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Abstract. The paper presents the results of dynamic analysis of the small-span railway bridge, subjected to 
an action of moving trains. Numerical simulations were performed using three different load models: series 
of moving forces, series of moving single-mass and double-mass oscillators. The parameters of the vehicle 
were taken from the existing EN57 train. The parameters of the bridge were taken from the existing steel 
span of 10,24 m long. In both cases, the dynamic parameters were identified based on free-response 
measurements using modal identification techniques. Vibrations of the midpoint of the bridge as well as the 
mass of the oscillator have been analyzed. Numerical results obtained for individual load models were 
compared with the results of in-situ tests performed under operating conditions. 

1 Introduction 

In 1829 the George Stephenson’s ‘Rocket’ locomotive 
was presented. A one year later, in 1830, the first steam-
only railway line was opened between Liverpool and 
Manchester. These historical events gave rise to the 
railway era in the world. In 1847 the Dee Bridge railway 
disaster took place with five fatalities. This tragic 
accident marked the beginning of the practical 
considerations of the bridge-vehicle interaction 
dynamics. 

A moving vehicle induces vibrations of a bridge 
span, a bridge in turn affects the vibrations of a vehicle. 
Thus, we have a complex, mutually coupled dynamic 
system whose exact analysis is very complicated. The 
first attempts to describe the problem were presented by 
Krylov and Timoshenko [1, 2]. They considered a single 
force model moving on the Euler-Bernoulli beam with a 
constant speed. Later on Saller and Jeffcott took into 
account a mass of the vehicle as well [3, 4]. Many later 
studies refer to the above mentioned, basic dynamic 
models. The influence of the various parameters 
(velocity, mass, stiffness, damping) on the dynamic 
response of the bridge was investigated, e.g. [5-7]. 

A rapid development of railway transport took place 
in the second half of 20th century. The first high-speed 
train was introduced to traffic on Shinkansen railway in 
Japan in 1964. It shuttled between Tokyo and Osaka 
with the speed of 210 kph. Since then constant tendency 
to increase a traffic speed is observed. Currently, the 
conventional vehicles can move with the speed of up to 
350 kph on many European and non-European railways. 
The higher train speed, the greater dynamic impact to a 
bridge. For this reason, bridge-vehicle interaction has 
become an important part of design and research work, 
particularly for high-speed railways. The simplest sprung 
vehicles were modelled in the form of single-mass, 
elastic or viscoelastic oscillators [8-11]. The spring force 

variation was assumed as the measure of the dynamic 
coupling between a bridge and a vehicle. 

A typical train consists of the sequence of 
locomotives and carriages which in fact causes the cyclic 
excitations. It was simulated by developing the single 
load models into the series of loads [12-14]. Load 
spacing was corresponded to the distance of axes of 
bogies or wheelsets. A regular load spacing and a 
constant speed can cause the intrusive resonant effects 
[15, 16]. 

The main requirements for high-speed railways refer 
to the safety, stability and riding comfort. The comfort of 
passengers depends on the car body accelerations. From 
the safety point of view the important issue is the 
relation between vertical and horizontal force in the 
wheel-rail contact area. The multi-body mechanical 
models of vehicles have been developed to accurately 
analyse the problem [17-20]. The influence of the 
railway track was also studied. 

The advanced FEM software and numerical solution 
methods allow for the detailed modelling of structures. 
But the more complex model, the more parameters must 
be determined. For this reason, in the case of technical 
requirements, the dynamic effects of loads are simplified 
very often [21-24]. 

The paper deals with the dynamic analysis of the 
small-span railway bridge under moving train. Three 
different models of railway vehicle were investigated 
and compared: series of moving forces, series of moving 
single-mass and double-mass oscillators. The first model 
is commonly used in the design practises. The successive 
two models are simplified sprung mechanical systems, 
which allow for the bridge-vehicle interaction 
consideration. The FE model was developed according 
to the existing bridge span and the existing railway 
vehicle. The model was validated on the basis of modal 
parameters identification results (frequencies and 
damping ratios). Eigensystem Realization Algorithm 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0

(http://creativecommons.org/licenses/by/4.0/). 

MATEC Web of Conferences 262, 10014 (2019) https://doi.org/10.1051/matecconf/201926210014
KRYNICA 2018



 

(ERA) was used. Numerical results of the train passing 
the bridge were finally referred to the field 
measurements performed under operating conditions. 

2 The Bridge 

The bridge is situated along the E65 railway line 
Warsaw-Gdynia (km 321,153) and crosses Radunia 
River in Gdańsk (Fig. 1). The E65 railway line is one of 
the major transport route in Poland. It belongs to the IV 
European Transport Corridor and characterises of high 
traffic density. The passenger train can travel up to 160 
kph. 
 

 

Fig. 1. Bridge over Radunia River in Gdańsk (Poland) 
 

The bridge consists of three simply-supported spans, 
each of 10,24 m long. It’s an intermediate-ride structure 
with an open deck. The cross-section of each span 
consists of two I-shaped girders spaced in 3,0 m distance 
(Fig. 2). Both girders are of 0,94 m high over support 
and of 0,98 m high in the mid-span. The horizontal 
stiffening is made of X-shape truss situated in the bottom 
flange level of main girders. 
 

 

Fig. 2. Cross-section of the bridge over Radunia River 
 

The bridge deck consists of I-shaped crossbeams 
spaced every 2,56 m and longitudinal beams spaced in 
1,80 m distance. The railway track consists of the rails 
fastened to the wood sleepers. 

This type of structure was widely used in the case of 
the small-span steel bridges with an open deck. In 2014, 
within the modernization of E65 railway line, the steel 
spans were replaced by the reinforced concrete plate 
girders. Just before the reconstruction the field 
measurements of the steel bridge were performed. The 
response signals were collected for modal parameters 
identification and the FE model validation. 

2.1 FE model 

The numerical model was developed using the 
SOFiSTiK software (Fig. 3). Beam elements with 6-
dof’s of each node were used. 
 

 

Fig. 3. Finite element model of the bridge span (SOFiSTiK) 
 

Additional masses related to the existing equipment 
(sidewalk, railway track) were also applied. The model 
was validated according to in-situ measurements and 
modal identification results of the actual span. The 
criterion was the equality between measured and 
theoretical modes. 

The open railway track was included in the substitute 
manner. Only the rails were considered as the structural 
finite elements. The connection between rails and 
longitudinal beams was assumed as rigid. Spring 
elements of the “infinite” stiffness were used between 
corresponding nodes (Fig. 3). 

2.2 Field measurements 

The field measurements of the bridge were performed in 
order to collect: 

- free-decay signals for modal parameters 
identification and model validation, 

- force vibration signals for comparison with the 
results of the bridge-vehicle numerical 
simulations. 

Displacement and acceleration data of the external 
span were collected during the passage of trains (Fig. 4). 
In total, twenty seven measurements were conducted for 
the passenger and the freight trains. 
 

 

Fig. 4. Field measurements – the bridge under EN57 train 
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The sensors arrangement is shown on Fig. 5. 
Designations are as follows: 

- A1v/L, A1v/P – vertical acceleration of the mid-
span (left and right girder respectively), 

-  A1h/L – horizontal acceleration of the mid-span 
(left girder), 

- A2v/L, A2v/P – vertical acceleration in the ¼ 
span length (left and right girder respectively), 

- A2h/L – horizontal acceleration in the ¼ span 
length (left girder), 

- UG1/L, UG1/P – vertical displacement of the mid 
span (left and right girder respectively). 

 

 

Fig. 5. Field measurements – the sensors arrangement 

2.3 Modal parameters identification 

Modal parameters (frequencies, modal damping and 
mode shapes) were identified based on the free-decay 
responses. The free responses were collected just after 
the passages of trains. Eigensystem Realization 
Algorithm (ERA) was used for system identification. 
Acceleration signals from all measuring points were 
applied. The Average Normalized Power Spectral 
Density function (ANPSD) was also calculated for better 
verification of the results. 

2.3.1 Eigensystem Realization Algorithm (ERA) 

In 1985 Juang and Pappa proposed an ERA algorithm 
for modal parameters identification of LTI systems [25]. 
ERA is a direct, time-domain system identification based 
on the evolution of Ho-Kalman minimum realization 
problem [26]. It allows to determine the state-space 
model based on the finite-time and noisy measuring data. 

Linear discrete-time state-space model with initial 
condition x0 = x(0) = 0 is described by the system of 
equations: 

 1 ,

,
k k k

k k k

  

 

x Ax Bu

y Cx Du
 (1) 

where A, B, C and D are the state (transition), input, 
output and transmission matrices, respectively. The state 
of the system at time tk = kt, (t – time step, k  N) is 

characterized by the state vector xk = x(tk). The external 
control and the system response are described by the 
input vector uk = u(tk) and the output vector yk = y(tk), 
respectively. In practice system matrices are unknown 
and are the result of the identification process. The basic 
principle of ERA involves identification of system 
matrices A, B and C from the free-vibration responses. 

The ERA method starts from forming Hankel matrix 
based on the measured Markov parameters. Let the 
value yk,p be the response at k-th time step in p-th sensor. 
Markov parameters represent a combination of 
instantaneous signal values from each measuring point. 
The response in k-th time step from all measuring points 
can be put into the vector (Markov parameter) 
yk = col{yk,1, yk,2, yk,3, …, yk,p}. Markov parameters form 
the following general Hankel matrix: 
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The method parameters  and  decide about the size 
and shape of the Hankel matrix, i.e. number of samples 
used. In the special case, for k = 1, we obtain: 
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Estimation of matrices A, B and C is possible using 
the Singular Value Decomposition (SVD) of the matrix 
H(0): 

 SVD (0) TH USV , (4) 

where S (p×β) is a rectangular diagonal matrix 
containing singular values of H(0) in decreasing order 
(S = diag[i], i = 1, 2, 3, …, β). Columns of matrices 
U (p×p) and V (×) are the left and right singular 
vectors, respectively, corresponding to each individual 
value of i. 

The order of the system is specified by choosing n 
first (largest) singular values. The plot of i may be 
helpful in such selection [27]. Because of the presence of 
the measurement noise, singular values can be divided 
into large (significant) and close to zero values. 
Significant values are associated with the real modes 
while the others can be computational or be the result of 
noise and should be rejected. Therefore, the square sub-
matrix Sn (n×n) with significant singular values can be 
extracted from the matrix S. Corresponding selection of 
the first n columns of matrices U and V leads to sub-
matrices Un (p×n) and Vn (×n). It can be noted that the 
reduced matrices Un, Sn, and Vn approximate the full-
size Hankel matrix. Finally, the minimum realization of 
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the discrete LTI system of order n is defined by the 
triple: 

 

1/ 2 1/2

1/ 2

1/ 2

(1) ,

,

,

e T
n n n n

e T
n n r

e T
p n n

 





A S U H V S

B S V E

C E U S

 (5) 

where matrices Ae, Be, Ce are the estimated quantities. 
Auxiliary matrices Er (×p) and Ep

T (p×p) contain an 
appropriate number of identity and zero matrices of 
order p: Er = [Ip 0p 0p … 0p]

T,  Ep
T = [Ip 0p 0p … 0p]. 

To extract frequencies, damping and mode shapes it 
is necessary to transform the system matrices (5) from 
physical into modal coordinates. This can be done using 
eigenvalue decomposition: 

 e A Φ ΦΛ , (6) 

where  is a diagonal matrix containing the discrete-
time complex conjugate eigenvalues and  contains the 
corresponding eigenvectors as columns. The matrix  
contains the information about eigenfrequencies and 
modal damping. Before extracting modal parameters the 
matrix  must be transformed from discrete-time into 
continuous-time form: c = fsln(), (fs is the sampling 
frequency). The i-th eigenvalue and it’s complex 
conjugate become [28]: 

 * 2, 1ci ci i ni ni ij         , (7) 

where i and ni are the damping ratio and natural 
frequency of the i-th mode, respectively. From (7) one 
can finally calculate: 
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Re Im

Re

   

  
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 
 (8) 

where |·|, Re(·), Im(·) are the modulus, real and 
imaginary part of a complex number. Mode shape 
vectors can be obtained from the column vectors of the 
estimated output matrix written in modal coordinates: 
Ce

m
 = Ce Each coordinate becomes: 

   e e
ij m ij m ijc sign Re c  , (9) 

where i = 1, 2, 3, …, p and j = 1, 2, 3, …, n. 
Because of the inevitable measurement noise, a clear 

border between significant and close to zero singular 
values not always exists. Besides the noise and other 
possible signal distortions introduce uncertainty to the 
results [29]. For this reason it is recommended to 
overestimate the system order (rank of the Hankel 
matrix) [30]. So in order to distinguish the true modes 
from computational ones the Modal Amplitude 
Coherence (MAC) of the observability and 
controllability matrices can be applied [31]. The MAC 
criterion checks the compatibility in time between each 
individual modal component response of the identified 
model (vectors qe

i) and the real system (vectors qi) and is 

defined as normalized dot product between these two 
vectors: 

 
 

*

* *
MAC

e
i i

i
e e

i i i i

q q

q q q q
 . (10) 

A close to unity MAC value means that both vectors 
coincide, so corresponding modal parameters 
characterize the identified model (they are classified as 
structural). The values of MAC ≥ 0,97 are acceptable in 
most cases [32]. 

2.3.2 Averaged Normalized Power Spectral Density 

The ANPSD function for the set of p signals is defined 
as [33]: 

 
1

1

PSD ( )1
ANPSD( )

PSD ( )

p
i k

k N
i

i k
k

f
f

p
f


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

, (11) 

where fk is the k-th discrete frequency (k = 1, 2, …, N), 
PSDi is the auto-power spectrum (Power Spectral 
Density) of the i-th channel (i = 1, 2, …, p), N is the 
number of discrete frequencies. The PSD function for i-
th signal can be obtained as: 

 *2
PSD ( ) FFT ( ) FFT ( )i k i k i k

t
f f f

N

        , (12) 

where FFTi is the Fast Fourier Transform of the i-th 
signal and “*” means Hermitian conjugation. 

2.3.3 Identification results 

The representative free response signals after the passage 
of EN57 train are shown on Fig. 6 and Fig. 7. 
Corresponding stabilization diagram of ERA is shown 
on Fig. 8 together with the ANPSD function plotted. It 
can be seen, that MAC criterion is satisfy only for one 
mode of the frequency of 22,18 Hz. The identified mode 
corresponds to the bending theoretical mode of the 
natural frequency of 21,91 Hz (FEM solution). Modal 
parameters of the identified mode are summarized on 
Fig. 9. 
 

 

Fig. 6. Free response of vertical acceleration at A1v/P sensor 
after the passage of EN57 train with the speed of 49 kph 
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Fig. 7. Free response of vertical acceleration at A2v/P sensor 
after the passage of EN57 train with the speed of 49 kph 
 

 

Fig. 8. Frequency stabilization diagram (ERA) – free response 
of vertical acceleration of the bridge 
 

 

Fig. 9. Results of modal identification – 1st bending mode 

2.4 Model validation 

The FE model was validated based on the results of the 
1st identified mode. Natural frequencies depend on the 
mass and stiffness distribution of the structure. In the 
commercial FEM software stiffness and mass matrices 
are generated on the basis of defined cross-sections, 
material properties and the applied discretization. 
Theoretical frequencies can be adjusted to the measured 
ones by the mass actualization. It is a simple and 
commonly used technique. A slightly more difficult is to 
determine the coefficients of damping model. 

The Rayleigh damping model is implemented in 
SOFiSTiK software. In the model, the damping matrix is 
introduced by a combination of the mass and stiffness 
matrices: 

 a b C M K , (13) 

where a and b are the coefficients to be determined. 

Determination of Rayleigh coefficients is possible based 
on frequencies and damping ratios of two identified 
modes. In practical applications, if only one mode is 
identified, the damping model reduces to individual 
components of the sum, i.e. C = aM (mass proportional 
damping) or C = bK (stiffness proportional damping). In 
the case of Radunia bridge the stiffness proportional 
damping model was applied with b calculated as: 

 1 1 1 12b f     . (14) 

To verify the correctness of damping definition 
logarithmic decrement (LDD) of the theoretical response 
was calculated and compared with LDD of the identified 
model (ERA). The identified model response for the first 
mode (ERA) is shown on fig. 10 in comparison with 
measurements. The theoretical response was obtained by 
impulse excitation applied to the mid-span of the bridge 
model. 

The results of model validation are summarised in 
Table 1. The achieved level of compliance was 
considered as sufficient. 
 

 

Fig. 10. Free response of vertical acceleration at A1v/P sensor 
after the passage of EN57 train with the speed of 49 kph – 1st 
mode response (ERA) versus measurements 

Table 1. Results of model validation – dynamic parameters of 
the bridge span 

Measurements FEM model 

f1
ERA 

[Hz] 
1

ERA 
[-] 

LDDERA 

[-] 
f1

FEM 
[Hz] 

b 
(C = bK) 

LDDFEM 

[-] 

22,18 0,0104 0,0609 21,91 1,492·10-4 0,0697 

3 The Train 

The EN57 traction unit was adopted as the moving load 
(see Fig. 4). Despite the aged construction it is still one 
of the most popular regional trains in Poland. Basic RSR 
configuration consist of three carriages: middle “engine” 
carriage (S) and two external “camshaft” carriages (R). 

In Ref. [34] the singular load models were defined on 
the basis of half of EN57 R carriage. In current study the 
simplified mechanical models of vehicle are: series of 
moving forces, series of moving single-mass oscillators, 
series of moving double-mass oscillators (Fig. 11). 
Individual loads of each model were put in the wheelsets 
distance in length and the wheels distance across the 
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track width. Therefore, each carriage was modelled by 
eight individual forces (oscillators). In the case of the 
single-mass oscillators total mass of the carriage was 
assumed to be sprung. The double-mass oscillators 
model is more accurate. The wheelset mass is divided 
from the total mass and assumed to be unsprang. 
 

 

Fig. 11. Load models of EN57 train: a) scheme of RSR 
configuration, b) series of moving forces, c) series of moving 
single-mass oscillators, d) series of moving double-mass 
oscillators 

 
Dynamic parameters of the train were identified in 

[35] with the reference to each individual load model. 
These parameters are given in Table 2. Designations are 
as follows: PS, PR – load value for S and R carriage, 
respectively, MS, kS, cS – mass, spring stiffness and 
damping coefficient of the single-mass oscillators for S 
carriage, MR, kR, cR – mass, spring stiffness and damping 
coefficient of the single-mass oscillators for R carriage, 
MS1, MS2, kS1, cS1 – sprung mass, unsprung mass, spring 
stiffness and damping coefficient of the double-mass 
oscillators for S carriage, MR1, MR2, kR1, cR1 – sprung 
mass, unsprung mass, spring stiffness and damping 
coefficient of the double-mass oscillators for R carriage. 

Table 2. Parameters of the EN57 load models 

LR  12,20 m MS 7,125 t cS 7,9395 kNs/m

LS  13,17 m MR 4,250 t cR 4,5493 kNs/m

d  2,70 m MS1 6,265 t kS 1018,225 kN/m

d1  4,00 m MR1 3,590 t kR 583,469 kN/m

  MS2 0,860 t cS1 9,0288 kNs/m

  MR2 0,660 t cR1 5,3854 kNs/m

  PS 41,7 kN kS1 1158,001 kN/m

  PR 69,9 kN kR1 690,737 kN/m

The mass of passengers was also added to the 
structural mass of carriage. Number of passengers were 

referred to the number of seating and a human weight 
was assumed as 80 kg. 

4 Bridge-vehicle interaction 

Numerical simulations were performed using Newmark-
β procedure. According to convergence analysis a time 
step was assumed as Δt = 0,002 s. This value was 
enough for the solution stability. The RSR configuration 
of EN57 train was applied in simulations. The train 
speed was 49 kph. A comparison between measurements 
and simulations was of the main interest. Basic 
assumptions are as follows: 

- the mass of each carriage is evenly distributed, 
- only the vertical motion of the vehicle is possible, 
- the train moves with a constant speed, 
- vibrations of the vehicle and the bridge are 

measured from the static equilibrium position. 
On Fig. 12 visualization of the numerical model is 

shown for the double-mass oscillator case. On Fig. 13 
the total response of vertical displacement is compared. 
Figures 14-16 show the comparison between measured 
and numerical results of vertical acceleration for 
individual vehicle models. 
 

 

Fig. 12. Finite element model of the vehicle-bridge interaction 
(SOFiSTiK) – the double-mass oscillators case 
 
 

 

 

Fig. 13. Total response of vertical displacement of the mid-
span (measurements versus simulations) – passage of EN57 
train in RSR configuration with the speed of 49 kph 
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Fig. 14. Total response of vertical acceleration of the bridge 
(measurements versus concentrated forces load model) 
 

 

Fig. 15. Total response of vertical acceleration of the bridge 
(measurements versus single-mass oscillators load model) 
 

 

Fig. 16. Total response of vertical acceleration of the bridge 
(measurements versus double-mass oscillators load model) 
 

The vibration results of vertical displacement show 
a good compliance between measurements and 
simulations. Some differences occur in the maximum 
response for the first and last bogie. A possible reason is 
the lack of symmetry of the R carriage, as was assumed 
in simulations. The displacement level for all vehicle 
models is similar, but looking at the character of 
vibrations one can see that the response obtained for the 
double-mass oscillators load model is the closest to 
measurements. 

A significant difference between theoretical models 
is visible in the vertical acceleration response. The series 
of moving forces and the series of moving single-mass 
oscillators significantly lower the results. The results for 
the double-mass oscillators are in greater compatibility 
with measurements. A root-mean square value (RMS) 

for each acceleration response was also calculated (Fig. 
17). The RMS value is the measure of signal energy and 
is often used as the useful indicator for more objective 
comparison between two signals. In the calculations the 
forced vibration data was taking into account (time 
interval 0 ÷ 5,3 s). On Fig. 18 the vertical displacements 
of the mass of the oscillator for both sprung models of 
vehicles are compared. The same is depicted on Fig. 19 
for the acceleration responses. 
 

 

Fig. 17. RMS values of vertical acceleration of the bridge 
(measurements versus simulations) 
 

 

Fig. 18. Vertical displacement of the sprung mass of the first R 
carriage of EN57 train (single-mass versus double-mass 
oscillators model) 
 

 

Fig. 19. Vertical acceleration of the sprung mass of the first R 
carriage of EN57 train (single-mass versus double-mass 
oscillators model) 

 
From the above one can see that the response level is 

similar for both models of vehicle. The vibration 
character reminds a free-decay response. The time when 
the oscillator leaves the beam is 0,75 sec. 
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5 Conclusions 

The bridge-vehicle dynamic interaction is considered in 
the paper. Physical parameters of the model were taken 
from the existing bridge and the existing railway vehicle. 
Field measurements were conducted in operating 
conditions for response data collection and system 
identification. The knowledge of existing dynamic 
parameters allows for the correct model validation. 

Proper definition of train load is an essential part of 
the dynamic analysis of railway bridges. The 
concentrated force formulation omits the inertial terms 
of moving mass. Moreover, the influence of the dynamic 
bridge-vehicle interaction cannot be taken into account. 
An accurate sprung model of railway vehicle should 
concern at least two mass discretization with one mass 
unsprung (wheelset’s mass). The sprung-only load 
models are more appropriate for road bridges. 

Passing over the small-span bridge works like an 
impulse excitation for the vehicle. However, the vehicle 
acceleration response is ten times smaller than the bridge 
span response (for the conditions considered in the 
paper). It should be noted that the track stiffness outside 
the bridge was assumed to be infinite. The actual track 
stiffness could change the results quantitatively. 

The connection between rails and longitudinal beams 
was assumed to be stiff for simplicity. In order to define 
the actual track parameters the spring stiffness can be 
validated based on in-situ measurements. 

The developed models of vehicles were applied to 
the small-span steel bridge of a simple structure. 
However there is no limitation of using them for more 
complex structures. The vertical track parameters and 
rail irregularities can also be taken into account. 
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