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Abstract 

9 

This study examines the fatigue performance of plain concrete specimens under uniaxial compression. 

10 

The experimental program was developed for investigating the fracture evolution in concrete cubic 

11 

specimens subjected to cyclic compression using the advanced X-ray micro-computed tomography 

12 

system SkyScan 1173. As compared to other experiments, the 3D micro-CT damage images were shown 

13 

for a various number of loading cycles. The quantitative evolution of the cracking volume with 

14 

increasing damage revealed a strongly non-linear shape. The increase of the total crack volume was 

15 

higher by 30% as compared to the monotonic fatigue test.  

16 
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1. Introduction

20 

21 

Fatigue is a process of progressive and permanent structural damage in materials which are subjected to 22 

repeatedly applied stresses and strains. As a result, macro-cracks or complete fracture occur after a 23 

certain number of repeated loading. The knowledge on the concrete behaviour in fatigue is essential for 24 

describing the behaviour of different engineering structures under repeated loads with random and 25 

varying amplitudes (e.g. concrete bridge desks, highway pavements, railway slab tracks, crane beams, 26 

wind power tower bases). The concrete fatigue is still a challenging topic in research works. In particular, 27 

the knowledge on the effect of cyclic loading on the evolution of fracture (crack initiation and growth, 28 

crack pattern, crack shape, crack number etc.) is still very limited in spite of many laboratory tests (e.g. 29 

[1-10]). This problem is also difficult since fatigue displacements and strains are subjected to a 30 

pronounced statistical scatter [11]. The progressive decreasing of the compression strength of concrete 31 

under cyclic loads happens due to internal damage. The fatigue test results on concrete in compression 32 

(mainly low and medium-cycle results) are usually described with the aid of the so-called Wöhler-curve 33 

or S-N curve ([2], [12-16]), that shows a linear relationship between the logarithm of the cycles’ number 34 
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and maximum fraction of the monotonic compressive strength. There exist several factors that affect 35 

concrete fatigue behaviour. The fatigue strength mainly depends on the maximum and minimum stress 36 

in the cycle (often identified as the live load and dead load). An increase of the minimum stress and a 37 

decrease of the maximum stress level result in the increased fatigue strength for a given number of 38 

cycles. The frequency between 1 and 15 Hz has a little effect on the fatigue strength provided that the 39 

maximum stress is lower than about 75% of the monotonic strength. At higher stresses, the fatigue 40 

strength decreases with decreasing frequency ([16, 17]). The fatigue strength is also affected by water-41 

cement ratio, cement content, amount of entrained air, concrete class, rest periods, curing conditions and 42 

age during loading [13]. It is assumed that damage linearly increases with the number of cycles applied 43 

at a certain stress level [17]. The strain at the concrete failure during fatigue tests corresponds to that at 44 

the peak load during quasi-static tests [18]. The failure meso-mechanism in concrete in fatigue 45 

compressive tests is almost the same as in monotonic compressive tests [19].  46 

 47 

The presented research work is experimentally oriented. It is aimed at quantitative investigations of 48 

a three-dimensional (3D) crack evolution in plain concrete under uniaxial fatigue compression loading 49 

with very advanced non-destructive X-ray micro-computed tomography system SkyScan 1173 [20]. 50 

Micro-computed tomography (in short ‘micro-CT’) is a 3D imaging technique that uses X-rays to see 51 

the interior of different materials [21]. The micro-CT device performs 2D planar X-ray images and 52 

reconstructs the data into 2D cross-sectional slices that are further processed to obtain a full 3D image. 53 

Thus the volumetric information about changes in the internal micro/meso-structure may be achieved. 54 

In the paper, attention was focused on changes in the fracture volume with an increasing number of 55 

loading cycles in concrete compressive fatigue experiments. This knowledge is important to better 56 

understand a fracture process for enhancing the fatigue life of concrete members and structures. Our 57 

tomography system SkyScan 1173 was already successfully used for observations of a 3D fracture 58 

process inside concrete during different quasi-static monotonic tests: bending [22], uniaxial compression 59 

[23], tension splitting [24] and wedge splitting [25]. The micro-CT images of the concrete structure 60 

allowed us next for developing a very effective numerical 3D four-phase concrete model (composed of 61 

aggregate, cement matrix, macro-pores and interfacial transitional zones (ITZs)) within the discrete 62 

mechanics [23, 24, 26, 27] and continuum mechanics [22, 28, 29] to realistically reproduce strength, 63 

brittleness and fracture in plain concrete in different tests.  64 

 65 

The novel elements of the current paper on concrete fatigue in compression are: 1) the full 3D damage 66 

maps with high-resolution of fractured concrete specimens for the different number of loading cycles in 67 

fatigue compression by considering concrete meso-structure (aggregate, cement matrix and pores) and 68 

2) the quantitative estimation of changes of the cracks’ and pores’ volume (based on 3D damage maps) 69 
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with increasing cycle number and damage. Our experimental results may create a solid comparative 70 

basis for numerical calculations using different fatigue continuum models for concrete based on 71 

fracture/damage mechanics (e.g. [30-34]) or discrete mechanics ([35]). The micro-CT studies were also 72 

carried out for steel fiber-reinforced concrete under low cycle fatigue in uniaxial compression by Vicente 73 

et al. [19] that indicated a similar crack pattern in specimens under monotonic and cyclic loads. However, 74 

the 2D images of concrete specimens were shown only and the micro-CT scans were solely made at the 75 

beginning and end of tests. The micro-CT technique was also used in fatigue loading tests for scanning 76 

of other engineering materials ([36, 37]). To our knowledge, 3D micro-CT scans of concrete specimens 77 

at different loading cycles in fatigue compression have not been performed yet.  78 

 79 

2. Specimen preparation, experimental set-up and distribution of pores 80 

 81 

Specimen preparation 82 

The laboratory fatigue experiments on concrete in uniaxial compression were carried out at the Gdansk 83 

University of Technology. The concrete specimens were composed of an ordinary Portland cement 84 

(CEM I 32.5 R), sand and gravel particles and water. The round-shape sand and gravel particles were 85 

used with the maximum diameter of dmax=16 mm, mean diameter of d50=2 mm and particle volume of 86 

β=75% (Figure 1). The water/cement ratio was fixed to 0.42. The composition of the concrete mix was 87 

described in Table 1. A small super plasticizer quantity was used to improve the workability of the fresh 88 

concrete. The tests were carried out on relatively small concrete cubes of 40×40×40 mm3 to obtain a 89 

very high resolution of 3D micro-CT images of fractured concrete specimens. The cubes were cut out 90 

from the same concrete block of the size 500×500×200 mm3 after the seventh day. The concrete block 91 

was covered with a plastic sheet during the initial curing period to avoid the surface evaporation and 92 

autogenous shrinkage. They were next kept for 28 days in water. The uniaxial compressive strength fc 93 

was measured on three cube concrete specimens 10×10×10 cm3 and Young's modulus E and Poisson's 94 

ratio υ were determined on three cylindrical concrete specimens 15×30 cm2. The mean measured values 95 

were: fc=51.81 MPa with the standard deviation of 3.36 MPa, E=36.1 GPa with the standard deviation 96 

of 2.29 GPa and υ=0.22 with the standard deviation of 0.03. The mean tensile strength during three-point 97 

bending on three concrete specimens 4×4×16 cm2 was 4.04 MPa. The monotonic and fatigue tests were 98 

conducted using the servo-hydraulic machine Zwick Roell HB250 (Figure 2) with the maximum loading 99 

capacity of 250 kN and maximum frequency of 15 Hz. The machine was equipped with two compressive 100 

steel plates and the cubes were always loaded along the casting direction (vertical axis). A sinusoidal 101 

vertical force was applied along the top boundary in fatigue tests. The vertical force F and the axial 102 

displacement u were continuously monitored and recorded. Initially, a monotonic test was carried out 103 

with the controlled vertical displacement rate of 0.002 mm/min. The mean maximum vertical force was 104 
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Fmax=81 kN that results in the uniaxial compressive strength of fc=51.5 MPa which was almost equal to 105 

the experimental results for the concrete specimens of 100×100×100 mm3. Thus the size effect on the 106 

nominal strength was negligible in the tests. However, the size effect on the concrete brittleness existed, 107 

i.e. the ductility was larger for smaller specimens. Next, three cyclic tests were performed on cubic 108 

concrete specimens during which the fatigue test parameters were as follows: the maximum stress 109 

max=38.5 MPa and minimum stress min=19 MPa with the stress level 𝑆max = 𝜎𝑚𝑎𝑥 𝑓𝑐⁄ = 0.75 and 110 

𝑆min = 𝜎𝑚𝑖𝑛 𝑓𝑐 = 0.37⁄ , and stress ratio 𝑅 = 𝜎𝑚𝑖𝑛 𝜎𝑚𝑎𝑥⁄ =0.5. The frequency of cyclic loading tests 111 

with the constant amplitude was always  f=2 Hz. The assumed value of S was rational from the point of 112 

the design of concrete members in order to avoid the frequency effect. The frequency variations between 113 

1 and 15 Hz have, namely, an insignificant effect on the fatigue strength provided that the maximum 114 

stress level is smaller than 75% of the monotonic static strength ([16, 17]). The expected fatigue life of 115 

concrete specimens was about N=60,000 cycles according to Model Code 2010 [14] (log𝑁 =116 

(12 + 16𝑆min + 8𝑆min
2 )(1 − 𝑆max)). Although the number of concrete specimens was low (3), the 117 

calculated fatigue experimental results were similar with respect to the number of loading cycles leading 118 

specimens to the failure, changes of cracks’ and pores’ volumes and cracks’ distributions.  119 

 120 

Experimental set-up 121 

The cracking evolution in concrete during fatigue cyclic tests was investigated using the advanced  122 

X-ray micro-computed tomography system SkyScan 1173 (Figure 3). This system represents the newest 123 

generation in high-resolution desktop X-ray micro-tomography technologies for 3D scanning [20]. The 124 

technology defines the density of each specimen voxel by assigning different shades of grey (light grey 125 

shades correspond to high densities and dark grey shades correspond to low densities). The system was 126 

equipped with the high energy table open scanner with the 130 keV micro-focus X-ray source, flat panel 127 

sensor of the large format (5 Mpx) and special protection by a lead-glass fiber-optic window (Figure 3). 128 

The scanner possessed a precision object manipulator that allowed for a very precise and automatic 129 

specimen positioning. There were several filters available in the front of the  130 

X-ray detector: 0.25 mm brass filter, 1.0 mm aluminium filter, 2.0 mm lead filter and 0.25 mm copper 131 

filter. As compared to usual micro-tomography systems, it has two important advantages: a) large 132 

specimens up to 200 mm in diameter may be scanned and b) the specimens may be scanned with the 133 

high precision of 2-3 microns. During tests on concrete cubes, the X-ray source voltage was set on 134 

130 keV, current on 61 µA and exposure time on 4000 ms. The pixel size was 34.2 µm. The X-ray 135 

projections were recorded with the rotation increment of 0.2o within 360o. To reduce the noise in X-ray 136 

projections, the frame averaging option was chosen to be 6 and the random movement option 10. The 137 

scanning time was equal to 6 hours. All specimens were scanned using the same input parameters. In 138 

order to recognize pores and cracks on micro-CT scans, a threshold procedure was carefully performed, 139 
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based on the density of each concrete phase. The threshold in the range 0-60 from the grey level 140 

histogram 0-255 was chosen. The image reconstruction was carried out with the NRecon software. After 141 

the reconstruction, the images were analyzed with the CTAn software and finally the CTVox software 142 

was used to prepare the volume-rendering image reconstruction. The software programs were developed 143 

by the firm Bruker mico-CT (https://www.bruker.com/products/microtomography.html). 144 

 145 

Figure 4 presents the view on three cubic specimens 40×40×40 mm3 (called the specimens ‘1’-‘3’) 146 

before fatigue tests, based on the 3D micro-CT images. The micro-CT technology clearly reveals a 147 

heterogeneous 3D material meso-structure where aggregate, cement matrix, and pores are 148 

distinguishable on the images of specimens. The porous interfacial transitional zones (ITZs) around 149 

aggregate grains that are a very important concrete phase in inducing micro-cracks and attracting macro-150 

cracks [26, 27] are not visible in scans due to their very small dimensions. However, they may be 151 

observed and measured on the concrete surface e.g. with the aid of the 2D scanning electron microscope 152 

(SEM) ([22-24]). The width of FPZs may be determined on the concrete surface by means of the digital 153 

image correlation (DIC) technique ([22-24]). 154 

 155 

Distribution of pores 156 

Figure 5 and Table 2 show the initial 3D distribution and content of pores in non-cracked concrete 157 

specimens ‘1’-‘3’ (intended for fatigue tests) of Figure 4 and ‘0’ (intended for monotonic test). The pores 158 

were divided into the so-called closed and open ones. The open pores were defined as the pores that 159 

spread beyond the borders of the investigated specimen and the closed pores were defined as those in 160 

the specimen’s interior. The initial pore volume in the specimens ‘1’-‘3’ was 1568.4 mm3, i.e. 2.45% of 161 

the specimen volume (closed pores - 1.60% and open pores - 0.85%, Figures 4a and 5a), 1760.2 mm3, 162 

i.e. 2.75% of the specimen volume (closed pores - 2.07% and open pores - 0.68%, Figures 4b and 5b) 163 

and 1516.8 mm3, i.e. 2.37% of the specimen volume (closed pores - 1.98% and open pores - 0.39, Figures 164 

4c and 5c). The pores with the diameter smaller than 1.0 mm constituted about 25-30%, the pores with 165 

the diameter 1.0 mm - 2.0 mm represented about 20-30% and the pores with the diameter larger than 2.0 166 

mm formed about 40-50% of the total pore volume in concrete specimens. The specimen ‘0’ that was 167 

subjected to monotonic static compression had the similar initial pore volume (1817.6 mm3) as the 168 

specimens ‘1’-‘3’.  169 

 170 

3. Experimental results of fatigue compressive tests 171 

 172 

The fatigue cyclic loading tests were carried out on 3 concrete specimens 40×40×40 mm3 with the 173 

control of both the stress level and stress ratio. The continuous fatigue tests were performed for the 174 
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specimens ‘1’ and ‘2’. For those specimens, the initial (non-cracked specimens) and final (cracked 175 

specimens) micro-CT images were only shot whereas for the specimen ‘3’, some micro-CT scans were 176 

shot during the entire fatigue test. The specimens were always unloaded for scanning (scanning lasted 177 

each time 6 hours). Next, the compression test was continued. The scanning took place after Ni=10,000, 178 

30,000, 60,000 and 70,000 cycles, so in total, five 3D micro-CT scanning series were performed 179 

(including initial scans before the tests). Note that unloaded periods for scanning may slightly affect 180 

fracture since some crack recovery (cracks’ closure) occurred during those rest periods [38]. The number 181 

of loading cycles leading specimens to the failure (fatigue life cycles) of the specimens ‘1’-‘3’ is shown 182 

in Table 3. It was between N=71,000 and 80,000 cycles (i.e. slightly higher than that (60,000) according 183 

to [14]). 184 

 185 

The stress-displacement diagrams =f(u) for the concrete specimens ‘1’-‘3’ during the cyclic fatigue 186 

tests as compared to the monotonic static test is shown in Figure 6. Figure 7 presents the zoom on the 187 

experimental vertical displacement u of the specimen ‘3’ in cyclic uniaxial compression versus the cycle 188 

number Ni with the marked breaks for scanning. In the monotonic test, the curve =f(u) included 189 

obviously the elastic, hardening and softening region (Figure 6). 190 

 191 

The external 3D micro-CT images of cubic cracked concrete specimens ‘1’-‘3’ and ‘0’ are presented in 192 

Figure 8. The specimens ‘1’-‘3’ were scanned close to failure (Table 3) for Ni=70,000 and the observed 193 

pattern of pores including cracks is shown in Figure 9. Table 4 includes the volumes of pores and cracks 194 

in concrete specimens ‘1’-‘3’ after 70,000 cycles and in the specimen ‘0” after the monotonic test. 195 

 196 

After the tests, the specimens were strongly cracked (Figures 8 and 9). The vertical cracks that 197 

propagated through the entire specimen height were predominant. There existed 6, 2 and 4 main vertical 198 

macro-cracks in the entire concrete specimens ‘1’-‘3’ (Figure 8). Moreover, in the specimens ‘1’ and ‘3’ 199 

some diagonal cracks can also be observed. The cracking slightly varied along the height of specimens 200 

due to the effect of boundary conditions in tests [39, 40]. The cracks were curved due to the presence of 201 

stochastically located aggregate particles. Initially, the cracking process was induced due to some stress 202 

concentrations close to the cube corners (see Figures 12 and 13) where the inclined micro-cracks 203 

appeared and coalesced. Next, some vertical cracks started to concentrate along lateral both edges and 204 

surfaces of specimens by forming column-like regions. The macro-cracks were the widest on external 205 

parts of concrete cubes at lateral edges that finally lead to concrete spalling from specimen cores [23], 206 

[41]. The concentration extent of cracking regions throughout the specimen was similar in monotonic 207 

and fatigue tests, based on the visual inspection (compare Figures 9b and 9d). However, wider macro-208 
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cracks (compare Figures 9a and 9c) and more damaged aggregate particles were noticed during fatigue 209 

tests. 210 

 211 

Due to cracking, the insignificant volumetric changes of open and the pronounced changes of closed 212 

pores happened during fatigue tests (Table 4, Figure 10). The crack volume was calculated as the total 213 

volume of pores in the cracked specimen reduced by the total volume of pores in the initial non-cracked 214 

specimen. The cracks’ volume and the %-volume of open pores increased in all specimens. In contrast, 215 

the %-volume of closed pores decreased in the specimens The cracks’ volume increased during fatigue 216 

test by 3.43%-5.62% in the specimens ‘1’-‘3’. The %-volume of open pores increased by 1.86%-4.38% 217 

and the %-volume of closed pores decreased by 0.2%-0.74%. The increase of the cracks’ volume and 218 

open pores in the specimen ‘0’ (monotonic test) was smaller on average by about 30% than during 219 

fatigue tests. The greatest macro-crack width in the entire specimens’ volume (after unloading) was 220 

wc=0.42 mm (specimen ‘0’), wc=0.61 mm (specimen ‘1’), wc=0.56 mm (specimen ‘2‘) and wc=0.72 mm 221 

(specimen ‘3’). The pores were practically not crossed by cracks since insignificant volume changes of 222 

closed pores took place (connected with strong volume changes of open pores) (Table 4). 223 

 224 

Figure 11 shows the cross-sectional micro-CT images of the cracked specimens ‘1’-‘3’ and ‘0’ (one 225 

horizontal and two vertical in the mid-specimen that intersected the specimen centroid). They show that 226 

cracks mainly propagated through the cement matrix and ITZs which were the weakest zones in concrete. 227 

The micro-cracks occurred first in porous ITZs around aggregate particles and then they connected 228 

themselves through a bridging mechanism ([22-24]). When two interfacial cracks happened around 229 

adjacent aggregate particles, a crack inside the cement matrix bridged those interfacial cracks so that a 230 

connected crack path was formed. The cracks also propagated sometimes through single weak aggregate 231 

particles (Figure 12). The cracks’ branching also occurred (Figure 12).  232 

 233 

Figures 13 and 14 show the external 3D micro-CT images of the concrete specimen ‘3’for the different 234 

cycle number Ni: N1=0 (step “0” - initial scan), N3=30,000 (step “2”), N4=60,000 (step “3”) and 235 

N5=70,000 (step “4”). The results for N2=10,000 were not presented since the cracks insignificantly 236 

developed. The different three cross-sectional micro-CT images of the mid-region (one horizontal and 237 

two vertical that intersected the specimen centroid) for the different number of loading cycles Ni are 238 

demonstrated in Figure 15.  239 

 240 

For Ni=10,000 cycles (Figure 15B), the thin cracks occurred with the width up to wc=0.04 mm. The 241 

cracks had an irregular shape and were mainly concentrated along one vertical (lateral) edge of the 242 

specimen. All micro-cracks occurred in ITZs between the cement matrix and aggregate particles and 243 
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propagated next in the cement matrix. For N3=30,000 cycles (Figures 13b, 14b and 15C) further 244 

development of existing internal cracks took place (they propagated into the depth of the cement matrix) 245 

and the new macro-cracks occurred (one at the other lateral edge and one on the lateral surface). In total, 246 

7 broken aggregate particles were detected in the entire specimen. The greatest crack width in the entire 247 

volume was wc=0.16 mm. After N4=60,000 cycles (Figures 13c, 14c and 15D) the existing vertical 248 

macro-cracks further evolved along lateral edges and two of those cracks propagated through the 249 

specimen height. The maximum crack width was wc=0.42 mm. The number of broken aggregate particles 250 

was 13. For N5=70,000 cycles (Figures 13d, 14d and 15E), four main vertical macro-cracks of an 251 

irregular shape and a variable width might be observed (two cracks were located along two lateral edges 252 

and two cracks were concentrated on the lateral surface of the specimen). The macro-cracks intersected 253 

the concrete specimen. In addition, one macro-crack occurred along a horizontal edge and one inclined 254 

macro-crack appeared in the upper region on the second lateral surface. The main macro-cracks were 255 

connected through a network of small cracks. The largest crack width was equal to wc=0.72 mm. The 256 

number of broken aggregate particles increased up to 28. Finally, the specimen damage occurred along 257 

the edge wherein the dominant vertical macro-crack was located. 258 

 259 

Table 5 and Figures 16 and 17 present the detailed data on the volume changes of pores and cracks in 260 

the concrete specimen ‘3’ with increasing damage parameter (expressed by the quotient of the number 261 

of cycles Ni and the fatigue life N=73,127, Table 3). The line connecting the measurement points was 262 

approximated in Figures 16 and 17 by a polynomial function. The volume of closed pores slightly 263 

decreased during the entire test (Figure 16). In the step “1”, the insignificant volume changes of open 264 

pores and cracks were obtained as compared to the step ‘0’. The maximum crack width in the entire 265 

volume was wc=0.04 mm (after the specimen unloading). In the step “2”, the volume of pores and cracks 266 

increased by about 50%. The greatest crack width in the entire volume was wc=0.16 mm (after the 267 

specimen unloading). In the step “3”, the volume of pores and cracks increased as compared to the step 268 

‘2’ by about 40%. The maximum crack width in the entire volume was wc=0.42 mm (after the specimen 269 

unloading). In the last step “4”, the volume of pores and cracks increased as compared to the step ‘3’ by 270 

about 40%. The largest crack width in the entire volume was wc=0.72 mm. (after the specimen 271 

unloading). The increase of the cracks’ volume with increasing damage parameter was strongly non-272 

linear. The relationship in Figure 17 may be divided into three parts: 1) between the damage parameter 273 

0 (N1=0) and damage parameter 0.14 (N2=10,000) (so-called the micro-crack part), 2) between the 274 

damage parameter 0.14 (N2=10,000) and damage parameter 0.85 (N4=60,000) (so-called the transitory 275 

part) and 3) between the damage parameter 0.85 (N4=60,000) and damage parameter ~1.0 (N5=70,000) 276 

(so-called the crack extension part [41]) (Figure 17). The damage rate was in particular strong in the last 277 

fatigue stage (crack extension region) between N4=60,000 and N5=70,000 cycles.  278 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


9 

 

 279 

In Figures 18 and 19, the attention is focused on the largest crack volume growth in the crack extension 280 

region before the specimen failure. The volume of cracks between those 2 different cycles’ numbers 281 

increased by 2.26% (40% of the total cracks’ growth) (Figure 18d, Table 5). The %-volume of closed 282 

pores decreased from 1.34% down to 1.24% (the decrease of about 10%) and the %-volume of open 283 

pores increased from 4.39% up to 6.75% (the increase of about 50%). The width of cracks, which was 284 

very non-uniformly distributed in the specimen, increased on average by 0.1-0.2 mm (Figure 18). 285 

However, in some specimen regions, it increased even by 0.3 mm.  286 

 287 

Our experiments on concrete fatigue will be continued. An extended X-ray micro-computed tomography 288 

system will be used soon, i.e. the tomography system SkyScan 1173 will be connected to the loading 289 

machine ISTRON 5569 to make images of deforming concrete specimens during a continuous 290 

deformation process, i.e. without unloading for scanning. 291 

 292 

4. Conclusions 293 

 294 

This paper presents the results of experimental research work showing the 3D fracture evolution in plain 295 

concrete specimens under fatigue compression obtained by X-ray micro-CT that is a powerful tool to 296 

measure the internal damage of concrete specimens. For plain concrete under fatigue compression, the 297 

following conclusions can be offered: 298 

 299 

- The increase of the cracks’ volume with increasing damage (expressed by the quotient of the number 300 

of cycles and fatigue life) was about hyperbolical in shape. The volume of cracks close to the failure 301 

load was 3.4-5.6% of the entire specimen volume during fatigue tests. Due to cracking, the %-volume 302 

of closed pores decreased by about 30% and the %-volume of open pores increased 5-15 times. In the 303 

last loading stage between 60,000 and 70,000 cycles, the cracks’ volume strongly increased (by 2.26%), 304 

i.e. almost 40% of the total crack volumetric growth. 305 

 306 

- The growth of the total fracture volume in fatigue tests was higher by 30% as compared to the 307 

monotonic test. 308 

 309 

- A similar crack pattern was obtained in specimens under monotonic and cyclic loading although the 310 

latter was on more damaged. The cracking pattern was strongly non-uniform. The greatest cracks’ width 311 

was in the range of 0.56-0.72 mm (fatigue tests) and 0.42 mm (monotonic test). The cracks that initially 312 

occurred in ITZs and propagated through the cement matrix by bridging, were strongly curved. However, 313 
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several cracks also propagated through weak aggregate particles. At the failure, the lateral sides of 314 

specimens separated from the cores.  315 
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Figure 3: X-ray micro-tomography station SkyScan 1173 [20]: a) X-ray source, b) flat panel and  572 

c) precision object manipulator 573 
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 587 

Figure 4: Initial 3D external X-ray micro-CT images of cubic concrete specimens before fatigue tests: 588 

a) specimen ‘1’, b) specimen ‘2’ and c) specimen ‘3’ (black colour denotes pores) 589 

 590 
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Figure 5: Initial diameter distribution of pores inside of non-cracked concrete specimens of Figure 4 598 

before fatigue tests: a) specimen ‘1’, b) specimen ‘2’ and c) specimen ‘3’ (colours denote diameter in 599 

range of ≤1.0 mm (red colour), 1.01 mm - 2.0 mm (green colour) and ≥2.0 mm (blue colour)) 600 
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Figure 6: Experimental vertical normal stress  versus vertical displacement u from monotonic and 

cyclic uniaxial compression tests (a) quasi-static test, b) fatigue test ‘1’, c) fatigue test ‘2’ and  

d) fatigue test ‘3’) 

FIGURE 6 
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Figure 7: Experimental vertical displacement u from cyclic uniaxial compression tests versus the 608 

number of cycles Ni for concrete specimen ‘3’ (vertical dashed lines denote breaks for X-ray micro-CT 609 

scanning) 610 
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FIGURE 7 615 
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c)                                                                     d) 624 

 625 

Figure 8: External 3D X-ray micro-CT images of cracked cubic concrete specimens close to failure 626 

during cyclic and monotonic tests in compression: a) specimen ‘1’, b) specimen ‘2’, c) specimen ‘3’ in 627 

cyclic tests and d) specimen ‘0’ in monotonic test (black colour denotes both pores and cracks) 628 

 629 

FIGURE 8 630 
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 637 

Figure 9: Internal 3D micro-CT images of pores and cracks in cubic concrete specimens close to failure 638 

during cyclic and monotonic tests: a) specimen ‘1’b) specimen ‘2’, c) specimen ‘3’ in cyclic tests and d) 639 

specimen ‘0’ in monotonic test (colours denote macro-pores’ diameter in range of ≤1.0 mm (red colour), 640 

1.01 mm - 2.0 mm (green colour) and ≥2.0 mm (blue colour)) 641 

 642 

FIGURE 9 643 
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     a) 645 

 b) 646 

 c) 647 

Figure 10: Volume changes of pores and cracks in concrete specimens ‘0’-‘3’ during uniaxial fatigue 648 

compression: a) volume of closed pores, b) volume of open pores and c) volume of cracks (× - initial 649 

value before test and ● - final value after test) 650 

 651 

FIGURE 10 652 
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 660 

D) 661 

a)    b)    c) 662 

 663 

 664 

Figure 11: 2D micro-CT images of cracked cubic specimens close to failure: A) specimen ‘1’,  665 

B) specimen ‘2’, C) specimen ‘3’ (fatigue tests) and D) specimen ‘0’ (monotonic test) (a) and b) two 666 

vertical mid-specimen cross-sections and c) horizontal mid-specimen cross-section, black colour denotes 667 

pores and cracks) 668 
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 675 

FIGURE 11 676 
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 685 

Figure 12: View on crack branching and crack propagating through weak aggregate particle 686 
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FIGURE 12 691 
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 694 

                                              a)                                                            b) 695 

 696 

                                              c)                                                                          d) 697 

 698 

Figure 13: Cracking evolution in cubic concrete specimen ‘3’ from 3D micro-CT images in fatigue tests: 699 

a) before test (Figure 4c), b) after N3=30,000 cycles c) after N4=60,000 cycles and d) after N5=70,000 700 

cycles 701 

 702 

FIGURE 13 703 
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 705 

 706 

                                              a)                                                                   b) 707 

 708 

                                              c)                                                                   d) 709 

Figure 14: Evolution of pores and cracks in cubic concrete specimen ‘3’ from 3D micro-CT images in 710 

fatigue tests: a) before test (Figure 5c), b) after 30,000 loading cycles c) after 60,000 loading cycles and 711 

d) after 70,000 loading cycles (colours denote pores’ diameter in range of ≤1.0 mm (red colour), 1.01 712 

mm - 2.0 mm (green colour) and ≥2.0 mm (blue colour)) 713 

 714 

FIGURE 14 715 
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 D)  

   

 E)  

  a)     b)    c) 717 

 718 

Figure 15: 2D micro-CT images of cracked cubic specimen ‘3’ for different deformation steps:  719 

A) step “0”, B) step 1”, C) step “2”, D) step “3” and E) step “4” (a) and b) two vertical mid-specimen 720 

cross-sections and c) horizontal mid-specimen cross-section, black colour denotes pores and macro-721 

cracks) 722 

 723 

 724 

 725 

FIGURE 15 726 
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 728 

 729 

 730 

 731 

 732 

Figure 16: Evolution of volume of closed pores (a) and open pores (b) with increasing damage 733 

(expressed by quotient of number of loading cycles Ni and fatigue life N) in concrete specimen ‘3’ 734 

 735 

 736 

 737 

FIGURE 16 738 
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 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 

 749 

Figure 17: Evolution of crack volume V versus damage (expressed by quotient of number of loading 750 

cycles Ni and fatigue life N) in concrete specimen ‘3’ 751 
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 753 

 754 

FIGURE 17 755 
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 759 

 760 

                                                   a)                                                               b) 761 

 762 

                                                  c)                                                                     d) 763 

 764 

Figure 18: Distribution of pores and cracks in specimen ‘3’: a) non-cracked concrete specimen (white 765 

colour), b) after N4=60,000 cycles (green colour), c) after N5=70,000 loading cycles (green and red 766 

colour) and d) between N4=60,000 and N5=70,000 cycles (red colour) 767 

 768 

FIGURE 18 769 
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 772 
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 774 

 775 

 776 

 777 

 778 

 779 

 780 

Figure 19: Micro-CT image of distribution of crack width’s growth between N4=60,000 and N5=70,000 781 

cycles in concrete specimen ‘3’ of Figure 18d 782 

 783 

 784 

FIGURE 19 785 
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 790 

 791 

LIST OF TABLES 792 

 793 

Table 1: Concrete mixing composition in experiments (d50 – mean particle diameter, dmax – maximum 794 

particle diameter and β – total particle volume) 795 

 796 

Concrete component 
Content of concrete components 

 (d50=2 mm, dmax=16 mm, =75%) 

cement (Portland 32.5R) 810 [kg/m3] 

sand (diameter size 0-2 mm) 650 [kg/m3] 

gravel (diameter size 2-8 mm) 580 [kg/m3] 

gravel (diameter size 8-16 mm) 580 [kg/m3] 

water 340 [l/m3] 

 797 

 798 
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 800 

Table 2: Volume and diameter range of macro-pores in initial non-cracked concrete specimens 801 

(specimens ‘1’-‘3’ are presented in Figure 4) 802 

 803 

Specimen 

number 

and test 

type 

Diameter range  

of pores  

[%] 
Volume of 

pores  

[mm3] 

% - volume 

of pores 

[%] 

% - volume 

of closed 

pores [%] 

% - volume 

of open 

pores [%] ≤0.50  

mm 

0.51-

1.00 

mm 

1.01-

2.00 

mm 

≥2.01 

 mm 

‘0” 

monotonic 

test 

12.2 11.9 28.5 47.4 1817.6 2.84 2.11 0.73 

‘1’  

fatigue test 
10.2 15.4 30.5 43.9 1568.4 2.45 1.60 0.85 

‘2’  

fatigue test 
14.5 16.4 22.2 46.9 1760.2 2.75 2.07 0.68 

‘3’  

fatigue test 

9.8 14.1 24.5 51.6 1516.8 2.37 1.98 0.39 

 804 

 805 

 806 

Table 3: Fatigue life results (maximum number of loading cycles leading to specimen failure) for 807 

concrete specimens ‘1’-‘3’ during uniaxial compression (max - maximum normal stress, min - minimum 808 

normal stress and fc - uniaxial compressive strength) 809 

 810 

Concrete 

specimen 
max/fc min/fc Number of fatigue life cycles 

‘1’ 

0.75 0.37 

71,518 

‘2’ 80,069 

‘3’ 73,127 

 811 

  812 
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Table 4: Volume of pores and cracks in concrete specimens ‘1’-‘3’ after 70,000 cycles and in concrete 813 

specimen ‘0’ after monotonic loading close to failure 814 

 815 

Specimen 

number and test 

type 

Volume of 

pores and 

cracks  

[mm3] 

% - volume 

of pores and 

cracks 

[%] 

% - volume 

of closed  

pores and 

cracks  

[%] 

% - volume 

of open pores  

and cracks 

[%] 

Volume of 

cracks 

[mm3] 

% - volume 

of cracks 

[%] 

‘0’ 

monotonic 

test 

3750.4 5.86 1.60 4.26 1932.8 3.02 

‘1’  

fatigue test 
4390.4 6.86 1.40 5.46 2822.0 4.41 

‘2’  

fatigue test  
3948.8 6.17 1.56 4.61 2188.6 3.43 

‘3’  

fatigue test 
5113.6 7.99 1.24 6.75 3596.8 5.62 

 816 

 817 

 818 

Table 5: Volume of pores and cracks in concrete specimen ‘3’ for different steps related to numbers of 819 

cycles Ni 820 

 821 

Step 

Number 

of cycles 

Ni 

Volume of 

pores and 

cracks 

[mm3] 

% - volume 

of pores and 

cracks 

[%] 

% - volume 

of closed 

pores and 

cracks 

[%] 

% - volume 

of open 

pores 

[%] 

Volume 

of cracks 

[mm3] 

% - volume 

of cracks 

[%] 

‘1’ 0 1516.8 2.37  1.98 0.39 0 0 

‘2’ 10,000 1548.8 2.42 1.97 0.45 32.0 0.05 

‘3’ 30,000 2240.0 3.50 1.90 1.61 723.2 1.13 

‘4’ 60,000 3667.2 5.73 1.34 4.39 2150.4 3.36 

‘5’ 70,000 5113.6 7.99 1.24 6.75 3596.8 5.62 

 822 

 823 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

