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1. Introduction 30 

 31 

The size effect is a fundamental phenomenon in concrete structures. It denotes that both the: 1) nominal 32 

structural strength (corresponding to the maximal load value reached in the loading process) and 2) 33 

material ductility (ratio between the energy consumed during the loading process after and before the 34 

stress-strain peak) always decrease with increasing member size under tension [1]. These two 35 

deformation process parameters are of major importance for the assessment of the member safety and its 36 

interaction with adjacent structural members. Concrete structures exhibit a strong transition from the 37 

snap-through response in the post-critical phase for small size members to the snap-back response (a 38 

catastrophic drop in strength related to a positive slope in a stress-strain softening branch) for large size 39 

members. There exist several size effect rules for concrete [1]-[3]. The most realistic is the combined 40 

energetic-statistical size effect rule proposed by Bazant [4] that is valid for geometrically similar 41 

structures. However, the formulation of rules of limit load sensitivity  of concrete and reinforced concrete 42 

members relative to both size and arbitrary shape variations is required for engineering applications. This 43 

constitutes a more difficult class of problems requiring an analysis of different failure mechanisms. 44 

 45 

The extensive experimental studies of a size effect were performed for RC beams that were geometrically 46 

similar. A strong size effect was experimentally observed in RC beams without shear reinforcement 47 

wherein diagonal shear-tensile fracture occurred in  [5]-[14]. It was predominantly of the energetic type. 48 

The experimental diagonal failure cracks had in experimental tests similar paths and relative lengths at 49 

the maximum load independently of the beam size. The size effect was also observed in reinforced 50 

concrete beams with shear reinforcement [15]-[17]. In these experiments a diagonal shear-tensile fracture 51 

[15], [16] or crushing of a compressive zone [17] took place in concrete. Thus the use of stirrups did not 52 

suppress the size effect provided the longitudinal and vertical reinforcement yielding did not occur. The 53 

effect of the varying reinforcement ratio on the failure mode in RC beams was experimentally shown by 54 

Carpintieri et al. [18]. The observed failure mode changed from longitudinal reinforcement yielding, 55 

through diagonal tension to compressive zone crushing with increasing reinforcement ratio. However, 56 

only a few papers were devoted to a size effect in RC beams with independently varying heights and 57 

lengths (e.g. [19]). 58 

 59 

In our earlier paper [20], the novel laboratory experiments were described that were carried out on 60 

longitudinally reinforced concrete beams without shear reinforcement subjected to four-point bending. 61 
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RC beams of separately varying height and length were experimentally analyzed to investigate the size 62 

effect on a nominal strength and post-critical brittleness. Beams were scaled in the height direction in the 63 

first test series and in the length direction in the second series. Due to lack of geometrical similarity, two 64 

failure mechanisms were exhibited: flexural failure mechanism with plastic yielding of reinforcement 65 

and brittle shear mechanism in concrete with dominant normal diagonal crack displacements (so-called 66 

shear-tension failure mode) or with simultaneous significant normal and tangential diagonal crack 67 

displacements (so-called shear-compression failure mode). Load-deflection diagrams and crack paths 68 

were registered during experiments. The digital image correlation (DIC) technique was applied to 69 

visualize strain localization on the concrete surface. In addition, the crack opening and crack slip 70 

displacements on the beam surface were measured. The experimental results showed pronounced 71 

differences as compared with strut-and-tie models following ACI [21] and Zhang and Tan [22]. The 72 

alternative formulae based on the modification of these models slightly improved the agreement [20]. 73 

 74 

The goal of the present paper is to offer numerical simulations of the beam response by the finite element 75 

(FE) model and to relate them to our laboratory tests on reinforced concrete beams subjected to four-76 

point bending (with respect to strength and fracture) by taking different failure mechanisms into account. 77 

Usually, the size effect has been investigated in concrete and concrete structural elements that are 78 

geometrically similar and exhibit the same failure mechanism. The attention was paid to the reproduction 79 

of the: 1) size effect related to the beam strength, 2) fracture process and 3) failure modes of diagonal 80 

tension and diagonal shear compression. 81 

 82 

Two-dimensional (2D) finite element (FE) analyses under plane stress conditions were performed with 83 

the coupled elasto-plastic-damage constitutive model for concrete. The damage (e.g. [23]-[25]) and 84 

coupled elasto-plastic damage formulations (e.g. [26-33]) were widely used to describe the concrete 85 

fracture behaviour under various loading conditions. The formulations presented a simplified  isotropic 86 

(e.g. [23]-[26]) or a more realistic anisotropic damage concept (e.g. [26], [27], [29], [30], [33]). 87 

 88 

The formulation in the current paper was enhanced by a characteristic length of micro-structure with the 89 

aid of integral-type non-locality in the softening regime. The non-local theory allows for reproducing 90 

fracture patterns independently of the mesh for both localized and distributed cracking, and the numerical 91 

results are insensitive to the finite element mesh size and alignment. The bond-slip rule between concrete 92 

and reinforcement was assumed in FE analyses. The effect of different  material constants on strength 93 
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and fracture was comprehensively studied. Our focus was on a relationship between tangential and 94 

normal displacements along a critical diagonal crack in RC beams which failed in shear.  95 

 96 

Recently, the analogous constitutive model has been successfully used in investigations of the size effect 97 

and related fracture in geometrically similar concrete beams with basalt reinforcement [34]. This model 98 

was also applied to RC concrete beams under mixed shear-tension failure [35] and composite RC-EPS 99 

slabs under shear failure [36]. In the current paper, the constitutive model for concrete was slightly 100 

improved. 101 

 102 

2. Overview of experimental program 103 

2.1 General information 104 

 105 

The laboratory tests of four-point bending were conducted on rectangular concrete beams with 106 

longitudinal steel ribbed bars without shear (vertical) reinforcement [20]. 107 

 108 

The beams were scaled along either the height D (series ‘1’, Tab.1, Fig.1A,) or length leff (series ‘2’, 109 

Tab.1, Fig.1B). The thickness of all beams was t=0.25 m to avoid differences in the hydration heat effects 110 

that are proportional to the member thickness. The beam deformation and failure were characterized by 111 

two non-dimensional geometric parameters and one size parameter: ηa=a/D, ηb=b/D, ηl=leff/D=2ηa+ηb. 112 

The reinforcement ratio r=Ar/Ab was constant for the varying cross-sectional area Ab of the beam. The 113 

concrete cover (c=4 mm) was large enough to prevent the bond failure of a splitting type. Thus, the 114 

distance from the bar centre to beam bottom was always c’=h-D=50 mm. For two reinforcement layers, 115 

this distance was c’=75 mm. The reinforcement location parameter c=c’/D varied between 0.10-0.28 116 

(series’1’) or was fixed at 0.14 (series ‘2’). 117 

 118 

The beams of the series ‘1’ were scaled along the effective height D in the proportion 1:2:4 with the 119 

constant effective span length leff=2700 mm (Fig.1A, Tab.1). The beams were denoted as S1D18a108, 120 

S1D36a108 and S1D72a108, where the symbol S1 denotes the series ‘1’, D - the effective beam depth 121 

in [cm] and a - the shear zone length in [cm]. The beam S1D36a108 (D=360 mm) was twice as high as 122 

the beam S1D18a108 (D=180 mm) and twice as small as the beam S1D72a108 (D=720 mm). Thus, the 123 

shear zone length a and bending zone length b (distance between two concentrated forces F) were 124 

constant a=1080 mm and b=540 mm, respectively (Fig.1A). The shear span parameter ηa=a/D was 1.5, 125 
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3 and 6, the length parameter ηl=leff/D was 3.75, 7.5 and 15 and the bending span parameter ηb=b/D was 126 

0.75, 1.5 and 3. Each beam height h included 3 identical concrete specimens to verify the result 127 

repeatability (indicated as: S1D18A108_1 - S1D18a108_3, S1D36a108_1 - S1D36a108_3 and 128 

S1D72a108_1 - S1D72a108_3).  129 

 130 

The beams of the series ‘2’ had the same height (D=360 mm) but varying effective span length leff and 131 

shear span a (the latter scaled in the proportion 1:2:3) (Fig.1B, Tab.1). The beams were denoted as 132 

S2D36a36 (a=360 mm), S2D36a72 (a=720 mm) and S2D36A108 (a=1080 mm) with the length 133 

parameter ηl=leff/D=3.5, 5.5 and 7.5, the shear span parameter ηa=a/D=1.0, 2.0 and 3.0 and the bending 134 

span parameter ηb=b/D=1.5. The longest beam from the series '2' (S2D36a108) had the same dimensions 135 

as the beam from the series ‘1’ denoted as S1D36a108. The beam S2D36a36 was as twice as short as the 136 

beam S2D36a72 and the beam S2D36a108 was as twice as long as the beam S2D36a72. Each beam 137 

included 2 identical members (denoted as: S2D36a36_1 - S2D36a36_2, S2D36a72_1 - S2D36A72_2, 138 

S2D36a108_1 - S2D36a36_2). 139 

 140 

In total 15 beams (series ‘1’: 9 beams and series ‘2’: 6 beams) were subjected to four-point bending. The 141 

ratio of the shear span a to the effective height D varied from ηa=a/D=1 up to ηa=6, thus different failure 142 

modes were expected to be developed. The ratio of the bending span b to the effective height D varied 143 

from ηb=b/D=0.75 up to ηb=3 (series ‘1’) and ηb=1.5 (series ‘2’). 144 

 145 

The reinforcement of all beams consisted of ribbed bars of the diameter =20 mm with the mean yielding 146 

stress of y=560 MPa (class B500) and the modulus of elasticity of 205 GPa. The longitudinal 147 

reinforcement ratio was designed as ρL=1.4% (ρL=ASL/(bD), ASL – the cross-section area of longitudinal 148 

reinforcement). Each beam size required a different number of bars depending on the effective depth D. 149 

The beams of D=18 cm and D=36 cm had 2 and 4 bars in one layer, respectively. The beam of D=72 cm 150 

had two layers with 4 bars i.e. 8 bars in total (Fig.1C). In order to avoid the anchorage zone failure, 151 

hooked steel bars were used (Fig.1) with the anchorage length of 130 mm, 310 mm or 670 mm, depending 152 

on the beam height. 153 

 154 

Three accompanying tests were performed, including uniaxial compression of the concrete cubes 155 

(150×150×150 mm3) and splitting tension and elastic compression of the concrete cylinders (=150 mm 156 

and L=150 mm). The measured average characteristic compressive strength on cubes was fc=61.5 MPa. 157 
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Thus, the corresponding concrete class was C45/55. The average characteristic splitting tensile strength 158 

was ft=3.21 MPa. The measured average elastic modulus was E=34.2 GPa. The tests were performed 159 

under displacement-controlled conditions. The steel loading plates were always used in order to avoid 160 

local concrete crushing. Their area was always the same, i.e. 100×250 mm2 (la×t). The area of support 161 

(bearing) plates (lb×t) had also the same size. During the test, the vertical force and displacements were 162 

measured. The true deflection at the mid-span and support displacement were registered by means of 163 

linear variable displacement transducers (LVDT’s). The steel strains were traced with strain gauges 164 

placed on reinforcement bars at the beam mid-span. The front side of the beam was prepared to track 165 

cracks and to measure their width with a simple microscope. A detailed description including the crack 166 

opening ω and slip displacements δ were calculated based on measurements with a digital extensometer 167 

of DEMEC type with the base of 100 mm. The measuring mesh consisting of equilateral triangles which 168 

covered the area where a critical diagonal crack was expected to appear. The number of triangles varied 169 

between particular series depending on the beam size. During tests, the elongation of triangle sides (AB, 170 

AC and BC) was measured and the crack trajectory was registered. 171 

 172 

2.2 Experimental results on strength and fracture 173 

 174 

The shear strength of beams evidently decreased with increasing both parameters a=a/D and l=leff/D. 175 

It also decreased with increasing parameter b from 0.75 to 1.5 in beams with varying effective depth 176 

and constant effective length. The shear strength’s increase was extremely large (250%) in the range of 177 

a=1.0 (l=3.5) and a=1.5 (l=3.75). 178 

 179 

Two different failure mechanisms were observed in the RC beams (Fig.2): plastic flexural failure 180 

mechanism characterized by reinforcement yielding for a=6 (l=15, b=3) (Fig.2a) and shear failure 181 

mechanism in concrete for a=1-3 (l=3.5-7.5, b=0.75-1.5) (Figs.2b-f). For the lower value of a=2-3 182 

(l=5.5-7.5, b=1.5), the so-called diagonal tension failure mode dominated (Figs.2b and 2d), i.e. the 183 

normal displacements were always larger than the tangential displacements along the critical diagonal 184 

crack. In the case of the lowest values of a=1-2 (l=3.5-5.5, b=0.75-1.5), so-called shear-compression 185 

failure mode dominated (Figs.2c, 2e and 2f), i.e. the normal displacements were always smaller than the 186 

tangential displacements in the top beam region of the critical diagonal crack. The distance between the 187 

critical diagonal crack and beam support dc related to the shear span a varied between dc/a=0.5 for low 188 

beams (a=3) up to as dc/a=0 for high beams (a=1). For the RC beam S2D36a36, concrete spalling in 189 
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the compressive zone above the critical diagonal crack was also observed.  190 

 191 

For high beams, the strut-and-tie models following ACI [20] and Zhang and Tan [21] overestimated the 192 

shear strength for a=1.5-2 (by 20%-100%) and underestimated for a=1 (by 5%-25%). The difference 193 

between the experimental and theoretical results by ACI and Zhang and Tan increased with decreasing 194 

a. The alternative formulae [19] based on the modification of the strut-and-tie model significantly 195 

improved the theoretical results in the range of a=1.5-2, but at the same time strongly worsened the 196 

results for a=1. 197 

 198 

The discrepancies between the experimental and theoretical results (based on the strut-and-tie models) 199 

according to [19] were caused by: a) the varying strut widths and strut inclinations for all high beams 200 

with a=1-2 and b) the different shapes of compressive struts for the beams with a=2. The clear 201 

disadvantage of strut-tie models was that they were not able to distinguish between 2 different failure 202 

modes in shear (diagonal tension and shear compression) which affected the beam strength to a different 203 

grade.  204 

 205 

3. Numerical approach 206 

3.1 Concrete description 207 

 208 

The coupled isotropic elasto-plastic-damage constitutive model was proposed for monotonic and cyclic 209 

loading of concrete [35]-[39]. Plasticity and scalar damage were combined assuming the so-called strain 210 

equivalence hypothesis [40]. The elasto-plasticity was defined in terms of the effective stress according 211 

to 212 

 213 

                                                                                   𝜎𝑖𝑗
𝑒𝑓𝑓

= 𝐶𝑖𝑗𝑘𝑙
𝑒 𝜀𝑘𝑙 .                                                                    (1) 214 

 215 

where  
eff

ij  is the effective stress tensor, 𝐶𝑖𝑗𝑘𝑙
𝑒  denotes the elasticity tensor for the undamaged material 216 

and 𝜀𝑘𝑙 is the strain tensor. In an elasto-plastic regime, the failure surface was assumed as a combination 217 

of two surfaces [41], [42]. In compression, the shear yield surface based on the linear Drucker-Prager 218 

criterion with isotropic hardening and softening was used [43] 219 

 220 
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                                                         𝑓1 = 𝑞 + 𝑝 tan𝜑 − (1 −
1

3
tan𝜑)𝜎𝑐(𝜅1) ,                                               (2) 221 

 222 

where q is the Mises equivalent deviatoric stress, p denotes the mean stress and 𝜑 is the internal friction 223 

angle. The evolution of material hardening/softening related to growing effective strain 𝜅1 was defined 224 

by the uniaxial compression yield stress 𝜎𝑐(𝜅1). The internal friction angle 𝜑 was assumed as [43] 225 

 226 

                                                                                 tan𝜑 =
3(1 − 𝑟𝑏𝑐

𝜎 )

1 − 2𝑟𝑏𝑐
𝜎  ,                                                            (3) 227 

 228 

where 𝑟𝑏𝑐
𝜎  is the ratio between the biaxial compressive strength and uniaxial compressive strength (𝑟𝑏𝑐

𝜎 =229 

1.2). The invariants q and p are 230 

 231 

                                                              𝑞 = √
3

2
𝑠𝑖𝑗𝑠𝑖𝑗     and      𝑝 =

1

3
𝜎𝑘𝑘 ,                                                        (4) 232 

 233 

where 𝜎𝑖𝑗 is the stress tensor and 𝑠𝑖𝑗 denotes the deviatoric stress tensor. The flow potential was defined 234 

as 235 

 236 

                                                                                𝑔1 = 𝑞 + 𝑝  tan𝜓 ,                                                                 (5) 237 

 238 

where 𝜓 is the dilatancy angle (𝜓 ≠ 𝜑). For the sake of simplicity, the constant values of 𝜑 and 𝜓 were 239 

assumed. In tension, the Rankine criterion was used with a yield function 𝑓2 [41], [42] with isotropic 240 

softening defined as 241 

 242 

                                                                  𝑓2 = max{𝜎1, 𝜎2, 𝜎3} − 𝜎𝑡(𝜅2) ,                                                      (6)  243 

 244 

where 𝜎𝑖– the principal stress, 𝜎𝑡(𝜅2) – the tensile yield stress and 𝜅2 – the hardening/softening parameter 245 

equal to the maximum principal plastic strain 𝜀1
𝑝
. The associated flow rule was assumed. The edges and 246 

vertices in Rankine yield function were taken into account by the interpolation of 2-3 plastic multipliers 247 

according to the Koiter’s rule. The same procedure was adopted in the case of combined tension (Rankine 248 

criterion) and compression (Drucker-Prager criterion). For both  yield stress functions 𝜎𝑐(𝜅1) and 𝜎𝑡(𝜅2), 249 
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the linear hardening was assumed with the plastic hardening modulus 𝐻𝑝 = 𝐸/2. The graphic 250 

interpretation of failure surface for the coupled Drucker-Prager-Rankine criterion is presented in Fig.3. 251 

 252 

The material degradation was calculated within isotropic damage mechanics, independently in tension 253 

and compression using one equivalent strain measure𝜀̃ by Mazars [24] (𝜀𝑖 - principal strains) 254 

 255 

                                                                           𝜀̃ = √∑〈εi〉2

i

  .                                                                        (7) 256 

 257 

The equivalent strain measure 𝜀̃ may be defined in terms of elastic or total strains [41]. The stress-strain 258 

relationship was represented by the following formula 259 

 260 

                                                                              𝜎𝑖𝑗 = (1 − 𝐷)𝜎𝑖𝑗
𝑒𝑓𝑓
,                                                                 (8) 261 

 262 

with the term ‘1-D’ defined as: 263 

 264 

                                                                 (1 − 𝐷) = (1 − 𝑠𝑐𝐷𝑡)(1 − 𝑠𝑡𝐷𝑐)  ,                                                     (9) 265 

where 266 

                                                  𝐷𝑡 = 1 −
𝜅0

𝜅𝑡
(1 − 𝛼 + 𝛼𝑒−𝛽(𝜅𝑡−𝜅0))  ,                                                       (10) 267 

                                                 𝐷𝑐 = 1 − (1 −
𝜅0

𝜅𝑐
) (0.01

𝜅0

𝜅𝑐
)
𝜂1
− (

𝜅0

𝜅𝑐
)
𝜂2
𝑒−𝛿𝑐(𝜅𝑐−𝜅0)  ,                              (11) 268 

                                            𝑠𝑡 = 1 − 𝑎𝑡ω (𝜎𝑖𝑗
𝑒𝑓𝑓
)      and      𝑠𝑐 = 1 − 𝑎𝑐 (1 − ω (𝜎𝑖𝑗

𝑒𝑓𝑓
))  ,                      (12) 269 

                                                 𝜅𝑡 = 𝜅ω (𝜎𝑖𝑗
𝑒𝑓𝑓
)       and       𝜅𝑐 = 𝜅 (1 − ω (𝜎𝑖𝑗

𝑒𝑓𝑓
))  ,                                 (13) 270 

                                                            𝜔 (𝜎𝑖𝑗
𝑒𝑓𝑓
) = {

0                       if    𝜎𝑖
𝑒𝑓𝑓

= 0                                      

∑〈𝜎𝑖
𝑒𝑓𝑓〉

∑|𝜎𝑖
𝑒𝑓𝑓
|
           otherwise       .                                    

  (14) 271 

 272 

The damage functions Dt and Dc describe the damage evolution under tension [44] and compression [45] 273 

by means of the following material constants: α, β, 1, 2 and c. The threshold parameter  was defined 274 

as the maximum of the equivalent strain measure 𝜀̃ reached during the load history up to time t: 𝜅(𝑡) =275 

max
𝜏<𝑡

𝜀̃(𝜏). In contrast to our previous constitutive concrete model [35]-[39], the damage under tension 276 
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was here separately controlled in FE simulations by the threshold parameter t and the damage under 277 

compression separately by the threshold parameter c. The damage function under tension Dt solely 278 

evolved for the threshold parameter 𝜅𝑡 ≥ 𝜅0 and the damage function under compression Dc evolved 279 

only for the threshold parameter 𝜅𝑐 ≥ 𝜅0. For the threshold parameters 00 ,   ct , there was no 280 

damage growth under tension and compression ( 0== ct DD ). The splitting factors are at and ac, and 281 

𝜔(𝜎𝑖𝑗
𝑒𝑓𝑓
) denotes the stress weight function [46]. Thus, under pure tension the stress weight function was 282 

𝜔(𝜎𝑖𝑗
𝑒𝑓𝑓
) = 1 and the growth of damage under pure tension was solely influenced by the evolution of Dt. 283 

The Mac Cauley bracket in Eq.14 is defined as 〈𝑥〉 = (𝑥 + |𝑥|) 2⁄ . The constitutive model with a 284 

different stiffness in tension and compression and a positive-negative stress projection operator to 285 

simulate crack closing and crack re-opening is thermodynamically consistent. It shares main properties 286 

of the model by Lee and Fenves [46], which was proved to be consistent with thermodynamic principles 287 

(plasticity is defined in the effective stress space, isotropic damage is used and the stress weight function 288 

is continuous). Carol and Willam [47] showed that for damage models with crack-closing-re-opening 289 

effects, only isotropic formulations did not suffer from spurious energy dissipation under non-290 

proportional loading in contrast to anisotropic ones. 291 

 292 

Due to the small thickness of beam , the plane stress condition (out of plane stress components equal to 293 

zero) was a natural choice for numerical modelling. In plasticity the plane stress-projected method was 294 

used and the plane stress elasticity matrix was applied in the analysis. For calculations of the equivalent 295 

strain measure, the out-of-plane normal strain was determined. In tension, the result differences between 296 

plane strain and plane stress were negligible. In compression, the strength for plane strain state was higher 297 

by about 20% than for plane stress state due to the presence of the out of plane stress. 298 

 299 

In the case of linear hardening model, the following 16 material constants are required: E, υ, 0, α, β, 1, 300 

2, c, at, ac, , , initial yield stresses 𝜎𝑦𝑡
0  (tension) and 𝜎𝑦𝑐

0  (compression) and plastic hardening moduli 301 

Hp (in compression and tension). The quantities 𝜎𝑦𝑡
0  (initial yield stress during hardening) and 0 are 302 

responsible for the peak location on the stress-strain curve and a simultaneous activation of the plasticity 303 

and damage criteria. The shape of the stress-strain curve in softening is influenced by the constant β in 304 

tension, and by the constants c and 2 in compression. The stress-strain curve at the residual state is 305 

affected by the constant  in tension and by the constant 1 in compression. Since the compressive 306 

stiffness is recovered upon the crack closure as the load changes from tension to compression, and the 307 
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tensile stiffness is not recovered due to compressive micro-cracks, the damage splitting factors ac and at 308 

may be taken for the sake of simplicity as at=0 and ac=1.0. The equivalent strain measure 𝜀̃ (Eq.7) was 309 

defined in terms of total strain following [40]. A simple cyclic tension-compression-tension element test 310 

was performed to show the model response under the load reversal (Fig.4). The 1D concept of the 311 

stiffness recovery with the limit damage splitting factors at and ac (value 0 or 1) was shown in Fig.4a. 312 

Figure 4b presents the stress-strain curves for two full load cycles with three different sets of the damage 313 

splitting factors (at=0 and ac=1.0, at=0 and ac=0.8 and at=0.2 and ac=1.0). The load began in tension, 314 

next it changed to compression (below the compressive strength), then back to tension and finally to 315 

compression (above the compressive strength) and tension. The stress-strain diagrams for two different 316 

loading scenarios are shown in Fig.4c with the damage splitting factors at=0.2 and ac=0.8. For the first 317 

loading scenario (blue curves), the load started in tension (curve '1'), then it moved to compression above 318 

the strength limit (curve '2’) and next back to tension (curve '3'). For the second loading scenario (red 319 

curves), the load started in compression below the compressive strength (curve '1'), next moved to tension 320 

above the tensile strength (curve '2'), and then back to compression above the compressive strength (curve 321 

'3') and to tension (curve '4').  322 

 323 

The results of Fig.4 show the different stiffness degradation in compression and tension (the degradation 324 

was stronger in tension). The effect of the damage splitting factors at and ac on the stress-strain diagram 325 

under tension-compression-tension-compression was more noticeable in compression (Fig.4b). The 326 

compressive stiffness was recovered upon the crack closure as the load moved from tension to 327 

compression, and the tensile stiffness was not recovered as the load moved from compression to tension 328 

due to crushing micro-cracks with ac=1 and at=0 (Fig.4b). For ac=0.8 and at=0 (Fig.4b), a decrease of 329 

the factor ac from 1.0 to 0.8 lead to a not-full recovery of the compressive stiffness in a transition from 330 

tension to compression. An increase of the factor at from 0.0 to 0.2 (at=0.2 and ac=1.0, Fig.4b) contributed 331 

to the slightly larger tensile stiffness during a transition from compression to tension. The influence of 332 

stiffness degradation due to compressive cracks is seen in Fig.4c (at=0.2 and ac=0.8). When the load 333 

moved from compression to tension (red curve '2'), the tensile stiffness was not fully recovered due to 334 

damage in compression. The compressive stiffness was not also fully recovered during a transition from 335 

tension to compression (blue curve '2'). The constitutive model was carefully validated in element tests 336 

[37], e.g. for uniaxial cyclic compression and four-point cyclic bending under tensile failure (Fig.5). The 337 

results of numerical calculations during cyclic element tests were in satisfactory agreement with the 338 

experimental outcomes [48], [49] (Fig.5). 339 

 340 
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Figure 6 shows the stress-strain diagrams under cyclic uniaxial tension and cyclic uniaxial compression 341 

for the different important material constants η2, δc, β, and κ0 (which were independently changed). The 342 

stress-strain results indicate that the parameter κ0 is responsible for a peak location and a simultaneous 343 

activation of plastic and damage criteria. The parameter β affects model response in softening during 344 

tension and parameters δc and η2 affect model response in softening during compression. In addition the 345 

parameter η2 affects the hardening curve in compression. The effect of two other parameters (α and η1) 346 

describing the stress-strain curve at the residual state is negligible. 347 

 348 

The material constants E, ν, κ0, β, α, η1, η2, δc and two hardening yield stress functions should be 349 

determined for concrete by means of two independent simple monotonic tests: uniaxial compression test 350 

and uniaxial tension (or three-point bending) test for the already fixed damage splitting factors at and ac. 351 

The precise determination of the damage scale factors at and ac requires one full cyclic compressive test 352 

and one full cyclic tensile (or three-point bending) test. In addition, the values of  and  can be 353 

determined from triaxial compression tests [40]. The material constants were fitted to the experimental 354 

uniaxial compressive strength of concrete fc=61.5 MPa, experimental tensile strength of concrete 355 

cylinders during splitting tension ft=3.2 MPa and experimental modulus of elasticity of E=34 GPa. Due 356 

to the lack of laboratory full stress-strain curves during uniaxial compression and uniaxial tension, the 357 

tensile Gf and the compressive fracture energy Gc were assumed based on the literature data. The 358 

following set of the material parameters was thus assumed for monotonic FE calculations: E=34 GPa and 359 

ν=0.2, 𝜎𝑦𝑡
0 = 3.3 MPa, 𝜎𝑦𝑐

0 = 60 MPa, Hp=17 GPa, 0=9×10-5, =14º [40], =8º, =85, =0.95, 360 

1=1.15, 2=0.15 and c=150 with at=0 and ac=1. Using the assumed material constants, the tensile 361 

fracture energy was Gf=100 N/m (typical value for concrete) and compressive fracture energy 362 

Gc=4000 N/m (Gc/Gf=40). The concrete behaviour during simple cyclic element tests in uniaxial 363 

compression, tension and simple shear with the assumed material parameters is shown in Fig.7. The 364 

calculated maximal uniaxial compressive strength was fc=60 MPa (Fig.7a), maximal uniaxial tensile 365 

strength was ft=3.2 MPa (Fig.7b) and maximal shear strength was max=11 MPa (max√𝑓𝑐𝑓𝑡) (Fig.7c). 366 

 367 

3.1 Non-local approach 368 

 369 

Standard constitutive laws are not able to describe properly strain softening of the material when using 370 

FEM that results in pathological sensitivity of the numerical solution to the size and alignment of finite 371 

elements. Since these laws contain no information about the size and spacing of localization zones, their 372 
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enrichment by a characteristic length of micro-structure (related to the size and spacing of material 373 

heterogeneities) is necessary. The characteristic length restores also the well-posedness of boundary 374 

value problems and makes the FE results mesh-independent. An integral-type non-local theory in the 375 

integral format was used as a regularization technique in order to describe properly strain localization 376 

and to capture a deterministic size effect (dependence of the nominal strength on the structure size) [50]-377 

[53]. In this approach, the principle of local action does not hold. The introduction of non-locality does 378 

not violate thermodynamic principles [54]. In the calculations the equivalent strain measure the 𝜀̃ in 379 

damage region was replaced by its non-local definition 𝜀 ̅[55] 380 

 381 

                                                              𝜀 ̅ =
∫ 𝑤(‖𝒙 − 𝝃‖)𝜀̃(𝝃)d𝝃
𝑉

∫ 𝑤(‖𝒙 − 𝝃‖)d𝝃
𝑉

 .                                                                (15) 382 

 383 

The Gauss distribution function was used as a weighting function w [50] 384 

 385 

                                                                          𝑤(𝑟) =
1

𝑙𝑐√𝜋
𝑒
−(
𝑟
𝑙𝑐
)
2

 ,                                                                 (16) 386 

 387 

where lc is a characteristic length of micro-structure and the parameter r denotes the distance between 388 

material points. The averaging in Eq.16 was restricted to a small representative area around each material 389 

point (the influence of points at the distance of r=3×lc was only of 0.01%). The function in Eq.15 satisfies 390 

the normalizing condition [50]. In order to accelerate the calculations, the non-local averaging was 391 

performed solely in the neighbourhood of integration points (limited to the distance of 3lc). Different 392 

techniques (e.g. symmetric local correction approach, distance-based and stress-based model) may be 393 

used to calculate softening non-local parameters near boundaries in order to remove an excessive energy 394 

dissipation (particularly pronounced for notched specimens) [55], [56]. The distance-based model seems 395 

to be the most realistic since it provides a good agreement for both unnotched and notched beams with 396 

the same set of parameters [56]. When calculating non-local quantities close to notches the so-called 397 

“shading effect” is considered [51], i.e. the averaging procedure considers the notches as an internal 398 

barrier that is shading a non-local interaction. In the case of a symmetry-axis, the material points on the 399 

other side of the symmetry axis are also considered (a mirror reflection is taken into account at the 400 

distance of 3×lc). The objectivity of numerical results for RC structural elements within the non-local 401 
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approach was shown in [57] and [58]. The 3D calculation results within the non-local approach were 402 

demonstrated e.g. in [35], [41], [42], [67].  403 

 404 

The characteristic length lc is mainly determined with an inverse identification process of experimental 405 

data [59], [60]. The measured width of the localization zone in plane and reinforced concrete beams 406 

under bending was about wlz3.5 mm (0.25 times the maximum aggregate size and 1.5 times the mean 407 

aggregate size) on the beams’ surface based on the digital image correlation (DIC) results [61]. The 408 

characteristic length lc of micro-structure should be thus assumed for concrete within isotropic elasto-409 

plasticity and isotropic damage mechanics as about lc=1.2-1.5 mm. i.e. lc3wlz [57], [60]. In order to 410 

obtain totally mesh-independent results, the element mesh size se should be smaller or equal to se=2×lc 411 

[57], [60]. The numerical results of strain localization in different RC structural elements (beams, 412 

columns, walls, corbels) by using a non-local approach in softening were discussed among others in [34]-413 

[36], [41], [42], [57], [58], [62]. The numerical results indicated that for greater lc, the higher were both 414 

strength and ductility of concrete members. The calculations with lc=1.2-1.5 mm would essentially 415 

lengthen the computation time. Therefore we have assumed lc=5 mm in our FE analyses that is a limit 416 

value in order to obtain realistic results of the location and inclination of localized zones in concrete 417 

members [57]. 418 

 419 

3.2 Description of reinforcement and bond-slip law 420 

 421 

In order to simulate the behaviour of steel bars, an elastic-perfectly plastic constitutive model was 422 

assumed with the modulus of elasticity of Es=205 GPa and yield stress of 𝜎𝑦 = 560 MPa. All 423 

longitudinal bars were modelled as one-dimensional truss elements. For describing the interaction 424 

between concrete and reinforcement, a bond-slip law was defined. The interface with a zero thickness 425 

was assumed along a contact line where a relationship between the shear traction and slip was introduced. 426 

In general, this relationship is complex and depends on several factors (e.g. concrete class, concrete 427 

cover, bar diameter, bar rib height and bar rib spacing). Two different bond-failure mechanisms may 428 

appear connected to a pull-out or splitting mode. The relationship between the bond shear stress τ and 429 

slip  followed CEB-FIP Code [63] (Fig.8). This bond-slip law describes 4 different phases by taking 430 

hardening/softening into account in the relationship . A similar bond-slip relationship was presented in 431 

[64], based on a local fracture energy approach following earlier extensive research works on the bond-432 

slip behaviour. We assumed the following basic bond values in FE simulations: max=10 MPa, f=3 MPa, 433 
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1=1 mm, 2=2 mm, 3=5 mm and α=0.2 (Fig.8), based on our pull-out tests in the concrete block with 434 

steel bars of the diameter =12 mm [34], [65] (the pull-out tests with steel bars of =20 mm were not 435 

carried out). Since the calculated bond stresses b were clearly below max (based on preliminary 436 

simulations), the effect of the bar diameter  on max was neglected, thus 437 

 438 

                                    𝜏𝑏 =

{
  
 

  
 𝜏𝑚𝑎𝑥 (

𝛿

𝛿1
)
𝛼

                                                     0 < 𝛿 ≤ 𝛿1

𝜏𝑚𝑎𝑥                                                                 𝛿1 < 𝛿 ≤ 𝛿2

𝜏𝑚𝑎𝑥 − (𝜏𝑚𝑎𝑥 − 𝜏𝑓)
𝛿 − 𝛿1
𝛿3 − 𝛿2

                       𝛿2 < 𝛿 ≤ 𝛿3

𝜏𝑓                                                                               𝛿3 < 𝛿

.                           (17)  439 

 440 

In addition, the calculations were carried out with the different parameters I (Fig.8) and perfect bond.  441 

The constitutive model for concrete was implemented into the commercial finite element code Abaqus 442 

[43]. The non-local averaging was performed in the current configuration. This choice was governed by 443 

the fact that element areas in this configuration were automatically calculated by Abaqus [43]. Due to 444 

the access lack to information on integration points stored internally by Abaqus, a special technique was 445 

applied to perform non-local averaging by means  of the UMAT (user constitutive law definition) 446 

subroutine. Two FE-meshes with the identical topology (on the same set of nodes) were defined. The 447 

finite elements from the first mesh were first called in an iteration (they had lower labels). They gathered 448 

information about coordinates of integration points, current total strains (to calculate equivalent strains) 449 

and a volume associated with integration points. They had no stiffness and always returned a zero force 450 

vector, so they did not affect the FE results. Next the finite elements from the second mesh (with higher 451 

labels) were called. They used the information gathered by elements from the first mesh (and stored in a 452 

globally accessed Fortran variable) to calculate non-local quantities and return a stress vector. 453 

 454 

4. Comparison between FE model responses and test results 455 

 456 

The FE analyses were performed for experimental reinforced concrete beams under plane stress 457 

conditions. In the FE calculations, some simplifications were assumed. First, 2D calculations were 458 

carried out and the half part of beams was analyzed only (Fig.9) in order to strongly reduce the 459 

computation time. Thus, a symmetric failure mode was taken into account in contrast to the experimental 460 

results. In order to capture a statistical size effect, the full beam should be taken into account with a 461 
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statistical distribution of the concrete tensile strength using a correlated random field [65]. However, the 462 

effect of a statistical distribution of the concrete tensile strength on the location of the critical diagonal 463 

crack was insignificant [65].  464 

 465 

In the present simulations, the 2D meshes consisting of 57,700-203,500 plane stress triangular elements 466 

with linear shape functions in the so-called ‘union jack pattern’ were used to avoid locking (Fig.9). The 467 

size of quadrilateral elements was very small (se=5 mm) and was equal to lc=5 mm (Fig.9). 468 

 469 

4.1 Force-displacement curves 470 

 471 

The FE results of force-displacement curves were compared to the experiments in the plots of Fig.10 (for 472 

a=1-6). The experimental ultimate vertical forces were well reproduced in the FE analyses for the same 473 

failure mode (Tab.2). The maximum difference was 0.5-7.5% (Tab.2). The largest difference was for the 474 

highest beam S2D36a72_2 (a=2) - 7.5% (Fig.10e). Note that both the shear-tension failure and shear-475 

compression failure might occur in the experiment for a=2. However, in the FE calculations, the shear-476 

compression failure was solely reproduced for this beam. Therefore the calculated shear strength for 477 

S2D36a72_1 (a=2) was significantly too high (47.4%) due to the different failure mode (Fig.10e). The 478 

softening (post-peak) modulus, calculated as the inclination tangent of the force-deflection curve to the 479 

horizontal after the peak force, defined as 𝐸𝑠 = |∆𝐹 ∆𝑢⁄ |, (Fig.10) increased with decreasing parameter 480 

a for a3, from Es=40-230 kN/mm for a=3 up to Es=1400-1600 kN/mm for a=1-1.5. 481 

 482 

In the numerical analyses, the mobilized bond stress b between concrete and reinforcement (Eq.17, 483 

Fig.8) was located always on the hardening curve of Fig.8 below the plateau (b<max). The maximum 484 

bond stress was between 7-8 MPa (large beams) and 4-6 MPa (small beams), i.e. <max=10 MPa. 485 

 486 

Figure 11 presents the calculated shear strength c=Vmax/(tD) (Vmax=0.5Fmax) with increasing parameters 487 

ηa and ηl as compared to the experimental values. The calculated results were also compared with the 488 

shear strength according to our strut-and-tie model, being an improved alternative to the ACI approach 489 

[21] (the model was described in [20]) 490 

 491 
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                                               𝜏𝑐 =
1 − 𝜂𝑐
𝜂𝑎

𝜌𝑙𝑓𝑦[𝜂𝑎
2 + (1 − 𝜂𝑐)

2]

𝜂𝑎2 + (1 − 𝜂𝑐)2 +
1
2𝜂𝑐

𝜌𝑙𝑓𝑦
𝑓𝑐

(1 − 𝜂𝑐)2
 ,                                      (18) 492 

 493 

where fy - the yield stress in reinforcement. 494 

 495 

The agreement between the numerical and experimental results is satisfactory. The effective failure stress 496 

c increased with increasing depth D due to a different failure mode but decreased with increasing span 497 

ratio ηa. In the series ‘1', the mean experimental value was c=1.34 MPa (ηa=6), c=1.35 MPa (ηa=3) and 498 

c=2.86 MPa (ηa=1.5) for the beams S1D18a108, S1D36a108 and S1D72a108 (the numerical values 499 

were: 1.36 MPa, 1,39 MPa and 3.15 MPa, respectively) (Fig.11). In the series ‘2’, the measured shear 500 

strength decreased with increasing shear span a and effective length leff from c=7.39 MPa (ηa=1) to 501 

c=2.11 MPa (ηa=2) and next to c=1.31 MPa (ηa=3) for the beams S2D36a36, S2D36a72 and S2D36a108 502 

(the numerical values were: 7.26 MPa, 2.62 MPa and 1.39 MPa, respectively) (Fig.11). Equation 18 503 

yielded the realistic shear strength results in the range of a1.5 as compared to the experimental and 504 

numerical outcomes. However, for a=1 it provided a too small assessment of the shear strength. 505 

 506 

4.2 Strain localization zones 507 

 508 

Figures 12 and 13 show the contours of the non-local equivalent strain measure 𝜀 ̅ (Eq.15) with the 509 

attached scale as compared with the experimental cracks pattern (marked as lines). The experimental 510 

critical diagonal crack was marked by the red arrow and the numerical critical diagonal localization zone 511 

was marked by the yellow arrow. For the sake of clarity, the longitudinal steel bars were removed. The 512 

calculated strain localization zones were obviously symmetric in contrast to the experimental cracks 513 

(Figs.12 and 13). However the overall characteristic of failure modes (reinforcement yielding or concrete 514 

shear mechanism) was satisfactorily reflected in calculations. The geometry of localized zones from FEM 515 

satisfactorily matched the experimental crack pattern (Figs.12 and 13), although some differences 516 

existed. In general, the differences became greater with decreasing a. The critical localized zone was 517 

too curved for the beam S1D36a108 (D=360 mm, ηa=3). The critical localized zone was located too close 518 

to the support for S1D36a108 (D=360 mm, ηa=3) and too far from the support for S1D72a108 (D=720 519 

mm, ηa=1.5), S2D36a72_1 (Leff=1980 mm, ηa=2) and S2D36a36 (Leff=1260 mm, ηa=1).  520 

 521 
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The calculated inclination of the critical diagonal localized zone (ηa2) matched well the mean 522 

experimental crack values (Fig.14). However for ηa1.5 it was slightly too steep (47-49° against 42-43°). 523 

Note that due to 2D simulations, 3D effects (expressed by concrete spalling due to the high horizontal 524 

compressive force (ηa=1), Fig.13c) could not be modelled.  525 

 526 

The number of localized zones in FE simulations was slightly higher than in experiments. The average 527 

spacing of calculated localized zones (main and secondary) along the beam bottom was smaller by about 528 

9-27% as compared with the experimental average crack spacing (main and secondary) (Tab.3). The 529 

highest differences were about 27% for beam S2D36a36 (Fig.13c) and 20% for beam S1D72a108 530 

(Fig.12c). They were caused by the fact that the assumed tensile fracture energy was too high; the smaller 531 

tensile fracture energy increased the crack spacing (see Section 5.1, Figs.18 and 19).  532 

 533 

The experimental mean normalized height of the compressive zone at the beam top hc/D in the shear and 534 

bending domain against ηa prior to the failure as compared to the numerical results is described in Fig.15. 535 

The agreement between experimental and numerical results is satisfactory. In the shear domain, the 536 

experimental height hc varied from 5 cm up to 7 cm and in numerical calculations from 4.8 up to 9.2 cm. 537 

The highest difference was for ηa=1. In the bending domain, the experimental height hc varied from 538 

8.5 cm up to 30 cm in comparison in view of 9 cm up to 25 cm in calculations. The highest difference 539 

was for ηa=1.5.  540 

 541 

4.3 Displacements along critical diagonal crack 542 

 543 

The calculated surface displacements along the mid-line in the critical diagonal localization zone (Figs.16 544 

and 17) were only qualitatively compared with the experimental crack displacements due to two facts: a) 545 

the displacements were calculated at slightly different points than the measured ones due to differences 546 

between FE analyses and experiments and b) the displacement calculations were carried out within 547 

continuum mechanics while the discrete cracks occurred in experiments (thus a direct comparison was 548 

not possible). The comparison was performed for the beam S1D36a108 (with the diagonal shear-tension 549 

failure mode) (Fig.16) and S1D72a108 (with the diagonal shear-compression failure mode) (Fig.17) for 550 

two points along the critical shear zone. In addition, the evolution of the critical crack/localization zone 551 

width along its length was presented in Fig.18 for the beams S1D36a108 and S1D72a108, based on the 552 
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results at three points along the crack length (at reinforcement, at the beam mid-height and at the upper 553 

beam part).  554 

 555 

In the case of the beam S1D36a108 (a=3), the normal displacement  along the entire critical diagonal 556 

localized zone was larger than the tangential displacement  (Fig.16) that was consistent with our 557 

experimental outcomes [19]. For the beam S1D72A108 (a=1.5), the tangential crack displacement  558 

was higher than the normal one  along the critical diagonal localized zone in the upper beam region 559 

(Fig.17) as in the experiments [19]. The calculated widths of the critical localization zone were smaller 560 

than the experimental widths of the critical crack for both the beams (Fig.18). 561 

 562 

5. Parametric numerical study 563 

5.1 Effect of different material constants of concrete 564 

 565 

The impact of the different material constants on the behaviour of reinforced concrete beams is shown 566 

for the beam S1D36a108 (a=3) (Fig.19) and beam S1SD72a108 (a=1.5) (Fig.20). The different 567 

material constants were assumed, which controlled the damage under tension (=60 instead of =85), 568 

damage under compression (η2=0.20 and δc=250 instead of η2=0.15 and δc=150) and threshold parameter 569 

0=7×10-5 (instead of 0=9×10-5). The remaining material constants (listed in Section 4) had a smaller 570 

impact and were kept constant. In addition, one calculation was also performed for the case when elasto-571 

plasticty and damage were both switched off under compression. The decreasing parameter  572 

corresponded to a slight increase of the tensile fracture energy (from Gf=100 N/m up to Gf=120 N/m). 573 

The increasing parameters η2 and δc were equivalent to the decrease of the compressive strength and 574 

compressive fracture energy (from fc=60 MPa and Gc=4000 N/m down to fc=50 MPa and Gc=3000 N/m). 575 

The reduction of the threshold parameter 0 corresponded to the lower tensile strength and tensile fracture 576 

energy (from ft=3.2 MPa and Gf=100 N/m down to ft=2.6 MPa and Gf=80 N/m). 577 

 578 

The impact of the tensile strength and tensile fracture energy was more pronounced for the beam 579 

S1D36a108 (a=3 with the diagonal tensile failure mode) than for S1D72a108 (a=1.5). In contrast, the 580 

impacts of the compressive strength and fracture energy were most significant for the beam S1D72a108 581 

(a=1.5 with the shear compression failure mode). 582 

 583 
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For the low beam S1D36a108 (a=3), the maximum vertical force became larger with increasing tensile 584 

fracture energy and became smaller with decreasing compressive strength and fracture energy (Fig.19). 585 

The decreasing threshold parameter 0 (lower tensile strength and tensile fracture energy) lead obviously 586 

to a pronounced decrease of the ultimate vertical force (about 15%). The distance of inclined localized 587 

zones from the support increased with decreasing parameter  and increasing parameters η2 and δc. In 588 

addition the localized zones became steeper. For the smaller value of 0 (Fig.19d), the agreement between 589 

the shape and location of the critical diagonal localized zone as compared to the experiment was better. 590 

In addition, the bending localized zones were more developed in the central beam part (Fig.19d) and their 591 

number increased with growing tensile fracture energy.  592 

 593 

For the high beam S1D72a108 (a=1.5), the vertical force decreased by 20% with decreasing 594 

compressive strength and  fracture energy (due to increase of the compression softening parameters η2 595 

and c) (Fig.20). The decreasing tension softening parameter   lead to the growth of the vertical force 596 

merely by 1%. For the smaller value of 0, the bending localized zones were more developed in the 597 

central beam part (Fig.20d). The location of the critical diagonal localized zone was not affected by the 598 

change of material parameters. This shows that the 3D effect should be taken into account in FE analysis 599 

in order to obtain better agreement for the beams with a=1-1.5. When plasticity and damage were 600 

switched off in compression, the different failure modes occurred (Figs.19e and 20e). The beams’ 601 

strength strongly increased. Both the beams failed due to plastic flexural mechanism that was expressed 602 

by reinforcement yielding. A large number of more developed bending localized zones were observed in 603 

the central beam portion. The curved shear localized zones did not occur. Since all stress limits for 604 

concrete were switched off in compression, the beam strength mainly depended upon the amount of steel 605 

reinforcement that was high (ρL=1.4%). The maximum concrete stress in the beam upper central part was 606 

strongly above the concrete compressive strength (e.g. 100 MPa for the beam S1D36a108). Thus, a huge 607 

increase of the ultimate vertical force occurred. The consideration of non-linearity in the compressive 608 

region counteracted a strong shortcoming of our constitutive model caused by an isotropic response in 609 

cracking. Our model for concrete needs the non-linearity in compression to get a more realistic shear 610 

crack response (and to improve the incorrect physics of the model). 611 

 612 

5.2 Effect of bond-slip stiffness 613 

 614 
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In the calculations, the different slip values  were assumed according to Fig.8: 1=0.5 mm, 2=1.5 mm, 615 

3=4.5 mm (instead of the basis data: 1=1 mm, 2=2 mm, 3=5 mm) in order to investigate the effect of 616 

the bond stiffness (the first set of constants corresponds to a stiffer bond). In addition two extreme bonds 617 

were considered: 1) very weak bond (1=100 mm, 2=200 mm, 3=500 mm) (Fig.8) and 2) perfect bond. 618 

The calculation results in Figs. 21 and 22 are shown for two beams: S1D36a108 (a=3) and S2D36a72 619 

(a=2).  620 

 621 

The ultimate vertical force Pmax increased by about 3% (beam S1D36a108) and 5% (beam S2D36a72) 622 

with the stiffer bond (curves ‘b’ in Figs.21 and 22). The pattern of localized zones was very similar for 623 

the beam independently of the bond stiffness for the beam S1D36a72 with a=2 (Fig.21). For the beam 624 

S1D36a108 (a=3), the critical diagonal shear crack was moved more to the beam mid-region with the 625 

larger bond stiffness (Fig.22). The perfect bond lead to the increase of the peak load Pmax by about 5% 626 

(beam S1D36a108) and 8% (beam S2D36a72). For both the beams more localized bending zones 627 

occurred in the beam mid-region. In contrast the very weak bond contributed to the decrease of Pmax by 628 

14% for the beam S1D36a108 and 5% for the beam S2D36a72. For both the beams less localized zones 629 

occurred (e.g. two localized zones merely occurred in the beam mid-region of S1D36a72).  630 

 631 

6. Conclusions 632 

 633 

The following basic conclusions can be derived from our FE analyses on the size effect in RC beams 634 

without stirrups which were scaled along the height or length: 635 

 636 

- The enhanced coupled elastic-plastic-damage formulation was capable to offer good agreement with 637 

the laboratory experiments using the same set of material constants with respect to both the strength and 638 

failure modes. The material constants were calibrated by accompanying standard laboratory tests. The 639 

differences between numerical outcomes and experimental results with respect to the critical diagonal 640 

crack location grew with decreasing a (the numerical critical diagonal localization zone was located too 641 

far from the beam support and its inclination to the horizontal was too steep for a=1-1.5 as compared to 642 

the experimental outcomes). These discrepancies were due to 3D mechanical experimental effects that 643 

were not considered in 2D simulations. 644 

 645 
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- The mechanical behaviour observed in RC beams was very sensitive to the beam dimensions. The shear 646 

strength and brittleness increased with increasing effective height and decreased with increasing shear 647 

span-effective height ratio. The diagonal tension failure (wherein normal displacements were higher than 648 

tangential displacements along the critical diagonal crack) and shear compression failure (wherein 649 

normal displacements were smaller than tangential displacements along the critical diagonal crack in the 650 

top region) were realistically reproduced in calculations. 651 

 652 

- The numerical shear strength of RC beams became higher with increasing tensile and compressive 653 

fracture energy, tensile and compressive strength and slip-bond stiffness. During the diagonal tension 654 

failure, the effect of tensile parameters was stronger and during shear compression failure, the effect of 655 

compressive parameters was more pronounced. The size effect was now related to the actual failure 656 

mechanism represented by its respective strength and energy parameters. 657 
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LIST OF FIGURES 817 

 818 

Fig.1: Experimental reinforced concrete beams under four-point bending: A) loading scheme for series 819 

‘1’, B) loading scheme for series ‘2’ and C) cross-section of: a) beam S1D18a108, b) beams: S1D36a108, 820 

S2D36a36, S2D36a72, S2D36a108 and c) beam S1D72a108 [20] 821 

 822 

Fig.2: Crack pattern at failure typical for each beam geometry depending upon ratio a/D for different 823 

failure mode: a) reinforcement yielding (a=6), b) shear failure mode in concrete (diagonal tension) with 824 

(a=3), c) shear failure in concrete (diagonal shear-compression) (a=1.5), d) shear failure in concrete 825 

(diagonal tension) (a=2), e) shear failure in concrete (diagonal shear-compression) (a=2) and f) shear 826 

failure in concrete (diagonal shear-compression) (a=1) (critical diagonal crack marked in red, beams 827 

are not proportionally scaled) [20] 828 

 829 

Fig.3: Failure surface of coupled Drucker-Prager-Rankine criterion for concrete in space of principal 830 

stresses  831 

 832 

Fig.4: Uniaxial response (stress-strain curve) of coupled elasto-plastic-damage model under cyclic 833 

loading: a) stiffness recovery concept with different damage scale factors at and ac, b) influence of 834 

different damage splitting factors at and ac and c) influence of load sequence (tension/compression and 835 

compression/tension) with damage splitting factors at=0.2 and ac=0.8) 836 

 837 

Fig.5: Response of coupled elasto-plastic-damage model during uniaxial cyclic tests as compared with 838 

experimental data: a) for concrete specimen under uniaxial cyclic compression (experimental stress-839 

strain curve by Karsan and Jirsa [48]) and b) for concrete beam under four-point cyclic bending under 840 

tensile failure (experimental force-displacement curve by Hordijk [49]) [37] 841 

 842 

Fig.6: Effect of different material constants on uniaxial response of coupled elasto-plastic-damage model 843 

under: A) cyclic uniaxial compression and B) cyclic uniaxial tension 844 

 845 

Fig.7: Stress-strain curves for concrete from element tests using elasto-plastic-damage model: a) cyclic 846 

uniaxial compression, b) cyclic uniaxial tension and c) cyclic simple shear  847 

 848 
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Fig.8: Bond stress-slip relationship b=f() by CEB-FIP [63] (Eq.17) with different parameters i  849 

 850 

Fig.9: Boundary conditions and FE mesh for RC beams (diameter of small yellow circle is related to 851 

characteristic length lc and diameter of larger yellow circle is related to influence range of non-locality 852 

3lc) 853 

 854 

Fig.10: Experimental and calculated force-deflection F=f(u) diagrams for beams: a) S1D18a108 (D=180 855 

mm, Leff=2700 mm, a=1080 mm, l=15, a=6), b) S1D36a108 and S2D36a108 (D=360 mm, 856 

Leff=2700 mm, a=1080 mm, l=7.5, a=3), c) S1D72a108 (D=720 mm, Leff=2700 mm, a=1080 mm, 857 

l=3.75, a=1.5), d) S2D36a36 (D=360 mm, Leff=1260 mm, a=360 mm, l=3.75, a=1) and e) 858 

S2D36a72 (D=360 mm, Leff=1980 mm, a=720 mm, l=5.5, a=2) 859 

 860 

Fig.11: Shear strength c from experiments, calculations and Eq.18: a) for varying shear span parameter 861 

ηa=a/D and b) for varying length parameter ηl=leff/D (note that beams S1D18a108 for ηa=6 failed in 862 

flexural mechanism) 863 

 864 

Fig.12: Contours of non-local equivalent strain measure 𝜀 ̅ with attached scale as compared with 865 

experimental cracks pattern for beams of series I (Leff=2700 mm): a) S1D18a108 (D=180 mm, 866 

a=1080 mm, ηl=15, ηa=6), b) S1D36a108 (D=360 mm, a=1080 mm, ηl=7.5, ηa=3) and c) S1D72a108 867 

(D=720 mm, a=1080 mm, ηl=3.75, ηa=1.5) (experimental critical diagonal crack is marked by red arrow, 868 

numerical critical localization zone is marked by yellow arrow, note that beams are not proportionally 869 

scaled and steel bars are not shown) 870 

 871 

Fig.13: Contours of non-local equivalent strain measure 𝜀 ̅ with attached scale as compared with 872 

experimental cracks pattern for beams (D=360 mm): a) S2D36a72_1 and b) S2D36a72_2 (Leff=1980 mm, 873 

a=720 mm, ηl=5.5, ηa=2) and c) S2D36a36 (Leff=1260 mm, a=360 mm, ηl=3.75, ηa=1) (experimental 874 

critical diagonal crack is marked by red arrow, numerical critical diagonal localization zone is marked 875 

by yellow arrow, note that beams are not proportionally scaled and steel bars are not shown) 876 

 877 

Fig.14: Diagonal failure crack/localized zone inclination  to horizontal in RC beams for experimental 878 

series ‘1’ (S1, square markers) and ‘2’ (S2, triangle markers) versus ratio a as compared with FEM 879 

 880 
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Fig.15: Experimental and calculated normalized height of compressive zone above shear and bending 881 

crack/localized zone for varying shear span parameter ηa=a/D (S1 - experimental series ‘1’, S2 - 882 

experimental series ‘2’, note that beams for ηa=6 failed in flexural mechanism) 883 

 884 

Fig.16: Calculated evolution of normal and tangential displacements at critical diagonal localization zone 885 

from FEM for beam S1D36a108 (a=3) as compared to experiments: a) locations (marked by yellow 886 

arrows) and b) vertical force versus displacements:  - normal displacement,  - tangential displacement 887 

(experimental critical diagonal crack is marked by red arrow) 888 

 889 

Fig.17: Calculated evolution of normal and tangential displacements at critical diagonal localization zone 890 

from FEM for beam S1D72a108 (a=1.5) as compared to experiments: a) locations (marked by yellow 891 

arrows) and b) vertical force versus displacements:  - normal displacement,  - tangential displacement 892 

(experimental critical diagonal crack is marked by red arrow) 893 

 894 

Fig.18: Comparison between calculated (left side) and experimental (right side) normal displacements  895 

along normalized critical diagonal crack/localization zone length lexp/lFEM for: a) beam S1D36a108 and 896 

b) beam S1D72a108 (horizontal coordinate 0 - point above reinforcement (point '1' in Figs.16 and 17) 897 

and horizontal coordinate 1 - point in upper beam region (point '3' in Figs.16 and 17)). 898 

 899 

Fig.19: Calculated force-deflection curves and distributions of non-local equivalent strain measure from 900 

FE analyses using coupled elasto-plastic-damage with non-local softening as compared to experiments 901 

(beam S1D36a108, a=3): a) with basis set of material constants in Section 4, b) with softening constant 902 

β=60 (instead of β=85), c) with softening constants 2=0.20 and c=250 (instead of 2=0.15 and c=150) 903 

d) with 0=7×10-5 (instead of 0=9×10-5) and e) without plasticity and damage under compression 904 

 905 

Fig.20: Calculated force-deflection curves and distributions of non-local equivalent strain measure from 906 

FE analyses using coupled elasto-plastic-damage with non-local softening as compared to experiments 907 

(beam S1D72a108, a=1.5): a) with basis set of material constants in Section 4, b) with softening constant 908 

β=60 (instead of β=85), c) with softening constants 2=0.20 and c=250 (instead of 2=0.15 and c=150), 909 

d) with 0=7×10-5 (instead of 0=9×10-5) and e) without plasticity and damage under compression 910 

 911 
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Fig.21: Calculated force-deflection curves (dotted line - experiments) and distributions of non-local 912 

equivalent strain measure from FE analyses using coupled elasto-plastic-damage with non-local 913 

softening as compared to experiments (beam S2D36a72, a=2) for bond-slip model of Fig.8: a) Eq.17 914 

with 1=1 mm, 2=2 mm, and 3=5 mm (basic data), b) Eq.17 with 1=0.5 mm, 2=1.5 mm and 915 

3=4.5 mm, c) Eq.17 with 1=100 mm, 2=200 mm and 3=500 mm and d) perfect bond model 916 

 917 

Fig.22: Calculated force-deflection curves (dotted line - experiments) and distributions of non-local 918 

equivalent strain measure from FE analyses using coupled elasto-plastic-damage with non-local 919 

softening as compared to experiments (beam S1D36a108, a=3) for bond-slip model of Fig.8: a) Eq.17 920 

with 1=1 mm, 2=2 mm, and 3=5 mm (basic data), b) Eq.17 with 1=0.5 mm, 2=1.5 mm and 921 

3=4.5 mm, c) Eq.17 with 1=100 mm, 2=200 mm and 3=500 mm and d) perfect bond model 922 
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LIST OF FIGURES 944 

 945 

A) 946 

 947 

B) 948 

      C) 949 

     a)      b)         c) 950 

Fig.1: Experimental reinforced concrete beams under four-point bending: A) loading scheme for series 951 

‘1’, B) loading scheme for series ‘2’ and C) cross-section of: a) beam S1D18a108, b) beams: S1D36a108, 952 

S2D36a36, S2D36a72, S2D36a108 and c) beam S1D72a108 [20] 953 

FIGURE 1  954 
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a) 955 

b) 956 

c) 957 

d) 958 

e) 959 

f) 960 

Fig.2: Crack pattern at failure typical for each beam geometry depending upon ratio a/D for different 961 

failure mode: a) reinforcement yielding (a=6), b) shear failure mode in concrete (diagonal tension) with 962 

(a=3), c) shear failure in concrete (diagonal shear-compression) (a=1.5), d) shear failure in concrete 963 

(diagonal tension) (a=2), e) shear failure in concrete (diagonal shear-compression) (a=2) and f) shear 964 

failure in concrete (diagonal shear-compression) (a=1) (critical diagonal crack marked in red, beams 965 

are not proportionally scaled) [20] 966 

FIGURE 2 967 
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 969 
 970 

 971 

 972 

 973 

Fig.3: Failure surface of coupled Drucker-Prager-Rankine criterion for concrete in space of principal 974 

stresses  975 

 976 

FIGURE 3 977 

 978 
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                                         a) 

      b) 

                                         c) 

Fig.4: Uniaxial response (stress-strain - curve) of coupled elasto-plastic-damage model under cyclic 980 

loading: a) stiffness recovery concept with different damage scale factors at and ac, b) influence of 981 

different damage splitting factors at and ac and c) influence of load sequence (tension/compression or 982 

compression/tension) with damage splitting factors at=0.2 and ac=0.8) 983 

 984 

FIGURE 4  985 
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 986 

a) 987 

 988 

b) 989 

 990 

 991 

Fig.5: Response of coupled elasto-plastic-damage model during uniaxial cyclic tests as compared with 992 

experimental data: a) for concrete specimen under uniaxial cyclic compression (experimental stress-993 

strain curve by Karsan and Jirsa [48]) and b) for concrete beam under four-point cyclic bending under 994 

tensile failure (experimental force-displacement curve by Hordijk [49]) [37] 995 

 996 

FIGURE 5  997 
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A) 

  
B) 

 998 

Fig.6: Effect of different material constants on uniaxial cyclic response of coupled elasto-plastic-damage 999 

model under: A) cyclic uniaxial compression and B) cyclic uniaxial tension 1000 

 1001 

FIGURE 6 1002 
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 1004 

a) 1005 

 1006 

     b) 1007 

 1008 

c) 1009 

Fig.7: Stress-strain curves for concrete from element tests using elasto-plastic-damage model: a) cyclic 1010 

uniaxial compression, b) cyclic uniaxial tension and c) cyclic simple shear  1011 

 1012 

FIGURE 7  1013 
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 1014 

 1015 

 1016 

 1017 

 1018 

 1019 
 1020 

 1021 

 1022 

Fig.8: Bond stress-slip relationship b=f() by CEB-FIP [63] (Eq.17) with different parameters i  1023 

 1024 

 1025 

 1026 

FIGURE 8 1027 

 1028 

  1029 
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 1030 

 1031 

 1032 

 1033 

 1034 

 1035 
 1036 

 1037 

 1038 

 1039 

 1040 

Fig.9: Boundary conditions and FE mesh for RC beams (diameter of small yellow circle is related to 1041 

characteristic length lc and diameter of larger yellow circle is related to influence range of non-locality 1042 

3lc) 1043 

 1044 

 1045 

FIGURE 9 1046 

 1047 

 1048 

 1049 

 1050 

 1051 

 1052 

 1053 
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a) b) 

c) d) 

e)   

Fig.10: Experimental and calculated force-deflection F=f(u) diagrams for beams: a) S1D18a108 (D=180 1054 

mm, Leff=2700 mm, a=1080 mm, l=15, a=6), b) S1D36a108 and S2D36a108 (D=360 mm, 1055 

Leff=2700 mm, a=1080 mm, l=7.5, a=3), c) S1D72a108 (D=720 mm, Leff=2700 mm, a=1080 mm, 1056 

l=3.75, a=1.5), d) S2D36a36 (D=360 mm, Leff=1260 mm, a=360 mm, l=3.75, a=1) and e) 1057 

S2D36a72 (D=360 mm, Leff=1980 mm, a=720 mm, l=5.5, a=2) 1058 

FIGURE 10 1059 
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a) 

b) 

 1061 

Fig.11: Shear strength c from experiments, calculations and Eq.18: a) for varying shear span parameter 1062 

ηa=a/D and b) for varying length parameter ηl=leff/D (note that beams S1D18a108 for ηa=6 failed in 1063 

flexural mechanism) 1064 

FIGURE 11  1065 
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 1066 

 1067 

a) 

b) 

`

c) 

 1068 

Fig.12: Contours of non-local equivalent strain measure 𝜀 ̅ with attached scale as compared with 1069 

experimental cracks pattern for beams of series I (Leff=2700 mm): a) S1D18a108 (D=180 mm, 1070 

a=1080 mm, ηl=15, ηa=6), b) S1D36a108 (D=360 mm, a=1080 mm, ηl=7.5, ηa=3) and c) S1D72a108 1071 

(D=720 mm, a=1080 mm, ηl=3.75, ηa=1.5) (experimental critical diagonal crack is marked by red arrow, 1072 

numerical critical localization zone is marked by yellow arrow, note that beams are not proportionally 1073 

scaled and steel bars are not shown) 1074 

 1075 

FIGURE 12 1076 

  1077 
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 1078 

 1079 

 1080 

a) 

b) 

c) 

 1081 

Fig.13: Contours of non-local equivalent strain measure 𝜀 ̅ with attached scale as compared with 1082 

experimental cracks pattern for beams (D=360 mm): a) S2D36a72_1 and b) S2D36a72_2 (Leff=1980 mm, 1083 

a=720 mm, ηl=5.5, ηa=2) and c) S2D36a36 (Leff=1260 mm, a=360 mm, ηl=3.75, ηa=1) (experimental 1084 

critical diagonal crack is marked by red arrow, numerical critical diagonal localization zone is marked 1085 

by yellow arrow, note that beams are not proportionally scaled and steel bars are not shown) 1086 

 1087 

FIGURE 13 1088 
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 1090 

 1091 

 1092 

 1093 

 1094 

 1095 
 1096 

Fig.14: Diagonal failure crack/localized zone inclination  to horizontal in RC beams for experimental 1097 

series ‘1’ (S1, square markers) and ‘2’ (S2, triangle markers) versus ratio a as compared with FEM 1098 

 1099 

 1100 

 1101 

 1102 

FIGURE 14 1103 

 1104 

  1105 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


46 

 

 1106 

a) 

b) 

 1107 

Fig.15: Experimental and calculated normalized height of compressive zone above shear and bending 1108 

crack/localized zone for varying shear span parameter ηa=a/D (S1 - experimental series ‘1’, S2 - 1109 

experimental series ‘2’, note that beams for ηa=6 failed in flexural mechanism) 1110 

 1111 

FIGURE 15 1112 
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  a) 

 

   

 
b) 

 1114 

Fig.16: Calculated evolution of normal and tangential displacements at critical diagonal localization zone 1115 

from FEM for beam S1D36a108 (a=3) as compared to experiments: a) locations (marked by yellow 1116 

arrows) and b) vertical force versus displacements:  - normal displacement,  - tangential displacement 1117 

(experimental critical diagonal crack is marked by red arrow) 1118 

 1119 

FIGURE 16 1120 
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  a) 

 

     

 
b) 

Fig.17: Calculated evolution of normal and tangential displacements at critical diagonal localization zone 1122 

from FEM for beam S1D72a108 (a=1.5) as compared to experiments: a) locations (marked by yellow 1123 

arrows) and b) vertical force versus displacements:  - normal displacement,  - tangential displacement 1124 

(experimental critical diagonal crack is marked by red arrow) 1125 

 1126 

FIGURE 17  1127 
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 1128 

 1129 

    
a) 

    
b) 

 1130 

 1131 

 1132 

Fig.18: Comparison between calculated (left side) and experimental (right side) normal displacements  1133 

along normalized critical diagonal crack/localization zone length lexp/lFEM for: a) beam S1D36a108 and 1134 

b) beam S1D72a108 (horizontal coordinate 0 - point above reinforcement (point '1' in Figs.16 and 17) 1135 

and horizontal coordinate 1 - point in upper beam region (point '3' in Figs.16 and 17)). 1136 

 1137 

 1138 

FIGURE 18 1139 
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 a) 

 b) 

 c) 

 d) 

 e) 

 

Fig.19: Calculated force-deflection curves and distributions of non-local equivalent strain measure from 1141 

FE analyses using coupled elasto-plastic-damage with non-local softening as compared to experiments 1142 

(beam S1D36a108, a=3): a) with basis set of material constants in Section 4, b) with softening constant 1143 

β=60 (instead of β=85), c) with softening constants 2=0.20 and c=250 (instead of 2=0.15 and c=150) 1144 

d) with 0=7×10-5 (instead of 0=9×10-5) and e) without plasticity and damage under compression 1145 

 1146 

FIGURE 19  1147 
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 a) 

 b) 

 c) 

 d) 

 e) 

 

Fig.20: Calculated force-deflection curves and distributions of non-local equivalent strain measure from 1148 

FE analyses using coupled elasto-plastic-damage with non-local softening as compared to experiments 1149 

(beam S1D72a108, a=1.5): a) with basis set of material constants in Section 4, b) with softening constant 1150 

β=60 (instead of β=85), c) with softening constants 2=0.20 and c=250 (instead of 2=0.15 and c=150), 1151 

d) with 0=7×10-5 (instead of 0=9×10-5) and e) without plasticity and damage under compression 1152 

 1153 

FIGURE 20 1154 

 1155 

 1156 
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 a) 

 b) 

 c) 

 d) 

Fig.21: Calculated force-deflection curves (dotted line – experiments) and distributions of non-local 1157 

equivalent strain measure from FE analyses using coupled elasto-plastic-damage with non-local 1158 

softening as compared to experiments (beam S2D36a72, a=2) for bond-slip model of Fig.8: a) Eq.17 1159 

with 1=1 mm, 2=2 mm, and 3=5 mm (basic data), b) Eq.17 with 1=0.5 mm, 2=1.5 mm and 1160 

3=4.5 mm, c) Eq.17 with 1=100 mm, 2=200 mm and 3=500 mm and d) perfect bond model 1161 

 1162 

FIGURE 21  1163 
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 1164 

 
 

 a) 

 b) 

 c) 

 d) 

 

Fig.22: Calculated force-deflection curves (dotted line – experiments) and distributions of non-local 1165 

equivalent strain measure from FE analyses using coupled elasto-plastic-damage with non-local 1166 

softening as compared to experiments (beam S1D36a108, a=3) for bond-slip model of Fig.8: a) Eq.17 1167 

with 1=1 mm, 2=2 mm, and 3=5 mm (basic data), b) Eq.17 with 1=0.5 mm, 2=1.5 mm and 1168 

3=4.5 mm, c) Eq.17 with 1=100 mm, 2=200 mm and 3=500 mm and d) perfect bond model 1169 

 1170 

FIGURE 22 1171 
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