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Abstract. In this paper we propose a method for answering class 1
and class 2 questions (out of 5 classes defined by Moldovan for TREC
conference) based on DBpedia and YAGO. Our method is based on gen-
erating dependency trees for the query. In the dependency tree we look
for paths leading from the root to the named entity of interest. These
paths (referenced further as fibers) are candidates for representation of
actual user intention. The analysis of the question consists of three stages:
query analysis, query breakdown and information retrieval. During these
stages the entities of interest, their attributes and the question domain
are detected and the question is converted into a SPARQL query against
the DBpedia and YAGO databases. Improvements to the methods are
presented and we discuss the quality of the modified solution. We present
a system for evaluation of the implemented methods, showing that the
methods are viable for use in real applications. We discuss the results
and indicate future directions of the work.

1 Introduction

Work on automatic question answering systems started as early as the late six-
ties [26]. Over the years, the systems became more and more complex while often
producing very good results [29, 10]. Currently, most of the approaches are based
on keywords where the answer is derived directly from the specified by the user
keywords and can be either an explicit answer or (usually) the set of documents
containing the keywords from the query (and potentially containing the answer).
In the latter case the results obtained in this way are quite good; however, they
require additional user verification and lookup within the documents provided.

The situation differs when questions are formulated in natural language. In
this case there are no explicitly given keywords. The nature of the natural lan-
guage can make the queries further ambiguous due to indirect subjects or lack
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of context. In this case many systems rely on identifying interrogative pronouns
to detect the entity of interest. Such an approach however does not work well
for common-sense knowledge questions like “How many legs does a dog have?”.

The questions formulated in natural language vary in difficulty depending
on their complexity and ambiguity. Dan Moldovan et al [22] defined five classes
of question difficulty. The first class consists of factoid questions, where the
answer usually can be directly found in the database (“When did Beethoven
died?”). The second class requires some knowledge about the question and the
database structure. In this case the answer might not be syntactically close to
the question (“Who is the spouse of Grover Cleveland?”). Class 3 of questions
requires reasoning that is based on multiple, not always compatible, sources;
class 4 of questions are interaction-based, and class 5 questions that require
expert systems able of analogical reasoning.

In this paper we present a method for answering questions formulated in
natural language. In our research we focus on the first two classes. The aim of
the proposed method is to answer questions of class 1 and 2, providing, wherever
possible, direct answers as found in DBpedia and YAGO databases. Most of
the other solutions use their own, dedicated knowledge bases and either are
complicated systems, or provide a list of potential answers for the user to choose
from. The YAGO and DBpedia databases are vast and constantly improving, so
we decided to base our solution on these two sources. The paper also aims at
evaluating the solution against the well-known TREC question database.

The structure of the paper is as follows. Section 2 describes different ap-
proaches to question answering and our previous evaluation solution that served
as a baseline for our approach. Section 3 presents in detail our approach, and
shows improvements introduced to the algorithm. In Section 4 evaluation of the
method is given. Finally in Section 5 we discuss the results and draw conclusions.

2 Existing solutions

Over the years many interesting approaches to question answering emerged [5,
21]. The first systems, like PRECISE [25] or BASEBALL [15], focused on pro-
viding natural language interfaces to databases, mapped user queries to SQL
queries.

Further, question answering systems were proposed on a selected open do-
main. Here the approaches were not fine-tuned towards a specified domain, and
needed to give answers to general questions. Many of the solutions were pre-
pared during the TREC conference [33]. The best of those systems could answer
as many as 70% of the questions from TREC database [32], ranging from simple
factoid questions to complex, indirect questions. Some like LASSO [22], used
deep lexical analysis of the question, to provide the answer using an iterative
process. Others, like QRISTAL [17] or QALC [12], were based on semantic sim-
ilarities and usually map the question into triples/queries. These approaches
differ also in terms of complexity, from knowledge-rich systems [16] to simple
systems like AskMSR [2].
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Another group of systems are ontology-based solutions. Such systems take
queries given in natural language and, based on the used ontology they return the
answer from one or more knowledge bases that are compatible with that ontology.
Examples of such systems represent a very broad spectrum of solutions. Some,
like SQUALL [11], SPARQL2NL [24] or ORAKEL [6] convert the question into
a SPARQL query that is evaluated against the given knowledge base.

In recent years, one very complex state of the art system was created, namely
IBM Watson [14]. The system was developed as part of the DeepQA Project,
started in 2007. The first IBM Watson implementation was made using a cluster
consisting of around 2500 CPUs, 15 TB of RAM and, without a connection to
the Internet. The quality of the system was so good that it managed to win
the Jeopardy TV show [13]. Its strength comes from multiple algorithms that
cooperate to calculate the best answer. The drawback of this solution is its
complexity and limited availability for the wider audience.

In our approach we aim at providing a Wikipedia-based solution for a ques-
tion answering system. Wikipedia itself is not very formalized, but previous
research shows that it can be formalized [28,30]. DBpedia [1] and YAGO [27]
based solutions are viable for class 1 and class 2 questions. Other researchers also
follow this route. Adel Tahri et al. proposed a Support Vector Machines-based
algorithm for a DBpedia-based question answering system [31]. QASYO [23] is a
YAGO based system designed to use YAGO ontology to answer questions. Mo-
hamed Yahya et al. combined DBpedia and YAGO as sources to their approach
and generated SPARQL queries based on the questions asked [34].

The aforementioned works, combined with our previous research, shows that
such questions can be converted into formal SPARQL queries [4], which can be
processed by the DBpedia and YAGO databases. The solution is based on the
observation that dependency trees [7] of most of the queries had one or more
paths leading from the root to the named entity of interest. These paths (so-
called fibers) are candidates for representation of actual user intention. The goal
of this step is to retrieve minimal fiber [4]. The question analysis consists of three
stages: query analysis, query breakdown and information retrieval. The general
architecture of the proposed solution was described in detail in our previous
work [4]. In general the algorithm steps are as follows:

The first stage focuses on query retrieval and grammatical parsing. During
this stage a Stanford NLP Parser [9] is used to detect structure of the query and
convert it into an ordered tree [19]. Next step of this stage is concept retrieval
where concepts are detected in the query, usually the entities and their proper-
ties. The sentence is tagged then using Penn-Treebank notation, and supplied
with a list of detected entities and their properties.

The second stage aims at determining the entity and properties in question.
During this stage we analyze dependencies within the query and perform min-
imization of the dependency tree. The created tree is then analyzed and fibers
are detected within its branches. Finally the fibers detected are minimized.
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The last stage, information retrieval, orders the fibers based on their score
of relevancy and converts them to SPARQL queries which are used to retrieve
the information from the database (YAGO and DBpedia).

The approach was tested using a subset of TREC-8! questions that were of
class 1 and class 2 and gave precision of value 0.67 and recall equal to 0.36 re-
sulting in F-measure equal 0.47. The specificity was 0.82 and the accuracy was
0.59 [4]. The results were not satisfactory, partially because of the algorithm’s
drawbacks and partially due to the quality of the databases, especially DBpe-
dia. However, after a closer look many of the unanswered or wrongly answered
questions had correct answers within the databases so we decided to extend our
solution.

3 Extended fiber based solution

Both the original and extended solutions are looking for answers to the queries
based on paths in dependency trees representing the user’s query. Each such
tree usually has one or more paths leading from the root to a named entity of
interest. These paths (so called fibers) are candidates for representation of actual
user intention. The original evaluation implementation had several drawbacks
limiting its quality. During recent works we identified and tried to eliminate these
drawbacks which allowed us to improve the quality of the proposed methods.
The solution allows one to submit queries and retrieve answers along with full
description of the analysis process. We are not focused on the performance of the
algorithms as we use online YAGO and DBpedia endpoints which significantly
influence the performance.

The first problem we identified in the original solution was the metric used to
match question elements to attribute names. The original method used the Lev-
enhstein [18] metric which gave high similarity for words with matching parts.
Sequences like ’death place’ were thus matched to attributes like ’deathPlace’
and ’birthPlace’. This resulted in additional, usually wrong answers, e.g. for
question What is death place of Mohammad Khaled Hossain? it produced six an-
swers: Mount Everest, Nepal, 2013-05-21, 2013-5-20, Bangladesh, Munshigan;.
We decided to use the difflib Python module? for the matching which allowed
us to eliminate the additional answers. After changes, the system gave only 2,
proper answers: Mount Fverest, Nepal.

We also extended the algorithm for attributes matching. In the original solu-
tion the query parts were matched to the label of the attributes found in the used
databases. After a closer look it occurred that the actual name of the attribute
is often almost a direct match (whereas the label can be misleading).

Further, we also included redirection in possible matches for query attributes.
If the attribute could not be matched but low scored candidates included redirec-
tion we followed those. This way it is possible to match entities like alternative
names of cities or countries (e.g. Ulan Bator and Ulanbaatar).

! http://trec.nist.gov/data/qa/T8_QAdata/topics.qa_questions.txt
2 https://docs.python.org/2/library/difflib.html


http://mostwiedzy.pl

A\ MOST

The original solution did not analyse synonyms when looking for entities
or attributes matches. In the current implementation we use WordNet [20] as
a backend for the nltk Python module? [3] for extending the list of attributes
checked. For example the original program could not answer the question Who
s partner of Donald Trump? as the databases do not have the attribute partner
to identify the proper entity. The database contains however an attribute spouse.
Using synonys we can modify the question into Who is spouse of Donald Trump?
and thus get the correct answer. We also use the same mechanism when an
attribute or its synonym cannot be found in the databases. In this case we use
the nltk module to find the closest words for missing attributes and use them to
generate the answer. An example of a question requiring such actions is What
is decease place of Chopin? as neither decease place nor its synonyms could be
found in the databases for the entity Chopin. This way we are able to generate
alternative questions that should have the same answer, and in this way reach
the answer.

Attributes name matching sometimes gave misleading results, e.g. in the
question Where is birth place of Jimi Hendrix? attribute birth place, due to
different similarity measures used [8], was mapped to attributes birthPlace and
birthDate. To bypass the limitation of similarity measures in our approach we try
to detect interrogative pronouns within the question and their domain. For an-
swer generation we analyse only those matched attributes that share the same
domain as detected from the interrogative pronoun of the question. This in-
creased the quality of the answers but introduced another problem. In some
cases the attribute is not within the same domain as the interrogative pronoun
but the answer is, e.g. in the question Who is successor of George Washington?
the attribute successor is not the attribute of a person. However the answer to
the question, like John Adams, is. Thus, after finding a potential answer the
domain check must be performed to check whether the answer is from the same
domain regardless of the attribute that led to the answer.

The same nltk module also allowed us to ask questions where entities at-
tributes are represented as actions, e.g. When died Jim Morrison?. Based on the
verbs in the question we generate nouns, which are in turn the most often used
as attributes names within DBpedia and YAGO. In this case there is no Jim
Morrison entity attribute called died. There is, however, a proper answer stored
under deathDate, which, combined with the domain deduction described earlier
is derived from noun death, which in turn was generated using the nltk module
from the verb died. So the answer was 1971-07-03.

The biggest problem occurred for entities with multiple meanings. Many
words or names in natural language can have more then one meaning, e.g. entity
Washington* which can have high number of pages related to. Such entities
are usually represented using disambiguation entities that have references to
different meanings of the entity in question. We look through those referenced
entities for a potential answer and then match the domain of the referenced

3 https://www.nltk.org/
* https://en.wikipedia.org/wiki/Washington
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entity, the attribute and the interrogative pronoun to present the best answer.
This mechanism still needs further work as it generates additional, mostly wrong,
answers. The list of alternative meanings can also be long.

4 Evaluation

We evaluated the solution using the aforementioned TREC-8 questions that
belonged to class 1 and class 2. Out of the 40 questions 32 had answers in the
DBpedia and YAGO databases, the remaining 8 did not. For all non-answerable
questions the algorithm did not give any answers. Out of 32 answerable questions
the algorithm answered correctly 20 questions. In 2 cases we got wrong answers
and the remaining 10 questions were left unanswered. In 7 cases the algorithm
gave additional, wrong answers. Those additional answers are the reason why
the sum of true/false positives/negatives is higher than the number of questions
used for the evaluation.

Summary in terms of answer correctness and performance evaluation using
precision, recall and F-measure are presented in Table 1 and Table 2 respectively.

Table 1. Answer correctness

True positives| True negatives|False positives|False negatives
20 8 9 12

Table 2. Performance scores

Precision|Recall |[F-Measure
0.69 0.625 0.66

The updated algorithm achieved much higher recall (0.625 versus 0.36 in
our evaluation implementation) while keeping precision at the same level (0.69
versus 0.67). The final F-measure increased from 0.47 to 0.66.

As can be seen in Table 3 there still were issues with some types of questions.
In some cases the attributes detected within the query were matched incorrectly
to entity attributes in the databases. In some cases this leads to providing com-
pletely wrong answers. It can be observed e.g. in question Who s leading actor
in "The Godfather’? where the attribute leading actor was marked as a synonym
to direct actor and as a result matched to the attribute director. In other cases
wrong match generated additional answers, like in question What is location of
Taj Mahal? where word location had borderline similarity value of 80% with
attribute caption. The same error can be observed in the question What is pop-
ulation of Tucson?. In this case the word population was incorrectly matched to
attributes populationAsOf, populationMetro, populationUrban, populationBlank
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Table 3. Examples of questions with wrong answers

Answer | Correct | Wrong
Question in answer | answer Comment
database|returned|returned

'position’ from ’location’

What is location of US Dec- os o o and ’position’ property
laration of Independence? Y Y holds a value for picture

(’right’)

"direct actor’ reasoned as
}Nho is leadin7g actor in yes o ves synonym t9 ’leadir.lg actor’,
The Godfather’? then associated with prop-

erty ’director’

wrong answers got from
What is date of Battle of os os o property ’seeAlso’ (’see’ was
the Somme? Y Y Y obtained as a synonym to

word ’date’)

wrong answers got from
What is location of Taj Ma- os os o property ’caption’ (which
hal? Y Y Y has 80% of similarity with

word ’location’)

wrong answers from prop-

erties ’populationAsOf’,
What is population of Tuc- ‘populationMetro’,  ’pop-
son? yes yes yes ulationUrban’, 'popula-

tionBlank’, ’populationEst’
(too similar to 'population’)

wrong answer from prop-
yes yes yes erty ’populationAsOf’ (too
similar to ’population’)

wrong answers from prop-
yes yes yes erty 'populationAsOf” (too
similar to 'population’)

returned also answer

What is population of Ulan
Bator?

What is population of
Ushuaia?

What is produced by Peu-

geot? yes yes yes ,1739000‘ from property
production

Where was Washington os os o problems with disambigua-

born? Y Y Y tion

and populationFEst. Such results were observed in almost all questions with ad-
ditional, usually wrong, answers. In almost all cases however, the algorithm was
able to give the correct answer alongside the wrong ones. This proves that the
query analysis and entity detection process is correct. In further works we will
focus on algorithms for better attribute matching.

In one case (Who is Voyager manager?) the question is formulated in a way
that, even for humans, it is not easy to determine the correct answer without
additional context information. We might assume the question asks for the man-
ager of the Voyager space program, however the algorithm decided to match the
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ambiguous name Voyager to a TV show Earth Star Voyager® and gave as the
answer the name of the show director (which from a technical point of view can
be treated as correct). In this case the algorithm should be able to generate
more potential answers from different domains. The system as a whole could
than present those answers and ask the user to specify the question by selecting
the entity domain.

5 Conclusion

Proposed solution can, in most cases, answer the questions formulated in natural
language and is not domain-specific. The strength of the proposed idea lies also in
utilization of widely available tools and databases. In most cases such a system is
also able to give a direct answer to the question asked (e.g. the date of an event in
question). With certain improvements, mainly in matching and disambiguation
algorithms, the system might be able to answer questions belonging to class 3
type of questions (answering based on multiple sources). The proposed query
analysis method may also be used to extract semantic data from text.

The advantage of the system is its speed and small hardware requirements.
The system can be run on a standard PC and does not require any other special
resources. Many other solutions (especially IBM Watson) requires dedicated and
powerful hardware.

Most of the problems found with the method are related to insufficient quality
of attributes matching. Such cases were observed during analysis of results given
for almost all questions with additional, usually wrong, answers. The algorithm
however, in most cases, was able to give the correct answer alongside the wrong
ones. This proves that the query analysis and entity detection process is correct.

Most of the wrong answers can also be eliminated by formalization and har-
monization of attributes used to describe concepts within the same and different
domains in the databases itself. The DBpedia and YAGO databases still use
very shallow and not well interlinked internal ontologies. Data linking occurs on
different levels and is very domain dependent. Constant development and for-
malization of the databases used can thus have a positive impact on the results
obtained by the algorithm, and in time should have a positive impact on the
quality of the proposed method.

The problems described in the evaluation section of this paper touch a very
difficult problem which is natural language disambiguation. Further improve-
ments of the proposed solution should be thus focused on improving the matching
algorithm and ability to better understand the context and domain of the ques-
tions asked. We believe, that after further improvements, the proposed method
can be used as a base for a system able to answer questions formulated in natural
language.

® https://en.wikipedia.org/wiki/Earth_Star_Voyager
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