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HETEROCLINIC SOLUTIONS OF ALLEN-CAHN TYPE
EQUATIONS WITH A GENERAL ELLIPTIC OPERATOR

KAROL WRONSKI

ABSTRACT. We consider a generalization of the Allen-Cahn type equation
in divergence form —div(VG(Vu(x,y))) + Fu(x,y,u(x,y)) = 0. This is
more general than the usual Laplace operator. We prove the existence
and regularity of heteroclinic solutions under standard ellipticity and m-
growth conditions.

1. INTRODUCTION

The Allen-Cahn equation is a well known elliptic partial differential equa-
tion considered by many authors in the form:

where F' is a double well potential of u and has some other standard properties
like periodicity in x and y (see the next section for details). Here we are
not interested in the Dirichlet problem but in the existence of heteroclinic
solutions in the whole of R2. This problem was widely studied and there are
many articles that contain the existence theorems about such solutions. As an
example we can take [1] where the authors show the existence and multiplicity
of heteroclinic and some other special types of solutions. Earlier in [4] and
[5] the problem was solved in a more simple form where F(x,u) = f(x)F(u).

In this article it is shown that the Laplace operator in the Allen-Cahn
equation can be replaced with a much more general elliptic operator in a
divergence form which needs only to have properties which are usually called
“standard growth conditions”. This was already done by the authors of [6]
but they assumed quadratic growth of the operator and worked in I/Vlloc2 All
results on Allen-Cahn equation and many similar problems refer to the fa-
mous article by Moser [2] later generalized by Bangert [7] where he considered
minima of a very general functional in the form [ F(z,u(z), u,(z))dz peri-
odic in first n 4+ 1 variables and having quadratic growth in last n variables.
Some interesting results for double-well type potentials were also obtained by
Valdinoci [8] and Bessi [9].
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Here it will be proved that the Allen-Cahn equation with a generalized
elliptic operator with higher growth also has heteroclinic solutions. Our result
is different from all cited above as they consider Laplace operator or operators
with quadratic growth. We mainly generalize some results of [1] and the
methods of proofs are in many situations the same. However it is not a
straightforward generalization as —div(VG(Vu(x,y))) is not a linear operator
- this difficulty is seen especially in Lemma 5.2. Also regularity results need
some additional assumptions - namely (G1) and (G2).

2. PRELIMINARIES

Consider a quasilinear elliptic equation in the divergence form:
(AC) —div(VG(Vu(x,y))) + Fu(x,y,u(x,y)) =0

where v : R? — R and F € C?*(R3 R) satisfies the following conditions
characteristic for an Allen-Cahn problem:
(Fy) F is 1-periodic in z and v,
(F2) F(z,y,0) = F(z,y,1) = 0 for all (z,y) € R?,
(F3) F(x,y,s) >0 for all (x,y) € R? and s € (0, 1),
(Fy) F(z,y,s) >0 for all (z,y,s) € R3.
As an example of such F we can take F(x,vy,s) = s2(1 — s)? or sin*(7s).
We also assume that G € C?%(R? R) satisfies the following standard
growth and ellipticity conditions:

(G1) mlp|™ < G(p) < va(1+ |p|)™ for some positive constants vy, vy and
for every p € R?,
2
@) m+p)m2 S @< Y 2L (e < m+lphm T &,
i=1,2 ijef1,2y i=1,2
for some positive constants v;, 15 and every p, £ € R?,

(G3) 7(p)‘ < u(1+ |p|)™! for some positive u and every p € R%

An easy example of a function satisfying such conditions is G(p) = |p|* +
|p|™.  Unfortunately we cannot simply take G(p) = |p|™ (for which the
div(VG(Vu)) is equal to m-Laplacian operator) because then (G3) would

not be satisfied. When m = 2 and G = || - ||* it is easy to see that
div(VG(Vu(z,y))) = Au(x,y) and the equation AC becomes the standard
Allen-Cahn problem considered in [1]. In that paper the variational problem

is solved using Sobolev space W,2(R x [0, 1]) and its subspace E;(R x [0,1])

consisting of functions uw such that lim w(z,y) = 0, lim u(x,y) = 1 and
Tr—r—00 T—r 00

periodic in y.
In this work we are concerned with a generalization of Allen-Cahn equation
where the function GG in the elliptic operator can be much more complicated
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then || - [|2. For that reason instead of W12 we use Sobolev spaces W™ with
m as in growth conditions on G. Notice that we do not assume m > 2 but
only m > 1, so elements of W™ may even be not continuous but in fact we
obtain C* solutions using some regularity theorems.

It is easy to see that the problem (AC) has two trivial constant solutions
equal to 0 and 1. We will search for solutions of equation (AC) which are
heteroclinic in z (i.e. convergent to 0 as x — —oo and to 1 as x — o0) and
periodic in y. As the domain of solutions is R? and the heteroclinic solu-
tions are not integrable on their domain there is a problem in the variational
formulation of (AC). To solve this we introduce a space E; which contains
functions u € W,2™(R?) that are 1-periodic in y and |V Lmmxjo,1)) < o0
The space E; is equipped with the norm:

(1) ullz, = lullmqo2) + VUl Lm@xgo,0)-
Convergence in the norm || - ||z, obviously implies convergence in metric

of VVILZ” (R?). Consequently, F is a closed normed subspace of the complete

and reflexive space W2 (R?) so it is also a reflexive Banach space. On such
a space we can formulate variational problem. To do this we introduce some
notation. For every function u : R? — R and every integer k& we define a
function mu by

(2) meu(e,y) = u(z =k, y).
The operator L is given by L(u) = G(Vu) + F(z,y,u) and the functional
I is defined by

(3) I(u) = /1 dy / L(u) dz

0

Sometimes we will write I in an alternative way: ay(u f dy [, M

and then I(u) = >, ., ar(u)
We will search for a minimum of I on a set I' of heteroclinic functions:

(4) I'0,1)={ue Ey:7ju > uaeA

hm Tpu=0A lim 74u=1in L} }.
k—+o0

We also need to define the minimum of I as ¢(0,1) = min I(u). Note

€T (0,1)
that v € I'(0,1) & mu € I'(0, 1) and I(u) = I(1xu).
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Now we can state the main theorem of this article:

Theorem 2.1. There exists a functionv € T'(0, 1) which is a classical solution
of (AC) such that I(v) = ¢(0,1) and 0 < v < 1.

3. SOLVING A VARIATIONAL PROBLEM

It is obvious that I(v) > 0 for all v € T'(0,1) (because G and F are
nonnegative) so there exists the infimum ¢(0,1) > 0. By {u;} we will denote
the minimizing sequence of [ in I'(0, 1). The sequence I(u;) is convergent so
there exists M such that [(u;) < M for all j. This implies that {u;} is a
bounded sequence in E; because

1 1

/dy/HVumeda: < /dy/G(Vuj)+F(a:,y,uj)dm:I(uj) <M
R

0 0 R

and [ [u;| dz dy is bounded by 1 as u; € T'(0,1).
The minimizing sequence {u;} can be chosen in many ways because apply-

ing 75, to u; does not change values of I(u;). Therefore we can assume that
u; were chosen to satisfy inequalities:

1 k
1 1
(5) // u;dxdy > Y and /dy / ujdr < 3 for all £ < 0.
k-1

0.1]2 0

This is possible because every u; can be replaced by 7_x,u; where k; is the

smallest k£ such that
1 k 1
/ dy / ujdr > —.
0 k—1 2

Such k exists because fol dy fkk—l u;dz — 0 as k; — —oo and fol dy fkk—l u;dr —
1 as k; — +o00o. This normalization was done in order to use it in the proof
of Lemma 3.1.

As FE; is reflexive there exists v € E; and a subsequence of {u;} (still
denoted by {u;}) which converges weakly to v in E;. From this subsequence
we can obviously choose another subsequence convergent strongly in L and
pointwise a.e.

Unfortunately I is an improper integral so it does not need to have all good
properties typical for functionals written by an integral over a bounded set.
This is the reason why we need to prove many facts that would be obvious
for minima of some better functionals.

Below we show that the limit of the minimizing sequence is in fact a mini-
mum of /.
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We first prove that I(v) < M (so I(v) is finite). For every j,n we have
fol dy [" L(uj)dx < M. By the weak lower semicontinuity of this func-
tional for bounded domains (see for example Theorem 8.11 of [12]) we get
Jo ' dy [ L(v)de < M for every n . Letting n — oo we conclude that

f dy fR d:z; < M.
Lemma 3.1. v € I'(0, 1)

Proof. For every j, 7_ju; > u; a.e. and u; — v a.e. SO T_jU > U a.e.
We shall prove that 7_yv — 1 in L. as & — 4o00. The sequence 7_v is
bounded in W,2"™(R x [0,1]) because I(7_4v) = I(v) < M. There exists
¥, such that 70 — vk weakly in W,2™(R x [0,1]), strongly in L}, and
vi € Wm([0,1]?). Also, we have that ay(v) = ag(T_rv) — ao(v?,) because
I(v) is finite and therefore ai(v) — 0. By the definition of ag: v’ = const
and [ F(2, 9,05 )dzdy = 0. This means that v, = 0 or v}, = 1. From
(5) we obtain v}, = 1. d

Now we show that I(v) = ¢(0,1). It is obvious that I(v) > ¢(0,1). For a
fixed € > 0 and sufficiently large j we have

Z ar(uj) < I(uj) <c(0,1) 4+ € for every n.

—n

Taking 7 — oo we obtain

Zak ) <c¢(0,1) 4+ ¢ for every n.

When n — oo we get I(v) < ¢(0,1) + € for every € > 0 so I(v) = ¢(0,1).

Definition 3.2. For every r < 1 and z € R x [0,1] we define a set

Z(By(z),v) = {u €Er:u=wvonB; - Br(z)}

’ / / u)drdy.

It is easy to check that Z(B,.(z),v) is a closed subset of F;. The minimum
of ®p (2),0 on Z(B,(z),v) will be called ¢(B,(z),v) and by M(B,(z),v) we
will call the set of w € Z(B,(z),v) for which ®p (.),(w) = ¢(B,(2),v).

and on this set we define

Pp, (-

Proposition 3.3. For every z € R x [0,1] and € € (0,3) v is the unique

manimum of Pp 2y, on Z(B(z),v).
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The proof will be done in section 5.

We now apply Proposition 3.3 to obtain that v is a weak solution of (AC)
on B(z). For every p € C'(B.(2)) for which supp ¢ C B.(z) we have v+tp €
Z(Be,v) 50 Pp (2)0(v +tp) > Pp (2),(v). As a consequence we get

d

—®5 (1w t
73 2B, (v +tp)

/ VG(Vv)Ve + Fy(z,y,u)pdedy =0

Be(z)

t=0
and therefore v is a weak solution of AC on every B 1 (2).

4. REGULARITY OF WEAK SOLUTIONS

The first problem in proving the regularity results comes from the fact
that the equation (AC) is formulated on R?. To solve it we introduced the
functional I defined using one integral over R x [0, 1] and so we can not state
whether its minimum is a weak solution.

At this moment we can apply Theorem 3.1 of [3] to show that the found
minimum v is Holder continuous.

To obtain a weak solution we used a functional ® defined by integration over
a bounded set. In first step we search for its minimum on a set Z(B,(z),v).
Notice that by definition 3.2 on B%(z) \ B,(z) one has u = v. Therefore we
consider the Dirichlet problem with Holder continuous boundary data.

Well known facts from regularity theory (see for example [10] Theorem 6.1
of chapter 5) say that the solution of this local problem is in fact a classical
C?** solution on B,(z). For that purpose we need growth conditions (G}),
(G3) and (G3). Note that we do not assume anything on the growth of F
whereas in "natural growth conditions” in [10] there are some assumptions
on it. This is due to the fact that when searching for heteroclinic solutions
we know that for s € (0,1) F(x,y,s) is positive, bounded and has bounded
derivatives.

Regularity of a minimum of ®p,_(.), is important in proofs of some lemmas
in Section 5, especially we need a C*® solution in Lemma 5.2 where the
maximum principle is used. Notice that before we prove Proposition 3.3 we
do not know if v is a minimum of ®p_(,) , so now it does not have to be %,
Proposition 3.3 states that unique minimum of ®p ), is in fact equal to v
and therefore the Proposition has to be proved to state that v € C*?,

5. PROPERTIES OF WEAK SOLUTIONS - PROOF OF
PROPOSITION 3.3

In this section some properties of local weak solutions of (AC) will be
derived. In conclusion we will get the proof of Proposition 3.3. The proofs
of Lemmas 5.1, 5.3, 5.4, 5.5 are almost the same as in [1] but we still write
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them in order to show that the more general setting of the problem does not
change the methods.

We already know that 7_rv — 0 (respectively to 1) in L? as k — —oo
(respectively to +00). Due to the regularity of v this convergence can be
replaced by pointwise limits: lim v(x,y) = 0 and xli)riloov(x,y) =1. To

r—r—00
finish the proof of Theorem 2.1 we only need to show the sharp inequalities:
0 <wv<1anduv < 7_yv. This will be done after Lemma 5.3.

Lemma 5.1. For every radius r < 5 there exists w € Z(B,(z),v) such that
Pp, () 0(w) = c(Br(2),0).

Proof. The procedure is almost the same as in the case of finding a weak
solution v in E;. We choose a minimizing sequence {u;} C Z(B,(z),v). This
sequence is bounded in the reflexive space W™ (B 1 (2)), so there exists a
subsequence weakly convergent to some w € Wl’m(B%(z)). As Z(B,.(z),v) is
convex and closed in Wl’m(B%(z)) we get that w € Z(B,(2),v). ®p ()0 is
defined by the integral on a bounded domain so ®p, (.),(w) = ¢(B,(2),v). The
same arguments that we used before show that w is a classical C* solution. [J

Next result is based on Lemma 4.2 of [2].

Lemma 5.2. M(B,(z),v) is an ordered set, i.e. if o, € M(B.(z),v) and
@ F Y than o <P or v > 1 in B.(2).

Proof. Let us define y = max{p, 1} and £ = min{p,1}. Notice that:

D5, ()0(X) + PB(2)0() = P, (2)0(0) + PB,(2)0 (V) = 2¢(B,(2),v)

hence x and & belong to M(B,(z),v). It is also obvious that y > ¢ and if
¢ # ¢ than x # £ By Theorem 2.5.3 of [11] either y > £ or x = £ in
B, (z). If x > ¢ than there is no point zy € B,.(z) where ¢(z9) = () so by
continuity we have ¢ < 9 or ¢ > 1 in B.(z). In the case when x = £ we
easily get ¢ = . U

Lemma 5.3. M(B,(z),v) contains the smallest element (in the sense of the
order defined in Lemma 5.2).

Proof. For every £ € B,(z) take w,(§) = Mi(gf( : )w({). We will prove that
we r(2),v

this infimum is in fact a minimum and thus w, € M(B,(z),v).

Let us assume that there exist & € B,.(z) and w € M (B,(z),v) such that
w,(&) = w(&). By Lemma 5.2 if it were true for £ than w, = w and the
proof is completed.
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If such &, does not exist we take any &, € B,.(z) and a sequence of w, (&)
convergent to w,(&p). Order in M (B,(z),v) makes sequence {w, } nonincreas-
ing. It is also bounded in lem(Bé (2)), hence weakly convergent to w, which

is in M(B,(z),v) (because it is convex and closed in W™ (B,(z))). O

For the next lemma we will need some new notation. Let us define points
zn = 2+ (n,0) for n € Z and a new function v such that for every j € Z we
have v = w,, in B ( ;) and v =0 in R x [0,1] =, ey, Be(2n).

Lemma 5.4. The function v defined above is an element of T'(0,1).

Proof. We prove the inequality v < 7_4v. If it were not true than for
some j there would exist a point (xg,y0) € Bc(z;) such that w., (zo,y0) >
1w, (To,%0) = Wz, (2o + 1,50). For every (v,y) € B: ( ;) we can de-
fine (z,y) = w.,., (x + Ly), $(z.y) = ws,(z,y) and x = max{y), ¢} § =
min{v, ¢}. Inequalities £ = ¢ = v < 7_3v = 1) = x hold on B: (zj) B.(zj).
Moreover 5 S Z(Be(zj)a U) and 5 € Z<Be(zj+1)7 U) S0 (I)Be(zj)(f) _'_CDBg(Z])(X) =
q)Be(Zj)(¢) + CI)BG(ZJ')<¢) = 2C(B6(Zj>7 U) and (I)Be(zj)<X) (I)B (zj+1) (TIX> Con-
sequently, we have x € M(B.(z;),v) and 71x € M (B(zj+1),v). Definition of
v and Lemma 5.2 give x > w,, = ¢ and therefore w_, (o, 0) < Xx(0,%0) <

(0, Y0) = ws,,, (To + 1,70) which contradicts the definition of (zg,y0). O

As a consequence of the above lemma I(v) < I(v) and hence for all j € Z
we have:

// dxdy<// dxdy—// (w,) dv dy = c(be(25))-

Be(z5) Be(z5)

Taking j = 0 we get [[5 . L(v)dzdy = c(be(z)) and taking e = r we have

Up, (2 (v) = c(B:(2)).
The last lemma in this section finishes the proof of Proposition 3.3.

Lemma 5.5. Function v is the only element in Z(B,.(z),v) which minimizes
CI)BT(z)'

Proof. For every domain D C B,(z) we can find a minimizer ¢ of ¥p such
that ¢» = v in B,(z) \ D. We need to show that v is unique and ¥ = v. To
do it we start from the obvious inequality Wp(1)) < Wp(v). This also implies
Wi, () < Wp, o (0). Since 6 € Z(B,(2),v) we get Wp, (1) = Wp,-)(0)
and thus ¢ € M(B,(z),v). As ¢¥ = v in B,.(z) \ D by Lemma 5.2 we have
Y =wvin B,.(z). O
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6. FINISHING THE PROOF OF THEOREM 2.1

We already know that v € E is also an element of I'[0, 1] and therefore v is

a classical solution of (AC). It remains to show sharp inequalities: 0 < v < 1
and 7_1v < v. Analogously to the proof of Lemma 5.2 we find that both
inequalities are consequences of Theorem 2.5.3. of [11].
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