

Noname manuscript No.

(will be inserted by the editor)

This is a post-peer-review, pre-copyedit version of an article published

in Evolving Systems. The final authenticated version is available online

at: http://dx.doi.org/10.1007/s12530-018-9245-9

Particle Swarm Optimization Algorithms for

Autonomous Robots with Deterministic Leaders Using
Space Filling Movements

Doina Logof˘atu · Gil Sobol · Christina Andersson · Daniel Stamate · Kristiyan

Balabanov · Tymoteusz Cejrowski

Received: date / Accepted: date

Abstract In this work the swarm behavior principles of Craig W. Reynolds are
combined with deterministic traits. This is done by using leaders with motions based
on space filling curves like Peano and Hilbert. Our goal is to evaluate how the swarm
of agents works with this approach, supposing the entire swarm will better explore
the entire space. Therefore, we examine different combinations of Peano and Hilbert
with the already known swarm algorithms and test them in a practical challenge for
the harvesting of manganese nodules on the sea ground with the use of autonomous
agents. We run experiments with various settings, then evaluate and describe the
results. In the last section some further development ideas and thoughts for the
expansion of this study are considered.

Keywords Autonomous agents · Space filling curves · Particle swarm optimization ·
Deterministic leaders · Application

1 Introduction

Simultaneously with the applied research of renewable resources, it is useful to find
novel ways for opening up fossil ones. As example, manganese nodules can be found
on the sea bottom. A considerable application field involves rust and corrosion
prevention on steel [14,6]. The degradation could be reduced substantially by
collecting these manganese nodules from the sea bottom using specialized robots.

Doina Logof˘atu · Christina Andersson · Kristiyan Balabanov
Computer Science Department of Frankfurt University of Applied Sciences, 1 Nibelungenplatz
60318, Frankfurt am Main, Germany
E-mail: logofatu@fb2.fra-uas.de

Gil Sobol
Industrial Engineering, Technion - Israel Institute of Technology

Daniel Stamate
Department of Computing, Goldsmiths College, University of London, London SE146NW, UK

http://dx.doi.org/10.1007/s12530-018-9245-9

2 Logof˘atu et al.

Tymoteusz Cejrowski
Gdan´sk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdan´sk, Poland

Our focus in this work is to evaluate different ways in handling the movement of
these fictional robots as autonomous agents.

The experiments can be extended to cover other collecting tasks. The base for our
application is a framework for simulation and improvement of swarm behavior in

changing environments [15], which we redesign and extend. It simulates the swarm
behavior by using the principles of Craig W. Reynolds [12] pointed out here in
Section 2.2. The main purpose of the framework regarding the application is to
deploy agents with a specific strategy and then to gather them. While gathering, the
agents are collecting the manganese which is distributed on every position in the
coordinate system. Once gathered together, there is no more movement and the
simulation ends. Naturally manganese occurs in form of nodules, thus it is distributed
uniformly. For the different forms of the manganese distributions, we created several

benchmarks used in the results’ comparison. The next step of improvement would be
the collecting procedure. The greater distance the agents move, the higher is the
probability to find manganese. Consequently, we intend to reach a way for passing
through a larger area. The easiest solution would be to define for each agent its own
path. This would probably scatter the swarm because of the bad orientation, the
changing environment and the uneven surface. Most of the research works regarding
swarm behavior are inspired by nature like genetic algorithms or particle swarm
optimization. These outcomes focus on fish schools or bird flocks. An alternative
discussion could consider, for example, a pack of wolves. A pack of wolves means
actually autonomous individuals with a specific hierarchy. Not every wolf has the
same power regarding decisions for the pack. Normally there is one wolf who leads
the group and the others are followers [9]. This contribution aims to study this notion
more closely. We intend to set one or more leaders, who will move after a given
route, but still be part of the swarm, and the rest calculate their new position, that
means every iteration in consideration of all agents.

2 Previous Work

This section describes the previous work the application is based on. It includes three
main topics: Moving Algorithms, Particle Swarm Optimization, Hilbert and Peano
Curves.

2.1 Framework for Adaptive Swarms Simulation and Optimization

In its core the application is based on [15]. The framework is an application that runs
a simulation of agents, or robots in the context of aforementioned practical challenge
[11], using various moving algorithms: Random, Square, Circle, Gauss, and Bad
Centers [15]. It contains several fundamental deployment strategies used from where
the moving algorithms start. The front end uses the open source framework of
processing.org [3]. The whole visualization part is done in the Visualization class with
support of its derived class VisualRobot, which serves to represent the agents as
robots in the visualization. The whole simulation part is managed by a class with the
same name. It creates the chosen deployment strategies and calculates the
movement of the autonomous agents, as well as the collection of manganese nodules.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Particle Swarm Optimization Using Space Filling Movements 3

Fig. 1 Different deployment methods for the agents: Random (1), Square (2), Gaussian (3), Circular
(4) and double Gaussian (5)

Manganese is located on every position in the coordinate system. The distance in
walked meters of all agents together is also counted. Moreover, it is possible to set at
the initial number of agents, which must be between 2 and 100.

The starting positions of the agents determine the first decisions to take and may
influence the choice of the algorithms to follow. If they start very close to each other,
they need to spread in order to cover more area. On the other hand, if they are too
dispersed, many areas may remain uncovered or clearing them would be too

inefficient. In the contest, the initial methodology to distribute the agents was never
specified and each simulation uses a different starting set. Therefore, it is important
to have the chance to test the same moving paradigm with different deployments.
Therefore, five starting configurations were implemented, following different regular
patterns (square, circular) or mathematic distributions (random, Gaussian and
double Gaussian).

The Random deployment (Fig. 1, (5)) drops every agent in a completely random
position within the sea limits established in order to focus the simulation in a
constricted area. In further simulations much larger limits may be used, taking the
risk of dropping agents too far away from the rest, which would then become
isolated. An interesting line of research could study which algorithms lead to the
isolation of agents. However, a purely random starting set does not bring many
possibilities to study constricted behaviors, so more complex irregular deployments
are developed.

The Gaussian (Fig. 1, (1)) and Double Gaussian (Fig. 1, (3)) configurations are used
to guarantee a certain pattern within the randomness of a non-uniform distribution.
With them we can know a priori how are the agents going to be distributed, even
without their exact coordinates or the distance between them. Obviously, parameters
such as the deviation can be manipulated in every simulation scenario. In the case of
the Double Gaussian, this is the name that an evolved deployment received. It consists
of two Gaussian deployments, which are independent in number of items and

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

4 Logof˘atu et al.

deviation. Both means are calculated in a way that some agents from one kernel can
perceive some from the other one, but never all of them. With this, we try to see the

strength limits of the algorithms, as both Gaussians will tend to merge and join their
own nucleus but at the same time some agents may push towards the other group.

Finally, regular patterns are also implemented to test uniform movements or
simulate situations where the initial set can be regular. In this first version, uniformly

fulfilled Square (Fig. 1, (2)) and a Circular (Fig. 1, (4)) patterns are available. Due to
the variable amount of bots, the shape might slightly vary in order to try and keep the
regularity of the distribution. The square will become a rectangle to ensure equal
distance between all the boids, whereas the circle will deploy equally-distant agents
on the circumference until this is full and a new ring can be added.

2.2 Moving Algorithms

Artificial systems are, for example, needed to solve problems which are beyond the

capabilities of a single individual. In our case it is actually required to build a swarm
of agents, where each agent moves forward individually while considering the other
agents of the swarm. There are several efficient algorithms for swarm behavior and
movement of agents that could be implemented in the application [13]. The previous
work [15] uses a simplification of the bird flock movement described by Craig W.
Reynolds [12]. The idea was to develop algorithms that simulate swarm behavior
inspired by flocks of birds or schools of fish. Therefore, three criteria, that every
agent follows at each iteration, were set up. The contribution implemented three
different algorithms that run simultaneously: cohesion, separation, alignment.

The limited communication capacity between the agents makes it too complex to
determine the shape or the positions of all the other agents (a strong communicating
network should be established) and it would differ too much from real life scenarios.
Nature-inspired algorithms for ants [11] or bees [14] are not based on sharing such
big amount of data, but on generating a collective behavior out of the minor parts of
information shared by each individual [6].

The moving paradigm chosen always follows a same overall concept, but at the
same time we introduced some regulators which make the decisions experience
small variations in order to adapt to the specific situation of each individual within
the group. Every single agent analyzes the relative position pi of all its n surrounding
bots and calculates a variation of speed and direction after a weighted average of the
values obtained from the following rules:

 (1)

Equation 1 calculates the average position of nearby agents and tends to follow
the principle of cohesion and avoid the group spreading around or a agent to travel
too far away, which may result in losing contact due to its limited view. After testing,
this basic concept was not resembling a real-like flow good enough, so a small
correction was made to empower the weight of this algorithm when the boid is very

far away from the others, and to decrease it when it is too close. To avoid direct
contact between the elements, a separation algorithm (see Eq. 2) is also used in the
final calculation of the new movement.

 (2)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Particle Swarm Optimization Using Space Filling Movements 5

In this case, the algorithm finds the opposite value of the cohesion formula.
However, the influence of the algorithm increases only when the object is very close

to the others. For this reason, the average point is calculated among the agents
positioned in a smaller range than the viewing area used normally. In a similar way
as in the first algorithm, this final value is not proportional with distance and is
significantly increased when the agent is too close to others, so it would avoid an

actual crashing between boids.
Finally, Eq. 3 computes the average direction in which the neighboring agents are

moving. This alignment offers a smoother and more realistic movement and provides
a non-static understanding of the environment, as it uses the actual velocity instead
of the positions.

 (3)

The modularity of these implementations allows a full addition or modification of
the algorithms to follow. During each iteration of the simulation, which could be
understood as a second or as any other unit of time, all the agents obtain the list of
neighboring boids as well as the algorithms to utilize. With this, they decide which
algorithms and with which weights to use, independently from the simulator class.
Only when they all have finished the calculation of their decision, the actual
movement will take place. This prevents that the last agents in the list take decisions

with outdated information about already updated positions, which would not be
realistic and may cause synchronization problems as well as the possibility of loops.

2.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was first proposed in 1995 by J. Kennedy and R.
Eberhart [5]. The idea was to build swarm behavioral algorithms for solving
problems by iteratively improving a candidate’s solution until termination criteria is

satisfied [1]. It is similar to a genetic algorithm in terms that both algorithms are
initialized with a random population, in PSO called particles. The difference is that in
PSO algorithms, each particle is assigned a randomized velocity and the particles
move through hyperspace. Each particle consists of its position, its velocity, its
current objective value and its personal best value of all time. PSO also keeps track of
the global best value that is the best objective value of all particles and also the
corresponding position.

 x(i)(n + 1) = x(i)(n) + v(i)(n + 1), n = 0,1,2,...,N − 1 (4)

Equation 4 describes a classical iteration for particle movement. The next
position x(i)(n+1) is made from the current position x(i)(n) and the velocity vector
v(i)(n + 1) of a specific particle i. The velocity vector is constructed with the following
iteration:

 () ()⏟

()()[

()() ()()]⏟

()()[

()() ()()]⏟ ()

n=0,1,2,…N-1

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

6 Logof˘atu et al.

where xp represents the individual and xg the global best position. [x(i)(n)]

calculates a vector towards the personal best which is influenced by the random

vector), that contains values uniformly distributed between 0 and 1.

[)] calculates a vector towards the global best which is also

influenced by some randomness). PSO focuses on two goals in every iteration.
The first one is diversity, which means particles are scattered, traversing a large area
but imprecisely. The second goal is convergence, i. e. the particles are close together,
examining a small area very precisely. The best result can be achieved through a
combination of both.

2.4 Space Filling Curves

A Space Filling Curve is a special function of calculus that fully covers a two or three

dimensional space. Giuseppe Peano (1858-1932) discovered them first in 1890. He
wanted to create a continuous mapping construction from the unit interval onto the
unit square [1].

2.4.1 Peano Curve

Until 1890 one assumed that a constant curve with parametric function of only one
variable x = φ(t) and y = ψ(t), cannot reflect surjectively the unit interval onto the
unit square. The reason for this was the theorem of Eugen Natto, who showed that a
bijection must be unsteady to satisfy this. However, Peano found a steady function fp,
such that fp(I) = 2.

Definition 1 (Peano Curve [6]) The projection fp : I → 2 with

and the operator ktj = 2 − tj(tj = 0,1,2), where I is the unit interval [0,1], 03.t1t2t3t4 is a
ternary number with tj ∈ {0,1,2} and kv is the v-th iteration of k, we call Peano Curve.

So according to this definition we have:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Particle Swarm Optimization Using Space Filling Movements 7

 (a) (b)

Fig. 2 Construction order and orientation for the Peano Curve (a) and for the Hilbert Curve levels 1-4
(b).

To create the Peano’s curve we start at point (0,0) and finish in the diagonal
corner at point (1,1). The starting point of a sub square must be the endpoint of the
previous sub square. Figure 2 (b) illustrates where the start- and endpoints are
marked as arrows.

2.4.2 Hilbert Curve

Although it was Peano (1890) who produced the first space-filling curves, it was
Hilbert (1891) who first popularized their existence and gave an insight into their
generation. His approach was, if the unit interval can be mapped steadily onto the
unit square, then also sub intervals can be mapped steadily onto sub squares. In the
first step, Hilbert divided the unit interval into four sub intervals of the same size as
well as the unit square into four equally sized sub squares, where each sub interval is
mapped onto one sub square. If we repeat this arbitrary frequently, I gets divided

into 22n for n = 1,2,3,... congruent subs.

Definition 2 (Hilbert Curve [6]) The same as the Peano Curve: we divide the unit
square into congruent sub squares Qn(K) with side length 2n . The only condition is,
that neighboring sub intervals are mapped onto neighboring sub squares, whereby
the square that is next to the zero position is always the first and the one that is next
to the point (1,0) is always the last. If we now connect the center of these squares in
the right order, we would get unequivocal curves Cn (see Fig. 2 (a)).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

<< Java Class >> << Java Class >> << Java Class >>

DeployRing DeploySquare DeployCircle

Fig. 3 Conceptual class diagram of the developed application.

3 Implementation Details

For our tests we researched for already existing libraries, frameworks and any
adequate implementations that offer exactly the functionality we needed regarding

space filling curves. Proprietary products were discarded as the scope of our project
was too small for such an investment. We evaluated the existing open-source
implementations according to three criteria [10]: 1) maturity – is the product still in
the development stage, i. e. prone to bugs, or has a stable release already been
deployed; 2) longevity – would the developers of the product continue to improve it
and provide support for it; 3) flexibility – how hard it would be to modify the product
or to integrate new functionality into it; Unfortunately, we had to resort to creating
our own software, specially designed for the intended tests. The application in
question was developed using Java due to the rich variety of existing libraries. This
section gives a short overview of the more interesting implementation details such as
the concept class diagram (see Fig. 3), the Peano and Hilbert algorithms, as well as
the type of benchmarks used for the tests.

3.1 Key Classes

The classes Visualisation and Simulator together build the core of the environment, in
which the tests are run. Simulator is the backbone class “glueing” everything else
together, while Visualisation together with a set of smaller classes, such as
VisualRobot, VisualManganNodule and Coordinates, act as the interface between the
observing user and the conducted experimental procedures. Robot is the class
representing the fictional robots gathering manganese, i. e. the autonomous

Visualisation Visualisation

DeploymentStrategy DeploymentStrategy

VisualRobot VisualRobot

Simulator Simulator

Result Result

Robot Robot

ManganeseNodule ManganeseNodule

Coordinates Coordinates
VisualManganNodule VisualManganNodule << << Java Class Java Class >> >>

<< << Java Interface Java Interface >> >>

<< << Java Class Java Class >> >>

 Java Class Java Class >> >> << <<

<< << Java Class Java Class >> >>

<< << Java Class Java Class >> >>

<< << Java Class Java Class >> >>

<< << Java Class Java Class >> >>

<< << Java Class Java Class >> >>

0..* 0..*

0..* 0..*

0..1 0..1

0..1 0..1

0..* 0..*

0..* 0..*

0..* 0..* 0..* 0..*
0..* 0..*

0..1 0..1

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Particle Swarm Optimization Using Space Filling Movements 9

Fig. 4 Different deployment approaches encapsulated using the Strategy design pattern.

agents, and ManganeseNodule represents the manganese deposits in the backend
simulation with their respective attributes and applicable actions. For instance an
object of type ManganeseNodule has two attributes: the size of the nodule as an
integer that ranges from 1 to 7; the state of the nodule, i. e. whether it is still available
or it has already been collected. Each such object also contains a Coordinates object,
which specifies the exact position of the nodule in the coordinate system.

As we experimented with a wide variety of deployment strategies an elegant
approach was needed to encapsulate such functionality in a way allowing for easy
modification and interchanging. Therefore, the Strategy design pattern described by
[4] was used: a Java interface was created describing the basic functionality a
deployment strategy should offer (see Fig. 4); The class DeployRing is an example for
a deployment strategy. It deploys the agents in a ring shaped way and it is similar to
DeployCircle for instance, but has a specific radius right from the beginning. A ring
can cover a wide area and by shrinking towards its center, while following the rules
described in Section 2.2, it is assured that no two agents would cross routes. As a
result a agent would not traverse a position where another agent has already
collected all the manganese. Considering the principles of MapReduce this strategy
has excellent results regarding the amount of collected manganese. Finally the Result
class is used to log the progress during the execution of an experimental procedure
and the final statistics.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

10 Logof˘atu et al.

 (a) Initial (b) Intermediate (c) Final

3.2 General Evolution

The getMangan() method was devised due to the new structuring of the benchmarks.
As there is not manganese on every position anymore, this function needs to check if
there is a manganese nodule at the given position at all. If so, its respective size is
returned. The step() method helps to create the route according to a specific space
filling algorithm as described later. The method receives the step length (double len)
and direction (int dir). With this information it calculates the next position and places
it in the route list.

3.3 Benchmarking

To achieve a better comparison between the different algorithms and their efficiency,
benchmarks were introduced. The benchmarks are provided as independent files. It
was necessary to create the classes ManganeseNodule and VisualManganNodule.
These two classes help us to simulate the collection of manganese by our
autonomous agents. The class ManganesNodule is thereby necessary for all backend
happenings and the class VisualManganNodule is necessary for visualization
purposes in the graphical user interface. Every ManganeseNodule has the following
attributes: 1) coordinates(x/y); 2) size; 3) activate. The coordinates help to exactly
define the nodule’s position on the map and can be compared to the agents’ positions
so that they can collect it later in the simulation. A boolean variable shows if the
nodule is still activate or already depleted. Each active nodule has a specific size
given as an integer. It ranges from 1 to 7 where seven is the biggest and one the

smallest possible value. This is also shown in the graphical user interface with
different gray tones (refer to Fig. 6).

Fig.5 Fig.5 DeployRingstages. DeployRingstages.

Fig.6 Fig.6 Nodulesizescale Nodulesizescale

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Particle Swarm Optimization Using Space Filling Movements 11

 (a) Benchmark “Field” (b) Benchmark “Line”

(c) aBenchmark “Diamond”

Fig. 7 Benchmarks in Order: Fields, Lines, Diamond. All three graphics represent benchmark maps.
The benchmarks include manganese nodules from size 1-7. The benchmark “Fields” (a) consists of
two big fields. The left hand field does have a center with manganese nodules of size 7. All manganese
nodules around it do not have a specific pattern. The right hand field increases its nodule size from
the outside to the inside. The benchmark “Lines” (b) consists of six bars that go through the full map
width. All bars are filled with manganese nodules of different sizes, where each line is always filled
with same size nodules. The benchmark “Diamond” (c) consists of 56 diamonds that are distributed
uniformly over the map. Each diamond consists only of nodules of one size

The visualization part is done by the VisualManganNodule class. Each of its
instances represents one nodule on the map. Objects of this class are created and
deleted after every iteration. This class has only one function to be called: display().
This function creates a rectangle at the right position with the right gray tone. The
maps are based on three ASCII files and can be chosen in the graphical user interface.
The files reside within the project archive and are filled with ASCII characters
representing the numbers between 0 and 7 inclusive (refer to Fig. 8 for an example).
The row in which a character is placed represents its y-value and the column its x-

value in the coordinate system of the graphical user interface. Each number
corresponds to the size of the nodule at the respective position, where zero means
that no nodule can be found at that position. The user can choose between three
options: MAP 1, MAP 2 or MAP 3 and load them. Then the associated file is scanned
and the nodules created.

3.4 Peano Algorithm

The Peano algorithm is implemented with a recursive function that follows the
description in Section 2.4.1. The function is called every time the agent moves

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

12 Logof˘atu et al.

Fig. 8 An extract from the deposit map file for the benchmark Fields. A rich manganese deposit is
indicated by the group of ’7’s to the right. The concentration of manganese (size of the nodules)
gradually decreases when moving away from the enriched center.

into the next unit square. The function can be called in either clockwise or

counterclockwise (negative) rotation rotation. The basic strategy of going through
the 9 subsquares is fixed. The pseudo code is shown Alg. 1. The Algorithm function
receives four parameters:
– double len: initial step length
– int direction: specifies the starting direction on the coordinate system in degree

– int rot: indicates whether the curve should run clockwise or counterclockwise; a
specific rotation degree has to be inserted

– int deep: determines how many levels deep the algorithm should go

3.5 Hilbert Curve

The implementation of the Hilbert algorithm (see Alg. 2) is analogous to that of the
Peano algorithm. It is a recursive function that calls itself once in each sub square.
Again, the basic approach for going through the sub squares is fixed.

4 Experimental Results

This section presents experimental results we achieved with the extended
implementation of the application. The measured variables are the distance and the

collected amount of manganese of all agents in one pass. The difference of agents Rob
Total and the sum of Rob Hilbert and Rob Peano are agents behaving according to the
principles of the moving algorithms described in Section 2.2.

4.1 Diamond, Square, Peano 0-50

In this experiment we increased the number of Peano Agents and ran 1000 iterations
with every increase. This experiment runs with the benchmark Diamonds

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

peanoAlgorithm(length, direction, rotation, deep){
if under lowest level then return;
end

peanoAlgorithm(length, direction, clockwise rotation, deep-1); step
forward with given length and direction;

peanoAlgorithm(length, direction, counterclockwise rotation, deep-1); step

forward with given length and direction; peanoAlgorithm(length, direction,

rotation, deep-1); direction turn clockwise with given rotation degree; step

forward with given length and direction; direction turn clockwise with

given rotation degree; peanoAlgorithm(length, direction, counterclockwise

rotation, deep-1); step forward with given length and direction;

peanoAlgorithm(length, direction, rotation, deep-1); step forward with

given length and direction;

peanoAlgorithm(length, direction, counterclockwise rotation, deep-1);

direction turn counterclockwise with given rotation degree; step forward

with given length and direction; direction turn counterclockwise with given

rotation degree; peanoAlgorithm(length, direction, rotation, deep-1); step

forward with given length and direction;

peanoAlgorithm(length, direction, counterclockwise rotation, deep-1); step

forward with given length and direction; peanoAlgorithm(length, direction,

rotation, deep-1);
}

Algorithm 1: Pseudo Code Peano Algorithm

hilbertAlgorithm(length, direction, rotation, deep){
if under lowest level then return;
end

hilbertAlgorithm(length, direction, clockwise rotation, deep-1); step

forward with given length and direction; direction turn clockwise with

given rotation degree; hilbertAlgorithm(length, direction, counterclockwise

rotation, deep-1); step forward with given length and direction; direction

turn clockwise with given rotation degree; hilbertAlgorithm(length,

direction, clockwise rotation, deep-1); step forward with given length and

direction;

hilbertAlgorithm(length, direction, counterclockwise rotation, deep-1);
}

Algorithm 2: Pseudo Code Hilbert Algorithm

and the deployment strategy Square. The results are listed in Table 1. With every
increase in the number of Peano Agents, the covered distance of all agents increases
by 30,000-50,000 m with an average increase of 46,081.46 m. The collected
manganese does not increase constantly. The global maximum of 5308 kg is reached
with a constellation of 44 Peano Agents (see Fig. 9, left). The biggest 15 jump is
between the first and the second measurement, with an increase of 589%.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

14 Logof˘atu et al.

 (a) (b)

Fig. 9 Analysis of the experimental procedure Diamond, Square, Peano 0-50 increase: (a) collected
amount of manganese; (b) relation between the total amount of collected manganese and the
distance all agents (robots in the given context) have covered.

The fewer meters a agent has to travel for the same amount of manganese, the more
efficient it is. The right diagram in Fig. 9 shows this relation of average distance per
kg manganese for each amount of Peano Agents. The best efficiency occurs, without
any Peano agent, in the simulation with an average distance of

3 m per kg manganese. But as we can see from the other diagram (Fig. 9, left) the
total amount of manganese is very little. So we want to focus on analyzing all cases
where Peano agents are involved. There are a few amounts of Peano agents with a

very close distance per kg manganese. This is the case with the amount of 2, 3, 4, 5
and 6 Peano agents (average absolute deviation 3.9 m), with the amount of 16 to 21
Peano agents (average absolute deviation 3 m) or with the amount of 36 to 42 Peano
agents (average absolute deviation 2.1 m). Another interesting point is at the amount
of 44 Peano Agents, where the total manganese maximum is. The distance per kg
manganese diagram shows here a local minimum of 383 m per kg manganese. This
leads to the conclusion that we have a reasonably efficient constellation.

4.2 Diamond, Square, Hilbert 0-50

This experiment is similar to the one described in Section 4.1. However, we increased
the number of agents and ran 1000 iterations with every increase. This experiment
runs with the benchmark Diamonds and the deployment strategy Square.

 (a) (b)

Fig. 10 Visualization of the experimental procedure Diamond, Square, Peano 0-50: (a) state after 500
iterations; (b) state after 1000 iterations

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

15 Logof˘atu et al.

Table 1 Overview of the results from the experimental procedure Diamond, Square, Peano 0-50. In
every subsequent test the number of agents with movement behavior based on the Peano curve was
increased.

Exp. Benchmark Deploy. St. Agents Peano Hilbert Mangan Distance

0 Diamond Square 50 0 0 237 kg 677.03 m

1 Diamond Square 50 1 0 1398 kg 51,462.41 m

2 Diamond Square 50 2 0 1549 kg 104,572.08 m

3 Diamond Square 50 3 0 1962 kg 153,735.6 m

4 Diamond Square 50 4 0 2811 kg 199,127.07 m

5 Diamond Square 50 5 0 3169 kg 240,628.72 m

6 Diamond Square 50 6 0 3530 kg 279,077.49 m

7 Diamond Square 50 7 0 3605 kg 321,266.84 m

8 Diamond Square 50 8 0 3657 kg 367,202.48 m

9 Diamond Square 50 9 0 3496 kg 417,403.93 m

10 Diamond Square 50 10 0 3364 kg 470,277.73 m

11 Diamond Square 50 11 0 3220 kg 525,898.89 m

12 Diamond Square 50 12 0 3138 kg 584,986.30 m

13 Diamond Square 50 13 0 3100 kg 640,421.38 m

14 Diamond Square 50 14 0 3191 kg 692,726.52 m

15 Diamond Square 50 15 0 3315 kg 741,953.53 m

16 Diamond Square 50 16 0 3593 kg 788,247.15 m

17 Diamond Square 50 17 0 3996 kg 830,324.91 m

18 Diamond Square 50 18 0 4074 kg 868,293.25 m

19 Diamond Square 50 19 0 4190 kg 902,547.03 m

20 Diamond Square 50 20 0 4340 kg 933,433.68 m

21 Diamond Square 50 21 0 4407 kg 968,292.57 m

22 Diamond Square 50 22 0 4474 kg 1,007,276.48 m

23 Diamond Square 50 23 0 4456 kg 1,050,369.68 m

24 Diamond Square 50 24 0 4386 kg 1,097,769.49 m

25 Diamond Square 50 25 0 4528 kg 1,149,616.11 m

26 Diamond Square 50 26 0 4418 kg 1,203,643.76 m

27 Diamond Square 50 27 0 4267 kg 1,260,017.35 m

28 Diamond Square 50 28 0 4170 kg 1,319,224.76 m

29 Diamond Square 50 29 0 4110 kg 1,381,581.11 m

30 Diamond Square 50 30 0 4097 kg 1,447,080.65 m

31 Diamond Square 50 31 0 4021 kg 1,509,116.10 m

32 Diamond Square 50 32 0 3998 kg 1,567,840.06 m

33 Diamond Square 50 33 0 4034 kg 1,623,434.98 m

34 Diamond Square 50 34 0 4071 kg 1,676,280.30 m

35 Diamond Square 50 35 0 4108 kg 1,726,845.74 m

36 Diamond Square 50 36 0 4409 kg 1,775,114.97 m

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

16 Logof˘atu et al.

37 Diamond Square 50 37 0 4539 kg 1,819,105.33 m

38 Diamond Square 50 38 0 4642 kg 1,858,490.51 m

39 Diamond Square 50 39 0 4686 kg 1,893,356.90 m

40 Diamond Square 50 40 0 4735 kg 1,924,538.22 m

41 Diamond Square 50 41 0 4864 kg 1,951,656.99 m

42 Diamond Square 50 42 0 4849 kg 1,975,349.62 m

43 Diamond Square 50 43 0 5024 kg 2,002,892.39 m

44 Diamond Square 50 44 0 5308 kg 2,034,784.58 m

45 Diamond Square 50 45 0 5227 kg 2,070,537.02 m

46 Diamond Square 50 46 0 5033 kg 2,110,861.60 m

47 Diamond Square 50 47 0 5006 kg 2,155,917.08 m

48 Diamond Square 50 48 0 4751 kg 2,205,642.77 m

49 Diamond Square 50 49 0 4526 kg 2,260,180.65 m

50 Diamond Square 50 50 0 3882 kg 2,304,072.83 m

 (a) (b)

Fig. 11 Analysis of the experimental procedure Diamond, Square, Hilbert 0-50 increase: (a) collected
amount of manganese; (b) relation between the total amount of collected manganese and the
distance all agents (robots in the given context) have covered.

The experiment provides similar results like in Table 1. With every increase of the
number of Hilbert Agents, the covered distance of all agents increases by
40,00060,000 m with an average increase of 56,569.85 m. The collected manganese
does not increase constantly as well. The global maximum of 5335 kg is reached with
a constellation of 46 Peano Agents (see Fig. 11, left). The biggest jump is between the
first and the second measurement, with an increase of 562%. If we have a look at the

efficiency illustrated in Fig. 11 (right) we can see a raising graph with some “flat”
parts, all amounts of one “flat” part have the same efficiency, which is the case for the
amount of 3-6 Hilbert Agents (average absolute deviation
3.2 m), for the amount of 15-21 Hilbert Agents (average absolute deviation 5.2 m) or
34-40 Hilbert Agents (average absolute deviation 2.9 m). This time we do not have a
local minimum at the same amount as the maximum in the 18 Total Manganese
diagram, like in Section 4.1. The correlating local minimum occurs with the amount
of 42 Hilbert Agents and 464 m per kg manganese. Running the simulation only with
Hilbert Agents brings very bad results. In this case, the total amount of manganese
decreases roughly by 21% compared to the simulation run with 49 Hilbert Agents.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Particle Swarm Optimization Using Space Filling Movements 17

 (a) (b)

Fig. 12 Visualization of the experimental procedure Diamond, Square, Hilbert 0-50: (a) state after
500 iterations; (b) state after 1000 iterations.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Particle Swarm Optimization Using Space Filling Movements 18

 (a) (b)

Fig. 13 Analysis of the experimental procedure Lines, Square, Peano 0-50 increase: (a) collected
amount of manganese; (b) relation between the total amount of collected manganese and the
distance all agents (robots in the given context) have covered.

4.3 Lines, Square, Peano 0-50

In this experiment we switched our benchmark to the benchmark Lines. The
deployment strategy is Square and we increase the number of Peano Agents from 0-
50. This is the same like in the experiment of Section 4.1. With every increase of the
number of Peano Agents, the covered distance of all agents increases by 30,000-
50,000 m with an average increase of 46,081.46 m. Logically this is exactly the same

as in Table 1. The collected manganese increases constantly until an amount of 38
Peano Agents. The global maximum of 18090 kg is reached with a constellation of 44
Peano Agents (see Fig. 13, left). With an amount of 6 Peano Agents we achieve a
result of 10,341 kg total manganese. This is more than 50% from what we achieve
with our global maximum with 44 Peano Agents. That means, we achieve half of the
global maximum with an efficiency of 26.99 m per kg manganese in contrast two
112.48 meter per kg manganese. In conclusion we get 100% more manganese for
416.75% less efficiency. That is in no reasonable relation to the benefits. Overall the

distance per kg manganese increases almost linearly up to the global maximum of
total manganese with 44 Peano Agents and goes steeply up afterwards. It is striking
that this experiment has its maximum with the same amount of Peano Agents, like
the experiment of Section 4.1. The only thing that distinguishes these two
experiments is the benchmark maps.

 (a) (b)

Fig. 14 Visualization of the experimental procedure Lines, Square, Peano 0-50: (a) state after 500
iterations; (b) state after 1000 iterations.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Particle Swarm Optimization Using Space Filling Movements 19

 (a) (b)

Fig. 15 Analysis of the experimental procedure Lines, Circle, Peano 0-49 increase: (a) collected
amount of manganese; (b) relation between the total amount of collected manganese and the
distance all agents (robots in the given context) have covered.

4.4 Lines, Circle, Peano 0-49

In this experiment we use a different deployment strategy for the first time in our
series of experiments, namely Circle. The circle deploys on a random position in the
map in contrast to the deployment strategy Square, where the square is deployed
always at the top left corner of the map. The benchmark remains Lines and the
procedure remains increasing the Peano Agents.

The results from this specific experiment might look quite perplexing at first
glance as they do not follow any obvious pattern like in the previous test scenarios

(refer to Fig. 15). If we, however, ignore the outliers in the plotted data (see Fig. 15
(a)), i. e. test cases with very low quantity of gathered manganese, we would see a
slight improvement in the gathering efficiency proportional to the number of Peano
agents. This can be attributed to the fact that the circle deployment is placed
randomly on the benchmark map. As a result agents often disappear from the map
after reaching its boundaries and figuratively speaking “fall off the edge of the

simulation world”, hence no correct measuring can be done. This problem can be
easily dealt with by introducing boundary conditions for the simulation space similar
to those used in cellular automatons [2, chap. 2]. One possibility would be to set
periodic boundary conditions by connecting opposite ends of the map and essentially
eliminating the boundaries, i. e. transforming the 2-dimensional map into a 2-
dimensional toroid (torus). This insight suggests that combining Moving Algorithms
(Section 2.2) and space filling curves (Section 2.4) makes sense, if there is knowledge

of the direction in which the manganese nodules are located prior to starting the
tests or if the environment is bounded.

5 Conclusions and Future Work

As this work was focused only on the beginning in combining swarm behavior with
space filling curves, there are many more things to work on in order to get deeper
into this topic. It would be conceivable to think of different leaders with different
weightings. For example the leader who collected the most manganese in the last 10
iterations could get the highest weight when calculating the next position of each
agent of the swarm. In addition to that, a distributed system could be implemented
and thereby the communication between the agents would be extended. To really get
the maximum amount of manganese, the swarm could divide and follow different
leaders. The number of agents who join a leader could vary. This could be
determined by the strength of the leader which is defined by the total amount of

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

20 Logof˘atu et al.

collected manganese in the last few iterations. If the leader loses strength, more and
more agents join another swarm. The leader stays on his route; this keeps the chance
high to find new manganese nodule fields. If a leader does not collect any manganese
for a longer period, he may become a follower and joins a swarm. This could also be
possible the other way around. If there is a big swarm, new leaders could be chosen
to search in a specific direction. Another interesting thing would be to combine space
filling curves with genetic algorithms. One could easily imagine building populations
with different amounts of Hilbert, Peano and swarm agents, like this work already
did, but keep on developing the next generation after the principles of genetic
algorithms. All this would be interesting to analyze in an environment with hundreds
or thousands of agents.

References

1. Barnsley M. F., Fractals Everywhere, Dover Books on Mathematics, New Edition,
ISBN 978-0486488707 (2012)

2. Floreano, D., Mattiussi, C.: Bio-inspired artificial intelligence : theories, methods, and
technologies. MIT Press, Cambridge (2008)

3. Fry B., Reas C., Processing, https://processing.org/ [Accessed 8-May-2018]
4. Vlissides J., Johnson R., Helm R., Gamma E.: Design Patterns: Elements of Reusable Object-

Oriented. Springer, Addison-Wesley Professional, Berlin (1994)
5. Kennedy J., Eberhart R., Particle swarm optimization, IEEE Conference on Neural Networks,

4, 1942–1948
6. Kim Min Jun , Kim Jung Gu, Effect of Manganese on the Corrosion Behavior of Low Carbon Steel

in 10 wt.% Sulfuric Acid, Int. J. Electrochem. Sci., 6872–6885, 10 (2015)
7. Logof˘atu D., Sobol G., Stamate D., Particle Swarm Optimization Algorithms for Autonomous

Robots with Leaders Using Hilbert Curves, 18th International Conference on Engineering
Applications of Neural Networks (EANN 2017), pp. 535-543. Springer, Athen (2017)

8. Logof˘atu D., Sobol G., Stamate D., Balabanov K., A Novel Space Filling Curves Based Approach to
PSO Algorithms for Autonomous Agents, 9th International Conference on Computational
Collective Intelligence (ICCCI 2017), pp. 361-370, Springer, Nicosia (2017)

9. Muro C., Escobedo L., Spector L., Coppinger R. P., Wolf-pack (Canis lupus) hunting strategies
emerge from simple rules in computational simulations, Behavioral Processes, Vol. 88, Issue 3,
192–197 (2011)

10. Norris, J. S.: Mission-critical development with open source software: lessons learned. In: IEEE
Software, pp. 42–49, 21 (January), (2004)

11. Detailed requirements for the first prototype,
http://docplayer.org/22922344-Informaticup-informaticup-2014-aufgabe-manganernte-einfuehrung-
1-aufgabe.html [Accessed 8-May-2018]

12. Reynolds W., Boids (simulated flocking), http://www.red3d.com/cwr/boids [Accessed 8May-

2018]
13. Rodriguez F., Garcia-Martinez C., An Artificial Bee Colony Algorithm for the Unrelated

Parallel Machines Scheduling Problem, PPSN XII (II), 143–152, Springer, Taormina (2012)
14. Rossum J. R., Fundamentals of Metallic Corrosion in Fresh Water,

http://www.roscoemoss.com/wp-content/uploads/publications/fmcf.pdf [Accessed 8-May-2018]
15. Canyameres S., Logof˘atu D., Platform for Simulation and Improvement of Swarm Behavior in

Changing Environments, 10th International Conference Artificial Intelligence Applications and
Innovations (AIAI 14), Springer LNCS, Island of Rhodes, Greece (2014)

16. Shyr W.-J., Parameters Determination for Optimum Design by Evolutionary Algorithm,
Convergence and Hybrid Information Technologies,, DOI: 10.5772/9638, (2010)
https://www.intechopen.com/books/convergence-and-hybrid-informationtechnologies/parameters-
determination-for-optimum-design-by-evolutionaryalgorithm [Accessed 8-May-2018]

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://processing.org/
http://docplayer.org/22922344-Informaticup-informaticup-2014-aufgabe-manganernte-einfuehrung-1-aufgabe.html
http://docplayer.org/22922344-Informaticup-informaticup-2014-aufgabe-manganernte-einfuehrung-1-aufgabe.html
http://docplayer.org/22922344-Informaticup-informaticup-2014-aufgabe-manganernte-einfuehrung-1-aufgabe.html
http://www.red3d.com/cwr/boids
http://www.roscoemoss.com/wp-content/uploads/publications/fmcf.pdf
http://www.roscoemoss.com/wp-content/uploads/publications/fmcf.pdf
https://www.intechopen.com/books/convergence-and-hybrid-information-technologies/parameters-determination-for-optimum-design-by-evolutionary-algorithm
https://www.intechopen.com/books/convergence-and-hybrid-information-technologies/parameters-determination-for-optimum-design-by-evolutionary-algorithm
https://www.intechopen.com/books/convergence-and-hybrid-information-technologies/parameters-determination-for-optimum-design-by-evolutionary-algorithm
https://www.intechopen.com/books/convergence-and-hybrid-information-technologies/parameters-determination-for-optimum-design-by-evolutionary-algorithm
http://mostwiedzy.pl

