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Abstract: 

In this paper we shall review popular methods of trend removal from electrochemical noise time 
records. The basic principles of operation of the six most popular methods are explained. The proposed 
methods are: high-pass filtering, Moving Average Removal, polynomial detrending, wavelet 
detrending, Empirical Mode Decomposition and Variational Mode Decomposition. Estimation of trend 
removal quality is evaluated using statistical measures like a histogram of noise voltage, power spectral 
density, the correlation coefficient and signal power. The advantages, disadvantages, limitations and 
applications of all of the methods mentioned are presented. Two examples of electrochemical noise 
data with a different nature of generation are used for assessing the efficiency of the presented 
methods. The first set of measurement data concerning electrochemical noise with a thermal drift 
were observed during uniform corrosion. The second one refers to noise superimposed on a curve of 
the discharging current of a supercapacitor. This additive noise component is generated by charge 
redistribution or redox reactions within porous carbon electrodes. A comparison of these methods and 
an indication of the most suitable one for removing the drift component from the acquired 
electrochemical data is summarized in this paper. 
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1. Introduction

The determination of the statistical properties of a random time series is of increasing importance
in various applications, beginning with the econometric data [1], biological experiments [2], quality 
prediction for electronic devices [3], gas sensing by low frequency resistive noise [4] or corrosion rate 
evaluation [5]. When time records of low-frequency noise are considered we may expect that a slowly 
changing trend component will interfere with that noise and that the precision of estimating its 
statistical parameters will deteriorate (e.g., power spectral density). Therefore, we have reason to 
propose an efficient method of trend removal. This issue has attracted numerous scientists and various 
methods have been proposed to solve it [6–8]. Any of the proposed methods may be considered as an 
optimal method of to remove various trends and therefore we decided to focus on that problem once 
again. Moreover, new materials and electrochemical charge storage media (e.g. supercapacitors, 
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batteries) or electricity production elements (e.g. fuel cells) require measurements of the low-
frequency noise generated within their structures, and used for their characterization. Due to some 
unavoidable nonstationary conditions during the measurement process, an additive trend component 
is observed and must be removed prior to further noise data analysis. 

Brockwell and Davies presented some elementary knowledge about time series analysis in their 
book [7]. They introduced a time series x(t) model with additive components representing trend and 
seasonality: 

𝑥(𝑡) = 𝑚௧ + 𝑠௧ + 𝑦(𝑡),     (1) 

where mt is a slowly changing function called a trend component, st is a periodical function 
representing a seasonal component, and y(t) is a random variable which is a noise component. The 
authors presented some selected methods of extracting the deterministic components mt and st to 
identify the residual noise component y(t) as a stationary time series. Alexandrov et al. [8] presented 
a similar model exhibiting a trend as a smooth additive component. Other authors [9–11] called that 
component a drift. In this paper we shall use the terms ‘drift’ and ‘trend’ interchangeably for the non-
stationary component of an analysed time record. 

The issue of trend removal is especially noticeable when we consider electrochemical noise data 
[12–14]. Electrochemical noise is usually only a very low-frequency noise within a frequency band of 
typically up to 1 Hz [15]. An exception to this generalization is the noise generated by e.g. turbulent 
processes [16]. It is time-consuming to record a sufficient number of noise samples to estimate power 
spectral density with an acceptable random error. During a long recording time, reaching even tens of 
hours, some unavoidable slow changes of temperature or other unidentified factors induce some 
changes (drift) in the observed current or voltage records. In general, we can reject the drift 
component at the data acquisition stage using high-pass (HP) filtering, but filtering would induce a 
relatively long lag time and is therefore impractical. Additionally, in some applications the drift 
component may also be useful for data analysis. Therefore, we ought to determine both components 
(noise and drift) separately. The quality of an applied method may be assessed using statistical 
measures. In our studies, we present popular trend removal methods with their benefits, 
disadvantages and limitations. Four frequently employed measures were used to evaluate the 
efficiency of the drift identification methods: probability distribution (or its estimator – histogram), 
power spectral density, correlation coefficient and signal power. The methods were applied to the 
processing of electrochemical data (i) observed during the corrosion processes and used for corrosion 
rate evaluation or (ii) observed during supercapacitor discharging to evaluate the 1/f-like noise 
intensity for its quality assessment. The analysed random time series were observed at a low frequency 
range when the power spectra of inherent noise of the applied measurement set-ups were at least ten 
times less intense than the recorded noise. The conclusions, presenting the efficiency of selected 
methods are given at the end of the paper. 

We would like to underline that the published papers and reviews of various trend removal 
methods consider selected methods by presenting only examples of results obtained with the methods 
(e.g., HP filtering, moving-average filtering or polynomial approximation [11]; trend removal by linear 
function [14]; wavelet transform or empirical mode decomposition [17]). Some researchers evaluate 
quality of the applied methods by comparing power spectral densities of the identified noise 
components [18] or correlation coefficients for the signals after trend removal [17]. We claim that 
these ways of evaluating detrending efficiency may be limited and therefore we propose to consider 
using histograms of the identified noise components to evaluate efficiency of the applied detrending 
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methods. Our approach is possible when we record relatively long time series to estimate a histogram 
of the analysed signal. 

This paper uses also a recently developed method of variational mode decomposition of the signal. 
This method may be more appropriate when the trend component is nonlinear and non-stationary 
due to its better capability of decomposing the signal into subbands of different widths. We will 
compare this method with the method based on the wavelet transform and empirical mode 
decomposition. 

A new approach considering histogram and variational mode decomposition has never been 
proposed for electrochemical noise data analysis to the best of our knowledge. Additionally, we 
analyse the current recorded during discharging of supercapacitor to determine the additive noise 
component. These problems have never been presented. 

 

2. Methods of trend removal 

We have taken into account a few popular methods of trend removal and studied their efficiency 
for selected electrochemical signals exhibiting various drift components. Our analysis began with the 
high-pass filtering method which is very simple but efficient when the spectra of drift and noise 
components are separated. 

Another method which was considered uses moving-average filtering and is quite similar to the 
high-pass filtering method. This method can easily be implemented and adjusted to the analysed data 
by modifying the cut-off filtering frequency and by smoothing the data using the method of averaging 
different numbers of neighbouring data samples. 

The next method uses trend approximation by a polynomial. This method is well known, easily 
implemented and can produce reasonable results for some data. Unfortunately, this method may be 
far from optimal or even satisfactory for numerous time records observed during abundant 
experiments. 

A more general method makes use of a wavelet transform. This is a type of filtering method which 
decomposes the analysed signal into subbands of different width and is therefore more general and 
efficient for trend removal than the previously mentioned methods. 

Finally, we consider two recently proposed methods: empirical mode decomposition (EMD) and 
variational mode decomposition (VMD). These methods are more widely used for the determination 
of trends which have various time distributions than the above presented ones but require more 
advanced and time-consuming computations. 

The considered methods were selected due to the applications of non-stationary random time 
series analysis to phenomena of relatively slow rates, requiring hours or even days of signal recording. 
This means that at least some of these methods should give relatively good results even if applied to a 
limited number of the recorded signal samples. We focused on considering efficiency of the applied 
method, evaluated by statistical parameters, and requirements on the number of the recorded and 
analysed samples. These factors determined the references considering experimental time series and 
next the references explaining selected methods of detrending. We should underline that the issue of 
trend removal, especially for electrochemical noise, continuously focuses attention of the researchers 
and new results were published in recent years [10, 17, 19].  
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2.1 High-pass filtering 

In general, the operation of trend removal is high-pass (HP) filtering. At the same time a low-pass 
filtering (LP) may be considered as a method used to determine the trend or seasonal components 
(Figure 1). The filtering may apply to either digital filtering after or analogue filtering during the data 
acquisition process. It is possible to apply digital filtering in real time but it is more common to do this 
after the data acquisition process has ended [11]. When either the trend or the seasonal component 
is being removed during the data acquisition process there is a risk of losing information which could 
be potentially important. 

In [11] the authors showed that HP filtering may be used to extract the trend component 
dominating at low frequencies. There are a large variety of digital filtering algorithms. We are not able 
to present an overview of all of them but we may conclude that this method is very efficient when 
noise and trend are situated in different bandwidths. Such a case occurs when the noise component is 
a random equally distributed white noise and the seasonal component is a harmonic signal (Figure 1). 
In that case, the operation of filtering separates both components without any problem. 
Unfortunately, when the trend consists of a few different components we cannot ensure that such a 
clear separation by an ordinary filter will occur. We have decided to limit the presentation of HP 
filtering methods to moving average filtering only because of the limited applications of the method 
to the case when noise and trend belong to two different bandwidths as well as problems of selecting 
the most efficient filter from a great variety of HP filters. 

 

Figure 1. Illustration of removal of the seasonal component or its extraction by high-pass (HP) and low-
pass (LP) filtering, respectively. 
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2.2 Moving Average filtering 

The Moving Average method is used for smoothing the recorded random data, giving similar 
results as observed in the case of LP filtration. It creates a series of averages of selected subsets from 
the full data set. However, thanks to the introduction of only a small change in this procedure we may 
obtain the moving average removal (MAR), which is a type of HP filtration. The MAR method for the 
analysis of the electrochemical noise was first proposed by Tan et al. [13]. The formula for an output 
value yn of the MAR filter is as follows: 

𝑦௡ = 𝑥௡ − 𝑚௡,      (2) 

𝑚௡ =
ଵ

ଶ௣ାଵ
(𝑥௡ି௣ + ⋯ + 𝑥௡ିଵ + 𝑥௡ + 𝑥௡ାଵ + ⋯ + 𝑥௡ା௣),   (3) 

where xn denotes the n-th sample of the acquired signal at a sampling frequency fs, mn is a result of 
applying the moving average procedure to a segment starting from the point n-p to the point n+p (i.e., 
to a set of 2p+1 samples situated around the index n). The MAR filtering procedure may easily be 
implemented in any programming language (e.g., MATLAB software). That filtering process may be 
described by its transfer function H(f ) determining the relationship between the Fourier transforms of 
the input X(f ) and output Y(f ) signals, and is described by the formula: 

𝐻(𝑓) =
௒(௙)

௑(௙)
= 1 −

ଵ

ଶ௣ାଵ

ୱ୧୬ቂ
(మ೛శభ)ಘ೑

೑ೞ
ቃ

ୱ୧୬ቀ
ಘ೑

೑ೞ
ቁ

.    (4) 

The averaging is symmetrical around the index n of the sample subset. Thus, the number of 
averaged samples is odd. Therefore, MAR filtering does not introduce any phase shift. Figure 2 
presents a set of transfer functions H(f) of an MAR filter versus the frequency for the selected values 
of parameter p. A greater value of p means averaging over longer subsets of the recorded samples and 
- therefore – extending the frequency bandwidth by a range of lower frequencies. The parameter p 
determines the passband of the MAR filter starting from frequency fs/(2p+1). Additionally, some 
ripples are introduced into the passband area (Figure 2). 

 

Figure 2. A set of moving average removal (MAR) filter transfer functions H(f) versus normalized 
frequency f/fs for selected values of the number 2p+1 of averaged samples. 
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The MAR filter is computationally very attractive due to its simplicity but it has some serious 
limitations. It effectively removes the drift, but it also removes a large part of any low-frequency 
components of the useful signal, crucial to an analysis of the electrochemical noise data, when their 
bandwidths overlap. The second limitation causes the inapplicability of the higher-order MAR filter to 
nonlinearly drifting signals, a characteristic feature of electrochemical noise data [11]. The MAR filter 
introduces artifacts into the detrended curve (when p is too high) and an unacceptable degree of 
filtration due to the overly high cut-off frequency (when p is too low). Numerous authors have 
presented the weaknesses of MAR filtering when applied to their experimental results [11, 14]. 

 

2.3 Trend removal by polynomial approximation 

Polynomial detrending is another method of HP filtering commonly used for trend removal [11]. 
In general, it involves the approximation of the trend by a polynomial of a given order po. The 
approximated trend is fitted to the analysed time record. The polynomial is subtracted from the 
acquired data xn to determine the signal yn after detrending: 

𝑦௡ = 𝑥௡ − ∑ 𝑎௜𝑛௜,
௣೚
௜ୀ଴       (5) 

where ai is the i-th coefficient of the trend approximating the polynomial evaluated for a discrete time 
n. It is evident that for a trend of a linear function the polynomial order equals to one. A technique 
determining the trend 𝑚௡ = ∑ 𝑎௜𝑛௜௣೚

௜ୀ଴  present in the analysed data xn uses the least squares criterion 
[7] given by the formula: 

min ∑ (𝑥௡ − 𝑚௡)ଶே
௡ୀଵ .      (6) 

The evaluated coefficients ai of the polynomial should minimize the criterion (6). This method of curve 
fitting is called the least squares regression and can be carried out by the MATLAB function polyfit. 

The presented method of trend removal has some limitations. When a large number of the 
recorded samples are analysed a further increase of the polynomial degree does not improve the 
approximation but results in an overfitting effect – high-order polynomials can oscillate between 
consecutive samples, resulting in worse data fitting. In that case, a low-order fitting polynomial, which 
tends to be smoother between the points, should be used. The polynomials are unbounded, oscillatory 
functions and therefore they are not well-suited to extrapolating bounded or monotonic data. 
Depending on the complexity of the least squares regression algorithms there are different methods 
of evaluating polynomial coefficients (i.e., LU decomposition, QR decomposition, Givens Rotations, 
Housholder Transformations [20], Principal Component Regression (PCR) [21, 22] and Least Squares 
Support Vector Regression (LS-SVR) [9, 23]). 

In [11] the authors demonstrated that the lowest frequencies could be drastically attenuated 
depending on the order of the polynomial – a higher order means better attenuation. The main 
disadvantage of the polynomial detrending method is a user-defined parameter – the polynomial 
order. It is selected arbitrarily and has an enormous impact on the efficiency of the method [15]. In 
[24] the author presents a comprehensive analysis of the polynomial’s degree influence on the 
detrending results. The accuracy of detrending by the polynomial approximation for signals with an 
intense noise component decreases with the polynomial degree. When a signal is dominated by the 
trend component, a greater polynomial degree improves the result of the trend removal [24]. 
Unfortunately, it is very difficult to automatically select an optimal polynomial degree. Thus, in general, 
that method is usually far from being optimal but it may be relatively easy to implement. 
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2.4 Filtering by wavelet transform 

The trend removal or trend determination based on the wavelet transform is a popular method 
which produces relatively good results [8, 15, 25]. The Discrete Wavelet Transform (DWT) proposed by 
Mallat in 1989 [26] consists of decomposing a discrete signal into a collection of band-limited low- and 
high-frequency components. The low-frequency components are called approximations (A) and the 
high-frequency components are called details (D). Figure 3 presents a block diagram of the DWT 
algorithm proposed by Mallat for decomposing (Figure 3a) into subbands or reconstructing (Figure 3b) 
the analysed signal from these subbands. 

a) 

 

b) 

 

Figure 3. A block diagram of a discrete signal xn: a) decomposed using the DWT Mallat algorithm, b) 
reconstructed using DWT filter banks. The operations 2 and 2 mean downsampling (removing every 
second sample) and upsampling (adding zero between each consecutive samples), respectively. 

Signal decomposition at each stage necessitates filtering the signal independently using two 
digital filters. The first one is a low-pass filter (LP) and the output signal is a named approximation. The 
second one is a high-pass filter (HP) and the output is called detail. The outputs of both filters are 
downsampled – every second sample is removed (Figure 3a). Hence, a frequency band of each 
component equals half of the frequency band of the input signal. Therefore, a broadband input signal 
is decomposed into a set of approximations and details successively more limited in frequency bands. 
In fact, we obtain logarithmically decreasing frequency intervals and the spectra lines on a logarithmic 
scale are in equidistant steps [27]. The decomposed signal may be modified before reconstruction 
(Figure 3b) by zeroing the selected subbands. By using statistical parameters we can identify which of 
the details or approximations represent the noise or trend components. This procedure may be 
performed automatically by estimating e.g. the standard deviation and signal thresholding [28] and 
therefore is very attractive for practical applications (a threshold value depends on the estimated 
standard deviation). Another indisputable benefit of that method is its accessibility in MATLAB 
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software, from the Wavelet Toolbox [29]. The effectiveness of the presented method depends on the 
applied orthogonal wavelet functions. Among the most popular orthogonal wavelet functions are the 
Daubechies and symlet ones. In the literature [27] we can find a more detailed description of the 
orthogonal and dual functions commonly used in the DWT. In the class of orthogonal functions [33], 
there are Chebyshev's discrete polynomials. Chebyshev's discrete spectroscopy [30, 31] is resistant in 
respect of a drift of electrochemical noise. 

The number of levels that a signal xn is decomposed to by the DWT is determined by the sampling 
frequency and the bandwidth of the signal (its recording time) [26]. This number, as well as the wavelet 
function have to be established arbitrarily [8]. This means that the presented method, even if very 
attractive and effective in determining the trend component, has some drawbacks. In [14] the authors 
have shown a more sophisticated use of the DWT algorithm for signal detrending. They assumed that 
the trend component is not limited to the last approximation component, but is also partially included 
in some details. Moreover, they applied a modified method of soft thresholding and considered the 
presence of a nonwhite noise component. The results were promising and could be evaluated 
automatically and therefore the method is very attractive. 

 

2.5 Empirical Mode Decomposition 

The Empirical Mode Decomposition (EMD) is a method of signal analysis proposed by Huang in 
1998 [32]. During EMD analysis, a signal in the time domain occurs, unlike other presented methods 
(e.g., the Fourier transform or the wavelet transform). In contrast to the wavelet decomposition, 
where data are expanded into wavelet crystals on the basis of predefined wavelet functions and using 
their orthogonality, the basis of EMD is derived directly from the data itself. Thus, the EMD should be 
more flexible and adaptive to the analysed signal than the previously mentioned methods [15]. The 
encouraging results of using the EMD method for trend removal were presented elsewhere [33, 34]. 
The analysed time record x(t) was decomposed into finite additive oscillatory components called 
intrinsic mode functions (IMFs). An IMF has to satisfy the following two conditions: 

1. the numbers of extremes and zero crossings of the signal must be either equal or different at 
most by one only, 

2. the average values of the envelopes interpolating local maxima and interpolating local minima 
are equal to zero. 

Figure 4 presents a block diagram of the EMD algorithm of a signal x(t). In the first iteration (j = 1) 
the acquired signal with the trend component is treated as a residual r0(t) and its local extremes are 
determined. In the next step local maxima and minima should be interpolated using the spline function 
to create the upper eu(t) and lower el(t) envelopes, respectively. Then we calculate the local average 
m1(t) = (eu(t)+ el(t))/2 and the function h1(t) = x(t)-m1(t), which is a candidate for the first IMF. If h1(t) 
satisfies both conditions for an IMF, we assume that it is an IMF component. If not, we take it as a 
signal to be analysed and repeat this procedure until it satisfies both conditions for an IMF. 

Once we determined the first IMF component, we subtract it from the signal x(t) and obtain a 
residual signal r1(t) = x(t)-h1(t), which is now treated as the input signal. That procedure is repeated n 
times and the following IMF components are obtained: h1(t) = x(t)-r1(t); h2(t) = r1(t) -r2(t); … ; hn(t) = rn-

1(t)-rn(t). The decomposition stops when rj(t) = rn(t) (Figure 4) is either a monotonic or constant 
function, which means that we are not able to extract more IMF components satisfying both conditions 
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mentioned above. The original signal x(t) may be reconstructed by summing up all IMF components 
and the last residue: 

𝑥(𝑡) = ∑ ℎ௝(𝑡) + 𝑟௡(𝑡)௡
௝ୀଵ .     (7) 

If an EMD input signal x(t) consists of a high-frequency random component y(t) (noise) and a slowly 
changing trend component, we expect that the trend will be identified by a few IMF components hj(t) 
of a sufficiently large index j and the final residual. 

 

Figure 4. A block diagram of the empirical mode decomposition (EMD) algorithm. 
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The EMD decomposition introduced above, was successfully used to remove the trend in some 
examples of signal analysis [34]. The task of trend removal means the estimation of a signal random 
component by the formula: 

𝑦ො஽(𝑡) = ∑ ℎ௝(𝑡)஽
௝ୀଵ ,      (8) 

where: yොୈ(t) - an estimated detrended signal y(t) using the first D successive IMF components, 
hj(t) – the j-th IMF function, D – the largest IMF index representing the noise component. The number 
D may be determined by observing the evolution of the standardized empirical mean of the estimated 
function yොୈ(t) as a function of different values of D, to identify the lowest D value when the mean 
value of yොୈ(t) is significantly different from zero [34]. 

In [36] the authors presented a more advanced version of the trend extraction method based on 
the EMD algorithm. They proposed to determine the number of IMF components by evaluating how 
distant two consecutive IMFs were from one another when represented by the Hilbert marginal 
spectrum. The results were very promising for the analysed experimental data of rail corrugation 
measurements [36]. In [35] the authors proposed three different ways for selecting the D value: the 
ratio approach, the energy approach and the energy-ratio approach. The first one is based on the ratio 
Ri of the numbers of zero crossings of two successive (e.g. i-1 and i) IMF components and on the 
selection of the D value by choosing the smallest index i for which Ri is significantly different from 2. 
The second approach is based on the energy estimation Gi of all evaluated IMF components and then 
on finding such an index i = D (i ≥ 2) for which the energy estimations of two successive IMFs are 
related: Gi > Gi-1. The last approach is based on a combination of the two previously mentioned 
approaches, and is capable of reducing the number of false detections. It assumes that D is the smallest 
common index i in both previous approaches. 

The EMD method can easily be implemented in MATLAB software or in C language. There is a 
ready-to-use MATLAB code using that method [33, 34]. Some examples of the results of the EMD 
algorithm decomposing a signal with the trend component are presented in Figure 5. 

 

Figure 5. An example of the results of signal x(t) decomposition by the EMD algorithm; the subplots 
present parts decomposed into 9 IMF components; the trend is estimated by summing up a few of the 
highest components according to a selected criterion; the OX axes are scaled in seconds [s], the OY 
axes are scaled in Amperes [A]. 
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2.6 Variational Mode Decomposition 

The Variational Mode Decomposition (VMD) was recently proposed by Dragomiretskiy and Zosso 
[37]. The proposal is an alternative approach to the EMD algorithm [32]. The VMD is a non-recursive 
method – the modes are extracted concurrently. It decomposes a signal x(t) into a finite number K of 
compactly band-limited modes uk(t), called band-limited intrinsic mode functions (BLIMFs). The 
method is a generalization of the Wiener filter onto multiple and adaptive bands. Therefore, the VMD 
model is a much more robust treatment of sampling frequency and noise. Thus, the VMD model is 
suitable for removing or extracting additive noise from nonlinear (generated by the system that does 
not obey superposition and scaling properties) and nonstationary signals [38]. 

The basic operating principle of VMD [37] is decomposing a real-valued input signal x(t) into a 
discrete number of components (modes) uk, having specific sparsity properties. The sparsity of each 
mode is its bandwidth in the spectral domain. Each mode is modelled by a sinusoidal signal with a time-
varying amplitude Ak and a phase : 

𝑥(𝑡) = ∑ 𝑢௞(𝑡) = ∑ 𝐴௞(𝑡) cos 𝜙௞(𝑡)௄
௞ୀଵ

௄
௞ୀଵ .    (9) 

We make an assumption that the k-th mode is mostly compact around a central pulsation ωk, 
which should be determined in the decomposition stage. In order to determine the bandwidths of the 
modes the following optimization procedure has been proposed [37]: 

1. computation of the associated analytic signal for each mode uk by means of the Hilbert 
transform in order to obtain a unilateral frequency spectrum, 

2. shifting the frequency spectrum of each mode to a “baseband” by mixing with an exponential 
tuned to the central frequency estimated respectively, 

3. estimation of the bandwidth by the Gaussian smoothness of the demodulated signal, i.e. the 
squared L2-norm of the gradient. 

The optimization procedure may be represented by the mathematical equation: 

min
{௨ೖ},{ఠೖ}

{∑ ቛ𝜕௧[(𝛿(𝑡) +
௝

గ௧
) ∗ 𝑢௞(𝑡)]𝑒ି௝ఠೖ௧ቛ

ଶ

ଶ
௄
௞ୀଵ }  subject to ∑ 𝑢௞ = 𝑥(𝑡),௄

௞ୀଵ   (10) 

where {uk}=(u1,…,uK} and {ωk}=(ω1,…, ωK} are shorthand notations for the sets of all modes and their 
central frequencies, respectively. Solving (10) numerically is a relatively complex task and its 
explanation is beyond the scope of this paper. A detailed description may be found elsewhere [37, 39]. 

In [40] the authors have presented the use of VMD for a few different tasks, including trend 
removal. The main assumption is that the trend component is covered by a set of low-frequency 
BLIMFs. The detrending involves the separation of the low-frequency trend from high-frequency 
fluctuations. The trend may be directly captured by the evaluated BLIMFs. It may be estimated by 
summing up the fine-to-coarse components: 

𝑇௄(𝑡) = ∑ 𝑢௞(𝑡)௄
௞ୀଵ .     (11) 

During this task the initial value of the data fidelity constraint parameter (bandwidth parameter) 
α should be properly chosen. An α value which is too large results in a curve which is too smooth. The 
choice of the right α value depends on the appropriate anticipation of the meaning of the resulting 
reconstruction, as was shown elsewhere [40]. The value of α should be kept small, in the range of a 
few hundred, when we deal with signals containing a very wide range of frequencies (e.g., harmonically 
distorted signals). An inverse situation is observed for a signal with a smaller range of frequencies (e.g. 
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detection of flicker, detection of fundamental frequency oscillations), where the α value should be 
kept very high, in the range of a few tens of thousands. An algorithm of VMD was implemented using 
MATLAB software (the function vmd) and may be applied to noncommercial research [37]. A few 
parameters have to be set when the above-mentioned MATLAB vmd function is used. The first one is 
a Lagrangian multiplier λ, which enforces an equality constraint of the reconstruction problem (the 
equation: ∑ 𝑢௞ = 𝑥(𝑡)௄

௞ୀଵ ). If an accurate reconstruction is not required, particularly in the presence 
of either intense noise or a huge trend, the Lagrangian multiplier may be assumed as zero by setting 
its update parameter τ = 0. The last adjustable parameter of the VMD algorithm is the number K of the 
modes decomposing the input signal. This predefined parameter depends on the number of 
components comprising the analysed signal and determines the efficiency of the denoising or 
detrending operation. The number K may be selected by checking how much of the spectra of the 
modes overlap. The K value may be either too small (under-binning) or too high (overbinning). A rule 
of thumb is to use the EMD before using the VMD and to determine K based on the number of modes 
resulting from the EMD method. However, the selection of a real value of K is based on experimental 
knowledge [38]. 

 

3. Detrending efficiency assessment 

3.1 Histograms of recorded noise 

The statistical properties of random data may be evaluated by a histogram – distribution of the 
recorded data values. The recorded noise usually has a normal (Gaussian) distribution, characterized 
by its mean value μ and variance σ2 (or standard deviation σ). The probability density f(x|μ, σ2) 
describing the distribution curve is as follows: 

𝑓(𝑥|𝜇, 𝜎ଶ) =
ଵ

√ଶఙమ஠
𝑒

ି
(ೣషഋ)మ

మ഑మ .    (12) 

To better visualize any deviation of the analysed data distribution from the Gaussian distribution, it 
may be presented in the form shown in Figure 6. The axis OY is expressed in a logarithmic scale and 
the axis OX is transformed to a normalized variable z given by the equation: 

𝑧 =
௫ିఓ

ఙ
.     (13) 

The proposed scaling represents a normal distribution as two straight lines. Thus, any deviation from 
a normal distribution may easily be detected as a deformation of these straight lines. 
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Figure 6. The probability distribution f(z) of a variable z having a standard normal distribution (having 
zero mean and unit variance values) represented by two straight lines when the axis OY is logarithmic 
and the axis OX is scaled as sgn(z)z2; OX and OY units are dimensionless. 

In our studies, the estimated histogram was used to detect any non-Gaussian component [41]. 
We plotted the histogram of a detrended signal after the necessary normalization (μ = 0 and σ2

 = 1) 
and compared it with the lines representing a histogram having a standard normal distribution. If the 
trend component is removed properly, then the residual (detrended) signal should comprise noise 
having a normal distribution. 

We had to limit the random error εrh(x) of the histogram estimated around the variable x to 
compare the estimated values with those of the histogram for a standard normal distribution. The 
random error εrh(x) is given by: 

𝜀௥௛(𝑥) = (
ଵ

ெ୼௫௙(௫|ఓ,ఙమ)
)ଵ/ଶ,     (14) 

where Δx is a range around the variable x where the histogram is estimated, f(x|μ, σ2) is a probability 
density function, M is the number of noise samples used for the estimation of the histogram. A more 
detailed description of histogram estimation and its random error is presented elsewhere [41]. The 
total number of the recorded noise samples should be approximately a few millions to limit εrh(x) to a 
few percent only when x = ±5σ. 

 

3.2 Power Spectral Density 

Another method of evaluating the quality of trend removal is based on the comparison of power 
spectral densities (PSDs) estimated for the detrended signals by various methods [11, 12, 14]. The 
power spectral density S(f) of a signal x(t) is estimated by: 

𝑆(𝑓) =
ଶ

௉்
∑ |𝑋௜(𝑓)|ଶ௉

௜ୀଵ ,    (15) 

where: P – the number of averaged spectra, Xi(f ) – a Fourier transform of the analysed signal x(t) after 
multiplying by a selected time window and scaling according to the applied time window to avoid 
power reduction, T – the observation time of the signal x(t) necessary to determine its Fourier 
transform X(f ). Averaging over P estimated spectra reduces the random error εrp of S(f ), given by: 
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𝜀௥௣ =
ଵ

√௉
.     (16) 

We may assess the quality of a trend removal method by comparing the estimated PSD with the 
assumed PSD of the analysed noise component (e.g., 1/f noise). This is the same procedure as in the 
case of a histogram when we compared the histogram of the signal after the trend removal with a 
standard normal distribution. Another possible assessment of the trend removal results may be 
performed by comparing the PSDs estimated for different methods of trend removal. The results show 
the differences between the considered methods. 

 

3.3 Correlation coefficient 

It was proposed in [15] to use a coefficient of linear correlation between the recorded signals after 
applying a trend removal procedure. In general, a linear correlation coefficient (Pearson correlation 
coefficient) is a number within the range <-1, 1> assessing a linear correlation between the two 
considered variables [42, 43]. The Pearson correlation coefficient rXY is a ratio of the covariance 
cov(X, Y) = E[(X-E[X])(Y-E[Y])], where E[ ] is an operator of averaging, and the product of standard 
deviations σX∙σY of the analysed random variables X, Y: 

𝑟௑௒ =
ୡ୭୴(௑,௒)

ఙ೉ఙೊ
.      (17) 

The correlation coefficient may compare the applied detrending procedures regarding their 
efficiency. Effectively removed trends mean that the remnant noise records should be highly 
correlated. Moreover, a standard deviation within a set of correlation coefficients between noise 
records, is estimated by applying various procedures, and provides information on the differences 
between the applied trend removal procedures. 

The coefficient rXY is estimated by considering a limited number of the recorded noise samples 
and therefore we are obliged to apply a statistical test to determine if it is zero or nonzero. The test 
transforms the coefficient rXY, being a statistical variable, into a new variable w = 0.5ln{(1+ rXY)/(1- rXY)} 
having a distribution close to the Gaussian one. Then we can test a statistical hypothesis if the 
coefficient rXY equals zero, as presented in detail elsewhere [43]. 

 

3.4 Signal power 

Trend removal methods may be compared by estimating the residual powers of signals after the 
operation of trend removal [17]. The power of the current or voltage random signal (noise) is 
determined by the physical process generating that noise. Therefore, the signals after trend removal 
should have similar power values. The power PS of a discrete signal x(n) consisting of N+1 samples may 
be estimated by the formula: 

𝑃ௌ = lim
ே→ஶ

(
ଵ

ேାଵ
∑ |𝑥(𝑛)|ଶே

௡ୀ଴ ).    (18) 

The estimated PS should depend on the efficiency of trend removal and therefore may be used to 
assess the quality of the considered methods. Statistical hypothesis tests, similar to those used for the 
correlation coefficient [43], may be applied to determine how different the values of PS are when 
estimated by a limited number of signal samples. 
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4. Trend removal using the example of an electrochemical noise time series 

4.1 Electrochemical noise generated by the uniform corrosion process 

Electrochemical noise is a random signal generated during the electrochemical corrosion 
processes (e.g. uniform, pitting or crevice corrosion [14]). It may be observed in the form of voltage or 
current fluctuations between the corroding electrodes at a very low frequency range, up to a few mHz. 
Therefore, any slow changes of environmental conditions (e.g. slow temperature variations) induce a 
trend component which has to be removed before analysis of the additive noise component. In our 
studies we acquired current fluctuations between two corroding electrodes mounted inside a water-
supplying pipe [14]. The electrochemical noise measurements were performed in a municipal water 
supply system. The electrode set was inserted inside one of the parallel 1-inch diameter pipes. The 
flow of water in the pipe between valves was stopped during electrochemical noise measurements. 
All electrodes were made from ST3S steel and had a surface area of about 1 cm2 each. The observed 
current fluctuations had trends. Current fluctuations were observed in a circuit formed by two 
identically prepared metal electrodes (named as working electrodes) immersed in municipal water and 
the electrode terminals that were short circuited by applying a current-voltage converter based on 
low-noise operational amplifier OPA128. An example of the recorded current I(t) is presented in 
Figure 7; the data vector consists of 5115 samples collected at a sampling frequency fs = 1 Hz. The 
clearly visible drift component may be caused by slow ambient temperature variations and the 
diffusion of corrosion products during a few hours of data recording or by some unavoidable 
differences between two identically prepared electrodes. The electrochemical noise generated by 
uniform corrosion is expected to have a Gaussian distribution and a 1/f-like power spectral density at 
a low frequency range. We have checked that the power spectrum of the current 1/f noise observed 
between short circuited corroding electrodes was even two orders more intense than the inherent 
noise generated by the applied measurement setup. The inherent current noise of the setup was 
measured at short circuited input of the applied current-voltage converted followed by the National 
Instruments amplifier SCXI 1121 [14]. 

 

Figure 7. The electrochemical current noise I(t) flowing between two uniformly corroding metal 
electrodes mounted inside a municipal water pipe. 

Figure 8 represents histograms of the data from Figure 7 after applying five considered detrending 
methods (MAR, polynomial fitting, filtering by wavelet transform, EMD and VMD). The MAR filter 
parameter was set to p = 7. The polynomial fitting was performed by an approximating polynomial of 
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the 21st order. Filtering by the wavelet transform was accomplished by applying a 4-th order 
Daubechies wavelet function and by decomposing the signal to the eighth level. The EMD method 
decomposed the time series into nine IMFs. The first five IMFs were selected by using the energy-ratio 
approach [35] to determine the detrended signal. The VMD applied the MATLAB vmd function; the 
parameter values α = 9∙106 and τ = 0 were chosen to remove the trend in a most effective way. 

 

Figure 8. Probability distribution f(z) of the detrended electrochemical current noise I(t) (Figure 7) after 
applying the trend removal procedures: MAR filtering, polynomial approximation, DWT filtering, EMD 
and VMD; OX and OY units are dimensionless. 

Four detrending methods identified the trend relatively well (Figure 8). Application of the MAR 
filtering method resulted in a histogram differing from a Gaussian distribution more than the 
histograms obtained with the other methods considered. The power spectra were quite similar to each 
other except for the spectrum obtained with the MAR method (Figure 9). This spectrum was 
attenuated at a low frequency range according to its filter transfer function (Figure 2). The power 
spectral density of the original signal with a visible trend component was about 25% more intense at 
a low frequency range than the power spectra estimated after trend removal by polynomial, EMD or 
VMD detrending (Figure 9). We would like to emphasize that the popular and simple method of 
polynomial detrending may produce reasonable results but require the selection of the appropriate 
order of the applied polynomial and therefore its simplicity may be misleading when compared with 
other more advanced methods however, it is performed automatically. When a detrending operation 
is limited to e.g., a linear trend removal function, the results may became unacceptable. 
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Figure 9. Power spectral densities Si(f ) of the detrended electrochemical noise (current fluctuations) 
time records (Figure 7) obtained with different trend removal methods; power spectral densities were 
estimated by using 128 samples and averaged over 40 spectra. 

Table 1 presents linear correlation coefficients estimated for the signals when the trend 
component was removed with one of the presented methods. It confirms again that all methods 
except for MAR filtering determine closely correlated detrended signals (rXY ≈ 0.7-0.9). These results 
confirm that the four considered methods (polynomial fitting, filtering by wavelet transform, EMD and 
VMD) may be effectively applied to the recorded electrochemical noise data for trend removal. 

Table 1. Linear correlation coefficients rXY estimated when the electrochemical noise (Figure 7) was 
detrended with the methods considered. 

rXY MAR Polynomial DWT EMD VMD 
MAR 1 0.3671 0.3942 0.3761 0.4126 
Polynomial 0.3671 1 0.8286 0.7530 0.9017 
DWT 0.3942 0.8286 1 0.8856 0.9096 
EMD 0.3761 0.7530 0.8856 1 0.8844 
VMD 0.4126 0.9017 0.9096 0.8844 1 

 

A similar conclusion may be drawn from the estimated signal powers PS for the detrended signals 
(Table 2). The estimated PS value was only far different for the MAR method. The other methods 
considered produced quite similar results. 

The presented results were obtained for relatively short time records (128 x 40 = 5120 samples). 
This is due to a low sampling frequency and a limited period of data recording. It determined the 
frequency resolution of the estimated power spectral density. We may conclude that a longer data 
sampling period would secure a better frequency resolution and limit the spectral leakage. The 
estimated power spectral densities are therefore deformed due to the limited observation period and 
the assumed frequency resolution. The considered data represent a common case of electrochemical 
noise data analysis with existing constrains. 
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Table 2. Signal power PS values of the electrochemical noise (Figure 7) after detrending with the 
methods considered. 

 MAR Polynomial DWT EMD VMD 
PS ∙10-14 0.98 7.99 6.93 7.79 6.33 

 

4.2 Electrochemical noise generated during the discharging of supercapacitors 

The second data set for the examination of the detrending methods was acquired during the 
accelerated ageing of experimental specimens of supercapacitors [44]. The considered specimens 
(capacitance of about 3 F, electrolyte: 1 mol L-1 TEA BF4, electrodes: BATSCAP about 110 μm, separator: 
cellulose 35 μm, aluminium foil 30 μm) were aged by floating (a constant value of voltage attached to 
the supercapacitor terminals during a given period of ageing) or cycling (numerous 
charging/discharging events using relatively high currents). The state of an aged specimen was 
determined by measuring the noise component during slow discharging through a 1 kΩ resistor. Low 
frequency noise was generated within porous carbon electrodes of the investigated supercapacitor by 
charge redistribution or eventual redox reactions induced by excessive voltage when aged by floating. 
Similar method was proposed to determine a state of health of commercial Li-ion batteries [45]. 

Discharging current (with its noise component) flowing through the above-mentioned loading 
resistor was observed as a voltage drop between the terminals of the loading resistor by the attached 
data acquisition board (National Instruments NI 4431). An example of the discharging current Id(t) 
waveform is presented in Figure 10. The data vector consists of 7 864 321 samples collected at a 
sampling frequency fs = 1024 Hz. The trend component is so large that it hides the random component, 
enlarged in the inset in Figure 10 for better visualization. This random component is expected to have 
a Gaussian distribution. The trend component can’t be approximated by an exponential decay function 
because the approximation is not sufficiently precise and the results are unsatisfactory to identify noise 
component. The supercapacitor has to be modeled by a set of RC elements (resistors R and capacitors 
C), connected in a parallel way [44, 45]. Additionally, some of these RC components may depend on 
the applied charging voltage and may change during the discharging process. 

 

Figure 10. The discharging current of a supercapacitor with an inset visualizing its random component. 

The observed noise component during supercapacitor discharge is generated within its structure 
because the current power spectral density of the inherent noise of the applied measurement setup 
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was at least ten times lower at a frequency range below 1 Hz than the power spectrum estimated 
during the discharging process. The inherent noise of the measurement setup was measured in the 
same circuit when the loading resistor and the discharged supercapacitor were only connected to the 
input of an analog-digital converter. 

Our numerous experimental studies have confirmed that the recorded noise is intensified by the 
aging processes of the supercapacitor, when the specimen was polarized by a relatively high DC voltage 
[46]. The power spectral density of the current fluctuations during discharging even increased a few 
times shortly before a drop of capacitance in numerous experiments. We have observed during an 
investigation of the disassembled specimen some small crevices and local delamination of carbon layer 
from the metal collector on a positive capacitor electrode mainly. These effects are induced by the 
corrosion processes taking place at the surface of metal collector or in the pores of carbon electrodes 
as reported elsewhere [48–50]. Corrosion products which have a greater volume would result in the 
cracking of the fragile carbon layer and its local delamination. Noise intensifies when corrosion 
processes escalate at higher polarizing voltages during aging and therefore the determination of the 
noise component may be used to monitor the quality of the tested supercapacitor. 

 

Figure 11. The probability distribution f(z) of the detrended signals obtained with different trend 
removal methods using the discharging currents of supercapacitor specimens; OX and OY units are 
dimensionless. 

Figure 11 presents histograms obtained after the detrending processes performed by four of the 
above-mentioned methods (MAR, polynomial fitting, wavelet and EMD). The MAR filter parameter was 
set to p = 7, whereas the polynomial fitting was accomplished with a 6th-order polynomial. The selected 
polynomial order is a compromise between flexibility of trend approximation by polynomial and 
possible appearance of undesirable ripples when a too high polynomial order was selected. This order 
was established by practical experience, considering the results of numerous electrochemical noise 
data analyses. The wavelet detrending used a 4th-order Daubechies wavelet and eighteen levels of 
decomposition. The EMD decomposed the examined time series into eleven IMFs. The first nine of 
them were selected (using the energy-ratio approach [35]) to reconstruct the signal with the trend 
component filtered out. The VMD method could not be used because the analysed time series were 
very long (about 8 million samples, in the case of homogenous corrosion it was only about 5 thousand 
samples) and the memory volume required for the necessary computations was much higher than that 
of our PC. 
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It is clear from Figure 11 that almost all of the explored detrending methods resulted in a relatively 
good elimination of the trend component. All histograms proved that the noise component 
distribution was close to a normal distribution. Power spectral densities of the detrended signals 
(Figure 12) proved the effectiveness of the considered methods with the exception of the MAR filtering 
method. The PSD of the detrended signal obtained with MAR filtering is different from all other spectra 
due to its filter transfer function (Figure 2). Some deviation of the PSD at a low frequency range was 
also observed for the signal detrended by the EMD algorithm. 

 

Figure 12. Power spectral densities Si(f ) of the detrended signals (current fluctuations) obtained with 
different trend removal methods from the current observed during supercapacitor discharging 
through a 1 kΩ resistor. 

Table 3 presents the correlation coefficients estimated for the signals after the trend removal 
using all of the methods considered with the exception of the VMD algorithm. It is clear that - except 
for the MAR filtering – the other methods are closely correlated (rXY ≈ 1). The results proved the 
effectiveness of detrending with the polynomial fitting, wavelet transform and EMD algorithms. 

Table 3. Correlation coefficients rXY determined for the signals detrended using selected methods. 

rXY MAR Polynomial DWT EMD 
MAR 1 0.96 0.96 0.97 
Polynomial 0.96 1 0.99 0.99 
DWT 0.96 0.99 1 0.99 
EMD 0.97 0.99 0.99 1 

 

Table 4 shows the estimated power PS values of the signals after the removal of the trend 
component using the methods considered. It is clear that - except for the MAR filtering - all other 
methods produced very similar results. The EMD method resulted in some undulations at a low 
frequency range (Figure 12). That means that this method has some limitations regarding the 
considered current records and therefore other algorithms (even those requiring less computing 
power, e.g. the polynomial approximation) should be applied. 

Table 4. Power PS values of the detrended signals. 

 MAR Polynomial DWT EMD 
P∙10-15 1.80 1.94 1.93 1.93 
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5. Conclusions 

In our exploratory studies a few trend removal methods have been presented. With the exception 
of MAR filtering, the other methods which were evaluated may be successfully used for 
electrochemical noise data processing but they exhibit some visible differences in efficiency of trend 
removal. Better results were achieved for trend removal of the data observed during discharging of 
supercapacitor than those generated by corrosion processes. This conclusion means that the same 
methods for longer time records and for a trend being a smooth function give better results. 

We may conclude that the appropriate choice of a method and its parameters are closely 
dependent on the trend form. For the trends consisting of oscillatory components, the DWT, EMD or 
VMD algorithms should be preferred. These methods (e.g., DWT, EMD or VMD) utilize oscillatory 
functions to determine conformity between the analysed signal and the applied characteristic 
functions in the enumerated methods (e.g., convolution of the input signal with different wavelet 
functions for DWT), and therefore are expected to give better results. In general, we recommend the 
application of the proposed methods to assess the quality of detrending algorithms by comparing 
either the power spectra of signals detrended by various methods or other estimated statistical 
parameters (e.g. correlation coefficient rXY, power PS or histogram if possible) of these signals. Such a 
procedure enables to assess the efficiency of a trend removal method for any trend and analysed time 
records of any length. The main conclusion of the review is that the proposed procedure of trend 
removal and assessing its efficiency by the mentioned statistical parameters is a universal one and may 
be applied for any type of trend. By considering selected statistical parameters a more rational 
assessment of the presented methods may be performed to secure the best possible selection. The 
set of considered trend removal methods is so wide that we should be able to select an appropriate 
method to produce decent results for any experimental data of electrochemical noise as considered in 
numerous papers published within the last few years [10, 15, 52]. 
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