(Lpn + μnv∗
n )

a∗
n = γ −1

n (pn − an) − L∗v∗
n

b∗
n = μ−1

n (Lpn − bn) + v∗
n

s∗
n = (a∗

n + L∗b∗
n , bn − Lan)

ηn = 〈
an | a∗

n
〉 + 〈

bn | b∗
n
〉

Hn =
{

x ∈ H × G |
〈
x | s∗

an ,bn

〉
≤ ηan ,bn

}

if ‖s∗
n ‖ = 0 then

x̄ = xn , v̄∗ = v∗
n

Terminate
else

Fejérian step
xn+1/2 = xn + λn(PHn (xn) − xn)

Haugazeau step
Choose Cn closed convex such that Z ⊂ Cn ⊂ H(xn , xn+1/2)

xn+1 = PH(x0,xn )∩Cn (x0)
end if

end for
return

Convergence properties of Iterative Scheme 4 are summarized in Proposition 2.
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5.1 Generalization to finite number of functions

Let M and K be natural numbers. Let E = ⊕M
i=1 Hi × ⊕K

k=1 Gk , where Hi , Gk

are real Hilbert spaces, i = 1, . . . , M, k = 1, . . . , K . Let fi : Hi → R ∪ {+∞}
and gk : Gi → R ∪ {+∞} be proper lower semicontinuous convex functions and
Lik : Hi → Gk be bounded linear operators, i = 1, . . . , M, k = 1, . . . , K . Consider
the primal problem

min
p1∈H1,...,pM ∈HM

M∑

i=1

fi (pi ) +
K∑

k=1

gk

(
M∑

i=1

Lik pi

)

. (23)

Problem formulation (23) is general enough to cover problem arising in diverse
applications including signal and image reconstruction, compressed sensing and
machine learning [29]. The dual problem to (23) is

min
v∗
1∈G1,...,v

∗
K ∈G K

M∑

i=1

f ∗
i

(

−
K∑

k=1

L∗
kiv

∗
k

)

+
K∑

k=1

g∗
k (v∗

k ). (24)

Assume that

(∀i ∈ {1, . . . , M}) 0 ∈ ran

(

∂ fi +
K∑

k=1

L∗
ki ◦ ∂gk ◦ Lik

)

,

where ranD denotes the range of an operator D.
Then the set

Z :=
{
(p1, . . . , pM , v∗

1 , . . . , v
∗
K ) ∈ E | −

K∑

k=1

L∗
kiv

∗
k ∈ ∂ fi (pi ),

M∑

i=1

Lik pi ∈ ∂g∗
k (v∗

k ), i = 1 . . . , M, k = 1, . . . , K

} (25)

is nonempty and if ( p̄1, . . . , p̄M , v̄∗
1 , . . . , v̄

∗
K ) ∈ Z then ( p̄1, . . . , p̄M ) solves (23) and

(v̄∗
1 , . . . , v̄

∗
K ) solves (24). To find an element of set Z defined by (25) we propose the

Iterative Scheme 5.
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Iterative Scheme 5 Proximal primal–dual best approximation iterative scheme for
finite number of functions
Choose an initial point x0 = (p0, v

∗
0 ) ∈ ⊕M

i=1 Hi × ⊕K
k=1 Gk and ε > 0,

p0 = (p1,0, . . . , pM,0), v
∗
0 = (v∗

1,0, . . . , v
∗
K ,0)

Choose sequences of parameters {λn}n≥0 ∈ (0, 1] and {γn}n≥0, {μn}n≥0 ∈ [ε, 1/ε]
for n = 0, 1 . . . do

Fejerian step
for i = 1, . . . , M do

ai,n = Proxγn fi (pi,n − γn
∑K

k=1 L∗
ki v

∗
k,n)

a∗
i,n = γ −1

n (pi,n − ai,n) − ∑K
k=1 L∗

ki v
∗
k,n

end for
for k = 1, . . . , K do

bk,n = Proxμn gk (
∑M

i=1 Lik pi,n + μnv∗
k,n)

b∗
k,n = μ−1

n (
∑M

i=1 Lik pi,n − bk,n) + v∗
k,n

s∗
M+k,n = bk,n − ∑M

i=1 Likai,n
end for
for i = 1, . . . , M do

s∗
i,n = a∗

i,n + ∑K
k=1 L∗

ki b∗
k,n

end for
s∗
n = (s∗

1,n , . . . , s∗
M,n , s∗

M+1,n , . . . , s∗
M+K ,n)

ηn = ∑M
i=1〈ai,n | a∗

i,n〉 + ∑K
k=1〈bk,n | b∗

k,n〉
Hn = {

h ∈ E | 〈
h | s∗

n
〉 ≤ ηn

}

if ‖s∗
n ‖ = 0 then

p̄ = pn , v̄∗ = v∗
n

Terminate
else

xn+1/2 = xn + λn(PHn (xn) − xn)

Haugazeau step
Choose Cn closed convex such that Z ⊂ Cn ⊂ H(xn , xn+1/2)

xn+1 = PH(x0,xn )∩Cn (x0)
end if

end for
return

Let us note that Proposition 2 can be easily generalized to cover also the case of
the set Z defined by (25).

6 Experimental results

The goal of this section is to illustrate and analyze the performance of the proposed
Iterative Scheme 5 in solving problem (23), i.e. we aim at illustrating the main contri-
bution of our work: (a) to show experimentally the influence of the choice of set Cn

on the convergence of the algorithm and (b) to show experimentally that the proposed
attraction property provide an additional measure of the distance of the current iterate
to the solution. We provide numerical results related to simple convex image inpaiting
problem. The considered problem can be rewritten as an instance of (23) by setting
M = 1, K = 2, H = R

3D and finding minp∈H f1(p) + ∑2
k=1 gk (Lk p), where

functions f1, g1 and g2 correspond to positivity constraint, data fidelity term and total
variation (TV) based regularization [49], respectively. We focus on the analysis of
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786 E. M. Bednarczuk et al.

influence of the choice of Cn on the convergence. To this end we report the number of
iterations of the algorithm with different Cn settings performed to reach a tolerance
‖pn+1 − pn‖/ (1 + ‖pn‖) less than ε in two successive iterations. The considered
algorithms are denoted hereafter by PDBA-C0, PDBA-C1, PDBA-C2, PDBA-C3, for
Cn = H(xn, xn+1/2) and Cn defined by (8)–(10), respectively. In the case of PDBA-
C3 τn is set to 0.5. Numerically, the convergence rate improvement is measured by ItR
defined as a ratio of the numbers of iterations consumed by PDBA-Ci (where i takes
value 0, 1, 2, 3) and those consumed by PDBA-C0. The algorithms performance is
illustrated by the following curves: (a) signal to noise ratio (SNR) and (b) the bounds
given by Proposition 6 as a functions of iteration number.

The evaluation experiments concern the image inpainting problem which corre-
sponds to the recovery of an image p̄ ∈ R

3D from lossy observations y = L1 p̄,
where L1 ∈ R

3D×3D is a diagonal matrix such that for i = 1, . . . , D we have

Table 1 Reconstruction results from incomplete data with ε = 10−2, λn = 1, γn = 0.005, μn = 0.005

PDBA-C0 PDBA-C1 PDBA-C2 PDBA-C3

κ = 20%

ItR 1 0.40 1.02 1.02

SNR 24.19 24.25 24.18 24.19

TV 40.66 40.37 40.68 40.67
‖y−L1 p‖1
(1−κ̃)3D 0.004 0.004 0.004 0.004

κ = 40%

ItR 1 0.51 0.98 1.02

SNR 20.64 20.60 20.64 20.64

TV 36.06 36.04 36.05 36.07
‖y−L1 p‖1
(1−κ̃)3D 0.002 0.003 0.002 0.002

κ = 60%

ItR 1 0.44 1.01 0.36

SNR 18.26 18.28 18.26 17.90

TV 30.87 30.55 30.87 30.80
‖y−L1 p‖1
(1−κ̃)3D 0.002 0.002 0.002 0.002

κ = 80%

ItR 1 0.49 0.89 0.99

SNR 16.17 16.18 16.18 16.17

TV 23.79 23.50 23.74 23.79
‖y−L1 p‖1
(1−κ̃)3D 0.001 0.001 0.001 0.001

κ = 90%

ItR 1 0.51 1.08 0.99

SNR 14.71 14.62 14.70 14.71

TV 18.87 18.13 18.94 18.87
‖y−L1 p‖1
(1−κ̃)3D 0.001 0.001 0.001 0.001
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L1(i, i) = L1(2i, 2i) = L1(3i, 3i) = 0, if the pixel i in the observation image
y is lost and L1(i, i) = L1(2i, 2i) = L1(3i, 3i) = 1, otherwise. The considered
optimization problem is of the form

min
p∈H

ιy(L1 p) + ιS(p) + T V (p) (26)

where ι is the indicator function defined as:

ιS(p) =
{
0 if p ∈ S
+∞ otherwise,

(27)

Table 2 Reconstruction results from incomplete data with ε = 10−2, λn = 1, γn = 0.01, μn = 0.01

PDBA-C0 PDBA-C1 PDBA-C2 PDBA-C3

κ = 20%

ItR 1 0.44 1 1

SNR 24.02 24.13 24.02 24.02

TV 40.06 39.66 40.06 40.06
‖y−L1 p‖1
(1−κ̃)3D 0.005 0.005 0.005 0.005

κ = 40%

ItR 1 0.54 1.02 1.03

SNR 20.52 20.56 20.51 20.53

TV 35.62 35.34 35.67 35.61
‖y−L1 p‖1
(1−κ̃)3D 0.004 0.004 0.004 0.004

κ = 60%

ItR 1 0.52 1.04 0.91

SNR 18.24 18.25 18.22 18.23

TV 30.19 29.97 30.37 30.17
‖y−L1 p‖1
(1−κ̃)3D 0.003 0.003 0.003 0.003

κ = 80%

ItR 1 0.59 1.21 1.02

SNR 16.15 16.16 16.15 16.15

TV 23.29 22.92 23.48 23.3202
‖y−L1 p‖1
(1−κ̃)3D 0.002 0.002 0.002 0.002

κ = 90%

ItR 1 0.71 1.52 0.59

SNR 14.67 14.65 14.65 14.33

TV 18.11 17.87 18.62 16.01
‖y−L1 p‖1
(1−κ̃)3D 0.001 0.001 0.001 0.002
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T V : R3D �→ R is a discrete isotropic total variation functional [49], i.e. for every

p ∈ R
3D, T V (p) = g(L2 p) := ω

(∑D
d=1([�h p]d)2 + ([�v p]d)2

)1/2
with L2 ∈

R
6D×3D, L2 := [

(�h)� (�v)�
]�

, where �h ∈ R
3D×3D (resp. �v ∈ R

3D×3D)
corresponds to a horizontal (resp. vertical) gradient operator,

[�h p]d := [(�h p)d , (�h p)2d , (�h p)3d ] ∈ R
3,

[�v p]d := [(�v p)d , (�v p)2d , (�v p)3d ] ∈ R
3

andω denotes regularization parameter. The function ιS(p) is imposing the solution to
belong to the set S = [0, 1]3D . The dual problem to (26) is the following optimization
problem [14, Example 3.24, 3.26, 3.27]:

Table 3 Reconstruction results from incomplete data with ε = 10−2, λn = 1, γn = 1.5, μn = 1.5.

PDBA-C0 PDBA-C1 PDBA-C2 PDBA-C3

κ = 20%

ItR 1 0.75 1 1

SNR 23.00 23.03 23.00 23.00

TV 34.91 34.99 34.91 34.91
‖y−L1 p‖1
(1−κ̃)3D 0.011 0.011 0.011 0.011

κ = 40%

ItR 1 0.70 1.02 1.03

SNR 20.01 20.00 20.01 20.01

TV 31.19 31.17 31.19 31.19
‖y−L1 p‖1
(1−κ̃)3D 0.008 0.009 0.008 0.008

κ = 60%

ItR 1 0.69 0.99 1.00

SNR 17.90 17.89 17.89 17.89

TV 26.60 26.63 26.59 26.59
‖y−L1 p‖1
(1−κ̃)3D 0.006 0.006 0.006 0.006

κ = 80%

ItR 1 0.73 1 1.02

SNR 15.87 15.87 15.87 15.87

TV 20.46 20.52 20.48 20.49
‖y−L1 p‖1
(1−κ̃)3D 0.004 0.004 0.004 0.004

κ = 90%

ItR 1 0.74 0.95 1.02

SNR 14.33 14.35 14.31 14.33

TV 15.99 16.24 15.79 16.01
‖y−L1 p‖1
(1−κ̃)3D 0.002 0.002 0.002 0.002
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min
v1∈G1, v2∈G2

〈y | v1〉 + sup
r∈S

〈r | − L∗
1v1 − L∗

2v2〉 + T V ∗(v2) (28)

where T V ∗(v2) = ωιB( v2
ω

), convex set B = {v ∈ R
6D : ‖v‖2 ≤ 1}, G1 =

R
3D, G2 = R

6D . In the following experiments, we consider the cases of lossy obser-
vations with κ randomly chosen pixels which are unknown.

In the following we examine the cases of κ set to 20%, 40%, 60%, 80%, 90%
(hereafter κ̃ denotes a fraction of missing pixels). For all the algorithms we used the
initialization x0 = [y, L1y, L2y]T . The test were performed on image fruits from
public domain (source: www.hlevkin.com/TestImages) of size D = 240 × 256.

In our first experiment, we study the influence of the choice of Cn for different
settings of γn, μn and λn , which play a significant role in convergence analysis. The
results summarized in Tables 1, 2 and 3, correspond to the choice of γn = μn equal
to 0.005, 0.01 and 1.5, respectively. These results show that independently of the
choice of parameters γn, μn algorithm PDBA-C1 leads to the best performance, while
the results obtained with PDBA-C2 and PDBA-C3 are comparable to PDBA-C0.
Specifically, within our setting the numbers of iterations consumed by PDBA-C1
range from 40 to 75% of those consumed by PDBA-C0, while the SNR, values of
TV and inpainting residues are negligible. By inspecting Tables 1, 2 and 3, one can
observe that the obtained results depend strongly upon to the choice of γn and μn .

Table 4 Reconstruction results
from incomplete data with
ε = 10−2, κ = 20%

γn , μn 0.003 0.005 0.01 1.5 100

PDBA-C0

SNR 7.28 24.19 24.02 23.00 7.64

TV 130.29 40.66 40.06 34.91 120.99
‖y−L1 p‖1
(1−κ̃)3D 0.003 0.004 0.005 0.011 0.008

It no. 2 7543 6382 2883 5032

PDBA-C1

SNR 7.28 24.25 24.13 23.03 7.55

TV 130.29 40.37 39.66 34.99 122.89
‖y−L1 p‖1
(1−κ̃)3D 0.003 0.004 0.005 0.011 0.007

ItR 1 0.40 0.44 0.75 0.83

Table 5 Reconstruction results from incomplete coefficients with ε = 10−2, κ = 20%, γn = 0.005, μn =
0.005

PDBA-C0 PDBA-C1

λn SNR0 TV ‖y−L1 p‖1
(1−κ̃)3D It0 SNR1 TV ‖y−L1 p‖1

(1−κ̃)3D
I t1
I t0

1 24.19 40.66 0.004 7543 24.25 40.37 0.004 0.40

0.95 24.32 40.36 0.003 5149 24.25 40.33 0.004 0.56

0.9 24.24 40.37 0.004 4584 24.26 40.26 0.004 0.57

0.8 7.30 129.24 0.005 2 7.30 129.24 0.005 1
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790 E. M. Bednarczuk et al.

Fig. 1 a The 240 × 256 clean fruits image, b the same image for which 80% randomly chosen missing
pixels, and c the solution generated by Algorithm 5 PDBA-C1 after 3000 iterations, (d–e) and (f–g) show
SNR and attraction property values (i.e.−‖(p0, v

∗
0 )− (pn , v∗

n )‖) versus iterations, respectively. Algorithm
PDBA-C0 and PDBA-C1 are denoted in green and blue, respectively. aOriginal. bDegraded. cOurs result.
d SNR (γn = 0.01, μn = 0.01). e Bounds (γn = 0.01, μn = 0.01). f SNR (γn = 0.003, μn = 0.003). g
Bounds (γn = 0.003, μn = 0.003)
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We would like to emphasize that ideally the termination tolerance should be a
function of parameters γn, μn and λn . The results presented in Table 4 shows that in
the case of γn and μn equal to 0.003 or 100 the tolerance should be smaller to prevent
premature termination. In these cases the iteration number is very low, however the
values of TV and SNR are significantly different than for the other choices. The
premature termination is due to flat slope of the convergence curve. Similar effect can
be observed when λn = 0.8 (see Table 5).

In the second experiment, we compare PDBA-C0 and PDBA-C1 (best over Algo-
rithms with memory according to the first experiment). We present reconstruction
results (see Table 4) as well as supplying convergence curves (see Fig. 1), i.e. SNR
and bound as a function of iterations. Hereafter we call bounds as −‖(p0, v∗

0) −
(pn, v

∗
n)‖2 = −‖x0 − xn‖2 (see (ii) of Proposition 7). One can observe that PDBA-C1

leads to a faster convergence and the bounds are more tight (in the sense of Proposi-
tion 7 (ii)). The difference is themost important in the early stage of the iterations. Both
algorithms slow down afterwards. For γn = 0.01 (resp. μn = 0.01) both versions of
the algorithm lead to some numerical oscillations in convergence, which are no more
visible for settings γn = 0.003 (resp. μn = 0.003).

7 Conclusions

In this paper we concentrate on a design of the novel scheme by incorporating mem-
ory into projection algorithm. We propose a new way of introducing memory effect
into projection algorithms through incorporating into the algorithm projections onto
polyhedral sets built as intersections of halfspaces constructed with the help of current
and previous iterates. To this end we provide the closed-form expressions and the
algorithm for finding projections onto intersections of three halfspaces. Moreover, we
adapt the general scheme proposed in [50] to particular halfspaces which may arise in
the course of our Iterative Scheme. This allows us to limit the number of steps for find-
ing projections. Building upon these results, we propose a new primal–dual splitting
algorithm with memory for solving convex optimization problems via general class of
monotone inclusion problems involving parallel sum of maximally monotone opera-
tors composed with linear operators. To analyse convergence we prove the attraction
property. The attraction property provides us with an evaluation criterion allowing to
compare projection algorithms with and without memory. Our experimental results
related to preliminary implementation of the algorithms have shown that the proposed
algorithm with memory generally needs smaller number of iterations than the corre-
sponding original one [2]. Although only three strategies of introducingmemory effect
are analysed in this work, the generality of the presented theoretical results allow us
to address versatility of the approach by constructing various forms of the algorithm
which use information from former steps.
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8. Boţ, R.I., Csetnek, E.R.: An inertial alternating directionmethod ofmultipliers. Minimax Theory Appl.
1(1), 29–49 (2016)
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