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Non-Newtonian calculus that starts with elementary non-Diophantine arithmetic
operations of a Burgin type is applicable to all fractals whose cardinality is contin-
uum. The resulting definitions of derivatives and integrals are simpler from what
one finds in the more traditional literature of the subject, and they often work in
the cases where the standard methods fail. As an illustration, we perform a Fourier
transform of a real-valued function with Sierpiński-set domain. The resulting for-
malism is as simple as the usual undergraduate calculus.
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1. Introduction

Apparently, the first attempt of a Fourier-type analysis on fractals can be found in
studies of diffusion on Sierpiński gaskets [1, 2]. A generator of the diffusion process
plays there the same role as a Laplacian on a manifold, so the corresponding eigen-
function expansion may be regarded as a form of harmonic analysis. An alternative
route to eigenfunction expansions on fractals is to define Laplacians or gradients more
directly. Here certain approaches begin with Dirichlet forms on self-similar fractals, or
one takes as a departure point discrete Laplacians and performes an appropriate limit
[3, 4, 5, 6]. Four alternative definitions of a gradient (due to Kusuoka, Kigami, Strichartz
and Teplyaev) are discussed in this context in [7]. Self-similarity is typically an impor-
tant technical assumption. Although Laplacians defined in the above ways cannot be
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regarded as second-order operators, an approach where Laplacians are indeed second-
order is nevertheless possible and was introduced by Fujita [8, 9] and further developed
by a number of authors [10, 11, 12, 13, 14].

A second traditional approach to harmonic analysis on fractals comes from the notion
of self-similar fractal measures. The classic result of Jorgensen and Pedersen [15] states
that the method works for certain fractals, such as the quaternary Cantor set, but fails
in the important case of the ternary middle-third Cantor set. Moreover, the method is
inapplicable in realistic cases of non-self-similar fractals.

Quite recently we have shown [16] that a ‘non-Newtonian’ calculus, based on Burgin’s
non-Diophantine arithmetic, [17, 18, 19, 20, 21] leads to a simple and very efficient con-
struction of a Fourier transform on fractals of a Cantor type. Gradients and Laplacians
are here, respectively, first- and second-order differential operators, and self-similarity
plays no role whatsoever. There is completely no difficulty with Fourier analysis of func-
tions mapping arbitrary Cantor sets into themselves, so Jorgensen-Pedersen-type restric-
tions are no longer valid. The question of Fourier analysis on fractals is important for the
problem of momentum representation in quantum mechanics on fractal space-times. An-
other recent application of the calculus is deformation quantization with minimal length
[22], and the problem of wave equations on space-times modeled by Cartesian products
of different fractals [23].

The goal of the present paper is to show explicitly how to apply the non-Diophantine
framework to fractals more general than the Cantor set. We explicitly perform the
construction for a double cover of a Sierpiński set. Similarly to the Cantor case, self-
similarity is inessential. What is important, however, is the existence of a bijection f
between the fractal in question and R.

In the Sierpiński case the bijection has a space-filling property reminiscent of Peano
curves [24]. The very idea that there are links between Sierpiński-type fractals and space-
filling curves is not new, and was used by Molitor et al. in [25] in their construction of
Laplacians on fractals. However, in all other respects the approach from [25] is different
from what we discuss below. The idea of employing a one-dimensional integration for
finding higher dimensional integrals is known [26], but apparently has not been used in
fractal contexts so far.

Since any fractal whose cardinality is continuum can be equipped with a bijection
mapping it into R, the construction is quite universal. From a practical perspective, the
only difficulty is to find the bijection explicitly, but once we have found it the remaining
procedure is systematic and easy to work with.

Here, out of a multitude of possible illustrations of the formalism we have decided to
discuss the case of a sine Fourier transform of a real-valued function with Sierpiński-set
domain. One can directly judge applicability of the method by visually inspecting the
quality of the resulting finite-term reconstruction of the signal.

2. Sierpiński set

Consider x ∈ R+ and its ternary representation x = (tn . . . t0.t−1t−2 . . .)3. If x has
two different ternary representations, we choose the one that ends with infinitely many
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2s. All finite-digit numbers are thus represented by infinite sequences, which is perhaps
unusual but reduces ambiguity of the inverse algorithm, as we shall see shortly. Keeping
the digits unchanged let us change the base from 3 to 4, i.e.

x = (tn . . . t0.t−1t−2 . . .)3 7→ (tn . . . t0.t−1t−2 . . .)4 = y. (1)

The quaternary representation of y is unique, and it does not involve the digit 3. Next,
let us parametrize the quaternary digits in a binary way, but written in a column form:

0 =
0
0

, 1 =
0
1

, 2 =
1
0

, 3 =
1
1

. So, y has been converted into a pair of binary

sequences,

(tn . . . t0.t−1t−2 . . .)4 7→
(
an . . . a0.a−1a−2 . . .
bn . . . b0.b−1b−2 . . .

)
2

(2)

where (aj , bj) 6= (1, 1) for any j. The resulting sequences are in a one-one relation with
the x we have started with. Each of the two sequences defines a number in binary
notation: we have mapped x into a point of the plane R+×R+. The image of R+ under
our algorithm defines a Sierpiński-type set. The algorithm is not invertible. Indeed, take
the point (1, 1). Depending on the way we represent it binarily we find(

1.(0)
0.(1)

)
2

7→
(
2.(1)

)
4
7→
(
2.(1)

)
3

= 2.5,

and (
0.(1)
1.(0)

)
2

7→
(
1.(2)

)
4
7→
(
1.(2)

)
3

= 2.

The ambiguity comes from the two identifications

(1, 1) =

(
1.(0)
0.(1)

)
2

, (1, 1) =

(
0.(1)
1.(0)

)
2

. (3)

However, if we write the above two relations as

(1, 1)− =

(
1.(0)
0.(1)

)
2

, (4)

(1, 1)+ =

(
0.(1)
1.(0)

)
2

, (5)

and treat the two points (1, 1)± as belonging to two different sides of an oriented plane,
the ambiguity of the inverse alorithm disappears. The relation

(1, 1)− ↔ 2.5, (1, 1)+ ↔ 2 (6)

is one-one.
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Let us therefore index with ‘+’ (resp. ‘−’) those pairs (a, b) where a is a rational
number represented by a binary sequence involving (1)2 (resp. (0)2), and b is a rational
number whose binary representation contains (0)2 (resp. (1)2). In both cases (aj , bj) 6=
(1, 1) by construction. The corresponding rational numbers involve, respectively, (2)3
and (1)3.

But what about the other cases, such as a, b irrational, or a irrational but b rational?
It turns out that the ambiguity is absent. In order to prove it, first of all note that we
did not have to consider the cases

(1, 1) =

(
0.(1)
0.(1)

)
2

, (1, 1) =

(
1.(0)
1.(0)

)
2

, (7)

since the pairs (aj , bj) = (1, 1) cannot appear as a result of the algorithm, and two infinite
sequences of 0s would imply that (tn . . . t0.t−1t−2 . . .)4 ends with an infinite sequence of
0s, a form excluded by the algorithm.

The same mechanism eliminates all the remaining ambiguities:
(A) If a, b are both irrational, or a is irrational and b rational-periodic, their binary

forms are unique.
(B) If a is irrational (or rational-periodic), but b rational non-periodic, then b cannot

end with infinitely many 1s, as it would mean that a ends with infinitely many 0s. So these
cases are again unique. Conclusions of (A) and (B) are unchanged if one interchanges
the roles of a and b.

(C) The only ambiguity appears if a ends with infinitely many 0s, but b with infinitely
many 1s (or the other way around). But this is the case we have started with.

In cases (A) and (B), we identify (a, b)+ = (a, b)− = (a, b). Only the (countable) case
(C) requires a two-sided plane (a, b)+ 6= (a, b)−. The case (C) occurs for those x ∈ R
whose ternary representation ends with (2)3 or (1)3. Only the latter numbers are mapped
into (a, b)−.

As we can see, what we have constructed is a version of a double cover of the Sierpiński
set.

Our algorithm defines an injective map g+ of R+ into a two-sided plane, with the
above-mentioned identifications. Let us extend g+ to g by g(|x|) = g+(|x|), g(−|x|) =
−g+(|x|). The image S = g(R) is our definition of the Sierpiński set. Denoting f = g−1,
f : S → R we obtain Burgin’s arithmetic intrinsic to S,

x⊕ y = f−1
(
f(x) + f(y)

)
, (8)

x	 y = f−1
(
f(x)− f(y)

)
, (9)

x� y = f−1
(
f(x)f(y)

)
, (10)

x� y = f−1
(
f(x)/f(y)

)
. (11)

Fig. 1 shows the set f−1
(
[0, 1)

)
. The set is self-similar and its Hausdorff dimension is

log2 3.
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Fig. 1: The inverse image f−1([0, 1)), view from the positive side of the oriented plane.

3. Arithmetic on the Sierpiński set

Let us begin with neutral elements of addition and multiplication in S. By definition,
0′ ⊕ x = x, 1′ � x = x, where

0′ = f−1(0) = (0, 0) ∈ S, (12)

1′ = f−1(1) = (1, 0)+ ∈ S. (13)

In a non-Diophantine arithmetic, multiplication is a repeated addition in the following
sense [16]. Let n ∈ N and n′ = f−1(n) ∈ S. Then

n′ ⊕m′ = (n+m)′, (14)

n′ �m′ = (nm)′ (15)

= m′ ⊕ . . .⊕m′︸ ︷︷ ︸
ntimes

. (16)

A power function A(x) = x� . . .� x (n times) is denoted by xn
′
, which is consistent

with

xn
′
� xm

′
= x(n+m)′ = xn

′⊕m′ . (17)

All integers are here represented by pairs of integers, a representation somewhat
similar to complex numbers, but with different rules of addition and multiplication, as
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Fig. 2: The image of the first 200 natural numbers, f−1({1, . . . , 200}). All natural
numbers are mapped into the positive side of the oriented plane.

illustrated by

3′ ⊕ 4′ = (2, 0)+ ⊕ (1, 2)+ = 7′ = (3, 0)+ (18)

(numbers represented in decimal form).

4. Calculus

The map g is not continuous (in Euclidean metric topology of R2), as illustrated by
the following generic example. Consider

g(1 + 1/3n) = g
(
1. 0 . . . 0︸ ︷︷ ︸

n

(2)3
)

=

(
0.0 . . . 0(1)
1.0 . . . 0(0)

)
2

,

g(1− 1/3n) = g
(
0. 2 . . . 21︸ ︷︷ ︸

n

(2)3
)

=

(
0.1 . . . 10(1)
0.0 . . . 01(0)

)
2

.

The function is discontinuous at x = 1,

lim
x→1+

g(x) = (0, 1)+, lim
x→1−

g(x) = (1, 0)+,
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but the argument will not work at x = 0,

lim
x→0+

g(x) = lim
x→0−

g(x) = (0, 0) = 0′, (19)

so the limit h → 0′ is unambiguous. Let us recall that 0′ is the neutral element of
Burgin’s non-Diophantine addition.

The derivative of a function A : S → S is defined by [17, 21, 16]

DA(x)

Dx
= lim

h→0′

(
A(x⊕ h)	A(x)

)
� h. (20)

A Laplacian on S is just the second derivative

∆A(x) =
D

Dx

DA(x)

Dx
. (21)

Our ∆ differs from the other definitions of Laplacians on Sierpiński sets occurring in the
literature [5, 6], but is simple and easy to work with. The formalism from [16, 17, 21] can
be applied here with no modification, including integration, complex numbers, harmonic
analysis, differential equations and so on.

What was not explained in [16, 17, 21] was how to proceed with functions that do
not map the fractal in question into itself. So, consider two sets, X and Y say, equipped
with bijections fY : Y → R and fX : X → R, and arithmetics {⊕Y,�Y : Y × Y → Y},
{⊕X,�X : X × X → X}, defined by fY and fX. The bijection f = f−1Y ◦ fX : X → Y
makes it possible to consider derivatives of functions A : X→ Y. Let 0′X = f−1X (0) be the
neutral element of addition in X, and f(0′X) = 0′Y the one in Y. We define

DA(x)

Dx
= lim

h→0′X

(
A(x⊕X h)	Y A(x)

)
�Y f(h) (22)

= lim
h→0

(
A
(
x⊕X f

−1
X (h)

)
	Y A(x)

)
�Y f

−1
Y (h) (23)

= f−1Y

 d

dfX(x)
fY ◦A ◦ f−1X︸ ︷︷ ︸

a

[
fX(x)

] . (24)

Details of the transition from (22)–(23) to (24) can be found in the Appendix. Accord-
ingly,

DA(x)

Dx
= f−1Y ◦ a′ ◦ fX(x) (25)

where a′(x) = limh→0

(
a(x+ h)− a(x)

)
/h.

The integral is defined in a way guaranteeing the fundamental laws of calculus, relating
derivatives and integrals. So, let A : X→ Y, and∫ X

Y

A(x)Dx = f−1Y

(∫ fX(X)

fX(Y )

fY ◦A ◦ f−1X (x)dx

)
(26)
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where
∫
a(x)dx is the usual (say, Lebesgue) integral of a function a : R→ R.

In the Appendix we prove that

D

DX

∫ X

Y

A(x)Dx = A(X), (27)∫ X

Y

DA(x)

Dx
Dx = A(X)	Y A(Y ). (28)

In the next section we apply the formalism to the problem of harmonic analysis on
Sierpiński sets.

5. Example: Fourier transform on S

Let X = S and Y = R. Consider the function A : S → R (Fig. 3),

A(x) =

 1 for x ∈ f−1S

(
(0, 1)

)
−1 for x ∈ f−1S

(
(−1, 0)

)
0 otherwise

(29)

Since S ∩ (−1, 0)2 = f−1S

(
(−1, 0)

)
, S ∩ (0, 1)2 = f−1S

(
(0, 1)

)
, S ∩ {(0, 0)} = f−1S

(
0
)
, we

introduce a : R→ R,

a(x) =

 1 for x ∈ (0, 1)
−1 for x ∈ (−1, 0)
0 otherwise

(30)

Employing fX = fS , fY = idR, we get

a = fY ◦A ◦ f−1X = A ◦ f−1S . (31)

In order to perform Fourier analysis of A we have to introduce the basis of sines and
cosines along the lines of [16], but adapted to the present context. The scalar product of
two functions Gj : S → R, Gj = gj ◦ fS , gj : R→ R, j = 1, 2, reads

〈G1|G2〉 =

∫ T

	YT

G1(x)�Y G2(x)Dx (32)

= f−1Y

(∫ fS(T )

−fS(T )

g1(x)g2(x)dx

)
(33)

=

∫ 1

−1
g1(x)g2(x)dx = 〈g1|g2〉 (34)

where 	ST = 0′S 	S T = f−1S (−1). In our case T = 1′S = f−1S (1) (the neutral element of
multiplication in S). The fact that 〈g1|g2〉 and 〈G1|G2〉 involve the same symbol of the
scalar product will not lead to ambiguities.
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Denoting

cn(y) = cosnπy, n > 0 (35)

sn(y) = sinnπy, n > 0 (36)

c0(y) = 1/
√

2, (37)

s0(y) = 0, (38)

Cn(x) = cn
(
fS(x)

)
, (39)

Sn(x) = sn
(
fS(x)

)
, (40)

we can apply the standard resolution of unity,

δ(x− y) =
∑
n≥0

(
cn(x)cn(y) + sn(x)sn(y)

)
, (41)

and finally obtain

A(x) =
∑
n≥0

(
Cn(x)〈Cn|A〉+ Sn(x)〈Sn|A〉

)
(42)

=
∑
n≥0

(
Cn(x)〈cn|a〉+ Sn(x)〈sn|a〉

)
(43)

=
∑
n>0

2 (1− (−1)n)

nπ
Sn(x) (44)

Figures 4 and 5 illustrate finite-sum Fourier reconstructions of the function plotted in
Fig. 3. The negative-side of S occurs only as the image of those x ∈ R whose ternary
representation ends with infinitely many 1s, whereas all finite-ternary-digit numbers are
mapped into the positive side of S. This leads to the practical moral: Plotting functions
with domains in S we can concentrate exclusively on the positive side of S, unless one
employs a symbolic algorithm that recognizes numbers ending with (1)3.

6. Conclusion

The formalism that starts with non-Diophantine addition and multiplication is ap-
plicable to a general class of fractals, including those of a Sierpiński type. For a fractal
whose cardinality equals continuum the existence of a bijection f follows directly from
the fact that the cardinality of R is the same, so the resulting paradigm is universal.
From the point of view of applications the only nontrivial element of the construction is
to find an explicit f . Once we have found it, the remaining procedures are systematic
and as simple as an undergraduate calculus.

Appendix

Here we give detailed proofs of formulas (22), (27), and (28).
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Fig. 3: Function A(x) defined in (29).
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Fig. 4: Finite-sum reconstruction of A(x) with 5 Fourier terms in (44) ...
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Fig. 5: ...and with 50 terms. The Gibbs phenomenon is clearly visible.
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One begins with the limit h→ 0′X which is defined as follows. Consider the commu-
tative diagram

X A−→ Y
fX

y yfY
R a−→ R

(45)

In our example we had Y = R and fY = idR, so f−1Y is trivially continuous, which justifies
the transition from (53) to (54) below. However, the formalism works also in cases where
f−1Y is discontinuous, but the limit is understood as

lim
X→X0

A(X) = f−1Y

(
lim

x→fX(X0)
a(x)

)
, (46)

for X0 ∈ X. The latter is logically equivalent to defining the derivative directly by the
end result of the calculation we give below, that is

DA(x)

Dx
:= f−1Y

(
da
[
fX(x)

]
dfX(x)

)
. (47)

The following sequence of transformations is instructive, and it explains why differ-
entiability of the bijections is unnecessary to make the calculation work:

DA(x)

Dx
= lim

h→0′X

(
A(x⊕X h)	Y A(x)

)
�Y f(h) (48)

= lim
h→0′X

f−1Y

(
fY
(
A(x⊕X h)	Y A(x)

)
fY
(
f(h)

) )
(49)

= lim
h→0′X

f−1Y

(
fY
(
A(x⊕X h)	Y A(x)

)
fX(h)

)
(50)

= lim
h→0′X

f−1Y

(
fY
(
A(x⊕X h)

)
− fY

(
A(x)

)
fX(h)

)
(51)

= lim
h→0′X

f−1Y


fY

(
A
(
f−1X

[
fX(x) + fX(h)

]))
− fY

(
A
(
f−1X

[
fX(x)

]))
fX(h)

(52)

= lim
h→0′X

f−1Y

(
fY ◦A ◦ f−1X

[
fX(x) + fX(h)

]
− fY ◦A ◦ f−1X

[
fX(x)

]
fX(h)

)
(53)

= f−1Y

(
lim
h→0

fY ◦A ◦ f−1X
[
fX(x) + h

]
− fY ◦A ◦ f−1X

[
fX(x)

]
h

)
(54)
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= f−1Y

 d

dfX(x)
fY ◦A ◦ f−1X︸ ︷︷ ︸

a

[
fX(x)

] (55)

= f−1Y

(
da
[
fX(x)

]
dfX(x)

)
. (56)

This proves (24). Now, let A : X→ Y, and define∫ X

Y

A(x)Dx = f−1Y

(∫ fX(X)

fX(Y )

a(x)dx

)
(57)

= f−1Y

(∫ fX(X)

fX(Y )

fY ◦A ◦ f−1X (x)dx

)
. (58)

Denoting b(y) =
∫ y

fX(Y )
a(x)dx we rewrite∫ X

Y

A(x)Dx = f−1Y

(
b
(
fX(X)

))
, (59)

and thus (24) implies

D

DX

∫ X

Y

A(x)Dx = f−1Y

(
db
(
fX(X)

)
dfX(X)

)
(60)

= f−1Y

(
a
(
fX(X)

))
(61)

= f−1Y ◦ a ◦ fX(X) (62)

= f−1Y ◦ fY ◦A ◦ f−1X ◦ fX(X) = A(X). (63)

And the other way around,∫ X

Y

DA(x)

Dx
Dx =

∫ X

Y

f−1Y ◦ a′ ◦ fX(x)Dx (64)

= f−1Y

(∫ fX(X)

fX(Y )

fY ◦ f−1Y ◦ a′ ◦ fX ◦ f−1X (x)dx

)
(65)

= f−1Y

(∫ fX(X)

fX(Y )

a′(x)dx

)
(66)

= f−1Y

(
a
(
fX(X)

)
− a
(
fX(Y )

))
(67)

= f−1Y

(
fY ◦A ◦ f−1X

(
fX(X)

)
− fY ◦A ◦ f−1X

(
fX(Y )

))
(68)

= f−1Y

(
fY
(
A(X)

)
− fY

(
A(Y )

))
(69)

= A(X)	Y A(Y ). (70)
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