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We revisit the decoherence process of a multiqubit register interacting with a thermal bosonic bath. We
generalize the previous studies by considering not only the register’s behavior but also a part of its environment.
In particular, we are interested in information flow from the register to the environment, which we describe
using recently introduced multipartite quantum state structures called spectrum broadcast structures. Working
in two specific cases of (i) two-qubit register and (ii) collective decoherence, we identify the regimes where
the environment acquires almost complete information about the register state. We also study in more detail
the interesting causal aspects related to the finite propagation time of the field disturbances between the qubits.
Finally, we describe quantum state structures which appear due to the presence of protected spaces.

DOI: 10.1103/PhysRevA.99.022122

I. INTRODUCTION

Decoherence of qubit registers due to an interaction with
a thermal bath is a seemingly well-studied process [1,2] with
all the relevant timescales and protected spaces identified. The
importance of such studies lies in quantum technological ap-
plications and in the general understanding of the foundations
of quantum physics. However, only the register’s dynamics
was studied, with the environment treated merely as the source
of noise. On the other hand, it emerges from a recent studies
under the names of quantum Darwinism [3] and spectrum
broadcast structures (SBS) [4,5] that, during the decoherence,
the environment can gain valuable information about the sys-
tem and play the role of a communication channel. This role
is of a great importance for the understanding of the quantum-
to-classical transition, touching such deep questions as that
of objectivity (see, e.g., [3,5]). Recently, the environment as
a communication channel has been studied for a single qubit
interacting with a thermal bath (the spin-boson model) [6]. In
particular, the regimes of SBS formation were identified and
the relation to non-Markovianity analyzed. In this work, we
complement those studies with a similar analysis of a spin reg-
ister in a thermal bosonic bath (see [7] for the studies of a spin
environment). It can also be regarded as a generalization of the
previous works [1,2] to include (a part of) the environment.

Generalization from a single qubit to a multiqubit register,
in which the register qubits do not directly interact with each
other, brings some remarkable qualitative changes. First of
all, as it is well known there appear so-called decoherence-
free subspaces (DFS), which are protected subspaces of the
register, immune to decoherence. When the environment is
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included, there appears a complementary notion of so-called
orthogonalization-free subspaces (OFS), for which the en-
vironment information gain is zero [7]. We show here an
example of a simultaneous DFS and OFS, which has some
nontrivial consequences for the joint system-environment
state. Second, the spacial separation of qubits introduces new,
with respect to the single qubit case, effects corresponding
to a nonzero time-of-flight of the bosonic field disturbances
between the physical locations of qubits. Known for a long
time for the register qubits [2,8,9], here they are studied for
the environment and from the quantum information perspec-
tive. In particular, studying a two-qubit register we show
that a decohering-recohering impulse felt by the register is
accompanied by a similar information gain or loss impulse
in fragments of the environment.

The physics discussed in this paper is very much related
to the physics of Dicke’s superradiance [10]. In particular,
collective effects occurring in multiqubit registers correspond
directly to superradiant effects and radiation trapping effects.
More concretely, when two emitters are close one to another
and their dipoles oscillate in phase, the constructive interfer-
ence leads to superradiance, i.e., the effect that the radiation
rate is twice as big as the rate for a single emitter. Conversely,
if the dipoles oscillate in antiphase, the destructive interfer-
ence takes place, the radiation rate goes to zero, and the radia-
tion is trapped. In the decoherence language, this corresponds
to a formation of a decoherence-free subspace. The effects
of constructive and destructive interference are still present
when the emitters are separated. The photon emitted by one
emitter affects the second one in an constructive or destructive
manner, depending on whether their dipole moments are in
phase or out of phase, respectively.

The main tool used here to study information flow is the
so-called spectrum broadcast structures, introduced in [4,5].
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Assuming that some fraction of the environment, called f E ,
is left for observation, SBS are the following multipartite
quantum state structures between the central system S and f E :

ρS: f E =
∑

i

pi|xi〉〈xi| ⊗ ρ
E1
i · · · ⊗ ρ

E f N

i , (1)

ρ
Ek
i ⊥ ρ

Ek
i′ for every i′ �= i and k = 1, . . . , f N . (2)

Here {|xi〉} is the so-called pointer basis of the register to
which it decoheres, pi are initial pointer probabilities, and ρ

Ek
i

are some states of the observed parts of the environment with
mutually orthogonal supports for different pointer indexes i.
The state (1) describes redundantly stored information about
the system, the index i, in the environment. Because of that, it
corresponds to a certain operational form of objectivity of the
central system’s state [5]. It has been shown to appear in a va-
riety of models, such as the illuminated sphere model [4], the
spin-boson model [6], the quantum Brownian motion model
[11–13], a simplified quantum electrodynamics model [14], in
a recently proposed mechanism of gravitational decoherence
[15], as well as in generic von Neumann measurements [16].
The structure (1) is an idealized structure, and in realistic
situations one can expect only some form of an approach to it.
This approach has been characterized mathematically in [17]
(see also [4]) in terms of two quantities: the usual decoherence
factors and state fidelities [18] between the environmental
states ρ

Ek
i . These are the central quantities of our analysis.

The work is organized as follows. In Sec. II we recall the
register model and its dynamics. In Sec. III we analyze the
structure of the partially reduced state ρS: f E in the model
and derive general expressions for the decoherence and fi-
delity factors, including full analytical solutions for both,
assuming the whole frequency spectrum of the environment
is taken into the account. Section IV is dedicated to the
simplest, nontrivial case—a two-qubit register. In Sec. V
we consider another simplified situation—so-called collective
decoherence, corresponding to very short transit times of the
bosonic field perturbation compared to the other timescales of
the model. The conditions for protected subspaces are derived
and the consequences for the form of the partially traced state
analyzed. Concluding remarks are presented in Sec. VI. In
Appendix A we present an analytical derivation of the deco-
herence factor and state fidelities for uncut environments. We
discuss the relation to the Dicke model and the related papers
on superradiance and radiation trapping in the Appendix B.

II. THE MODEL AND ITS DYNAMICS

We study the model of an L-qubit register interacting
with a bosonic environment. The system is described by the
following Hamiltonian [1,2]:

H = HS + HE + Hint, (3)

where the free dynamics of the register and the environment
is given by

HS =
L∑

n=1

J (n)
z , HE =

∑
k

ωka†
ka, (4)

with J≡
z

1
2σz being the Pauli σz operator acting on the nth

register qubit. The interaction between the qubits and the
environment modes is of a form

Hint =
L∑

n=1

J (n)
z ⊗

∑
k

(
gn

ka†
k + gn∗

k ak
)
. (5)

This kind of interaction appears naturally when one considers
an ensemble of two-level atoms coupled to the electromag-
netic (EM) field. Usually in such systems, the free Hamil-
tonian of atoms is described by the sum of the σz matrices,
describing projections on the ground and excited states, mul-
tiplied by the corresponding energies. The dipolar coupling
with the EM field is then described by σx or σy matrices. In
the special situations when the ground and excited states are
degenerated, the free Hamiltonian vanishes and we have to
“rotate” the interaction term so that it contains the diagonal σz

matrices.
Since [J (n)

z , H] = 0, there is no energy transfer between the
register and the environment, and thus dissipation is not taken
into account. This means that our approach is valid as long
as the dissipation timescale is much larger than timescales of
processes that we are interested in, what is usually the case.
To derive the evolution operator it is convenient to work in the
interaction picture, with the interaction Hamiltonian given by

HI
int (t ) =

∑
n

J (n)
z ⊗

∑
k

(
gn

ka†
keiωkt + gn∗

k ake−iωkt
)
. (6)

From the above expression we can easily derive the unitary
evolution of the whole system Û I

S:E (t ), using, e.g., the Magnus
expansion. To present the results we introduce the following
notation (cf. [6]): (i) the register state is determined by a bit
string vector ε ≡ (ε1, . . . , εL ), where εn ≡ ± 1

2 ; (ii) for the kth
field mode the coupling constants are also arranged into a
vector gk ≡ (g1

k, . . . , gL
k ). We then arrive at

Û I
S:E (t ) =

∑
ε

|ε〉〈ε| ⊗
⊗

k

Û I
k (t ; ε), (7)

Û I
k (t ; ε) ≡ D̂(αk(t )ε · gk)ei|ε·gk|2ξk (t ), (8)

αk (t ) ≡ 1 − eiωkt

ωk
, (9)

ξk(t ) ≡ ωkt − sin (ωkt )

ω2
k

. (10)

Above, D̂(βk) ≡ eβka†
k−β∗

k ak is the multimode displacement
operator. In accord with the quantum Darwinism – spec-
trum broadcasting scenario, we are interested in a situation
where some of environmental degrees of freedom are left for
observation while other pass unobserved and hence can be
traced out.

III. THE STRUCTURE OF THE PARTIALLY REDUCED
STATE – GENERAL CONSIDERATIONS

Our main object of study is thus what we call a partially
reduced state,

ρS: f E (t ) = tr(1− f )EρS:E (t ), (11)
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where we denote symbolically by f E the observed fraction of
the environment, consisting of f N modes, 0 < f < 1, (1 −
f )E represents the unobserved fraction of (1 − f )N modes,
and ρS:E (t ) = ÛS:E (t )ρS:E (0)ÛS:E (t ) is the evolved state of the
full S : E system. At this moment we leave the fractions f E
and (1 − f )E unspecified and will study how the partially
traced state depends on them in what follows.

Assuming the usual full product initial state ρS:E (0) =
ρ0S ⊗ ⊗

k ρ0k, a quick calculation gives

ρI
S: f E (t ) =

∑
ε

cεε|ε〉〈ε| ⊗
f N⊗
k

ρI
k(t ; ε)

+
∑

ε

∑
ε′ �=ε

γεε′ (t )cεε′ |ε〉〈ε′|

⊗
f N⊗
k

U I
f (t ; ε)ρ0kÛ I

f (t ; ε′)†, (12)

where cεε′ ≡ 〈ε|ρ0S|ε′〉,

ρI
k(t ; ε) ≡ Û I

k (t ; ε)ρ0kÛ I
k (t ; ε)†, (13)

γεε′ (t ) ≡
∏

k∈(1− f )E

tr
[
Û I

k (t ; ε)ρ0kÛ I
k (t ; ε′)

]
, (14)

the last being the decoherence factor responsible for suppres-
sion of the register’s off-diagonal terms in the |0, 1〉⊗L basis,
serving here as the register’s pointer basis. Assuming that the
environment is initially in a thermal state, the decoherence
factor can be compactly written in a matrix form as

− ln γεε′ (t ) = 
εT �(t )
ε + i[εT �+(t )ε

− ε′T �+(t )ε′ − 2εT �−(t )ε′], (15)

where 
ε ≡ ε − ε′ = (ε1 − ε′
1, . . . , εL − ε′

L ) is vector of the
differences. We note that unlike in the single-qubit case
[19,20], here the decoherence factor has both real and imagi-
nary parts [1,2]. Clearly, the vanishing of the real-phase part,

− ln �εε′ (t ) ≡ 
εT �(t )
ε, (16)

implies a decay of the off-diagonal elements and in what
follows we will study this part. To further specify the above
matrices, we assume a wavelike position-dependent form of
the coupling, reflecting the wavelike character of the bosonic
modes. This can be thought as, e.g., assuming that the inter-
actions of the register with the EM field can be well described
using the dipole approximation, where the coupling depends
only on the positions of the register qubits but not on their
internal electronic degrees of freedom:

gk = gk (e−ikr1 , . . . , e−ikrL ). (17)

Then the elements of matrices entering Eq. (15) are given by
[1,2]

�nm(t ) ≡ 1

2

∑
k∈(1− f )E

|gkαk(t )|2 coth

(
ωk

2kBT

)
cos (k
rnm),

(18)

�+
nm(t ) ≡

∑
k∈(1− f )E

|gk|2ξk(t ) cos (k
rnm), (19)

�−
nm(t ) ≡ 1

2

∑
k∈(1− f )E

|gkαk(t )|2 sin (k
rnm), (20)

with 
rnm = rn − rm being the physical distance between the
register qubits.

The novelty of our approach compared to standard treat-
ments [1,2] is that we are interested not only in the state of the
register, but also in the part of its environment. Especially we
will be interested in what, if any, system-related information
those observed parts of the environment obtain during the
evolution. As a measure of the information content we will
choose the state fidelity of the states (13) for different ε, ε′
[4,6]:

B(k)
εε′ (t ) ≡ tr

√√
ρk(t ; ε)ρk(t ; ε′)

√
ρk(t ; ε). (21)

Just like in the previous studies [4,6], we will be interested
in some sort of a thermodynamic limit with large N and the
information content of macroscopic groups of modes rather
than of single modes which may contain vanishingly small
information about the register [4]. We will thus divide the
observed modes into bigger groups called macrofractions M
[4]. We define the observed fraction of the environment to
be f E ≡ ∪ f M

M=1macM, with a state of a macrofraction simply
defined as

ρM(t ; ε) =
⊗
k∈M

ρk(t, ε). (22)

The quantity we will be interested in is thus a macrofraction
overlap rather than the microscopic one (21):

BM
εε′ (t ) ≡ tr

√√
ρM(t ; ε)ρM(t ; ε′)

√
ρM(t ; ε)

=
∏

k∈M
tr

√√
ρk(t ; ε)ρk(t ; ε′)

√
ρk(t ; ε) =

∏
k∈M

B(k)
εε′ (t ).

(23)

In the considered model the above overlap can be calculated
and reads

− ln BM
εε′ (t ) = 
εT BM(t )
ε, (24)

where we define a L × L matrix

BM
nm(t ) ≡ 1

2

∑
k∈M

|gkαk(t )|2 tanh

(
ωk

2kBT

)
cos (k
rnm). (25)

Functions �εε′ , BM
εε′ (t ) are the basic objects of our study.

If they simultaneously vanish, the partially traced state ap-
proaches the SBS form [17]. We stress that unlike in the
case of a single qubit [6], now they are given by matrix
expressions, which as we will see will lead to qualitatively
different behavior. Instead of working with relative distances
and wave vectors, let us introduce transit times τnm, defined as
the times that a signal needs to travel between the nth and mth
qubits [2]:

k
rnm ≡ ωτnm. (26)

For example, in the case of a solid-state implementation of the
register, the bosonic bath can be usually associated with the
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TABLE I. Pairs of states (|ε〉, |ε′〉) accordingly to their 
ε1
ε2 value. Diagonal elements (|ε〉, |ε〉) are not taken into account.


ε1
ε2 = 0 
ε1
ε2 = −1 
ε1
ε2 = +1
Single qubit Singlet GHZ-type(∣∣ 1

2 , 1
2

〉
,
∣∣ 1

2 ,− 1
2

〉)
,
(∣∣ 1

2 , 1
2

〉
,
∣∣− 1

2 , 1
2

〉)
,(∣∣ 1

2 , − 1
2

〉
,
∣∣− 1

2 , − 1
2

〉)
,
(∣∣− 1

2 , 1
2

〉
,
∣∣− 1

2 , − 1
2

〉) (∣∣ 1
2 ,− 1

2

〉
,
∣∣− 1

2 , 1
2

〉) (∣∣ 1
2 , 1

2

〉
,
∣∣− 1

2 , − 1
2

〉)

phonon field, so the transit time will determine speed of infor-
mation propagation via phonons [2]. Then, assuming that the
fractions of the environment we are working with are large,
we pass to the usual continuum limit and introduce spectral
density J (ω). In these terms the elements of decoherence and
fidelity matrices take the form

�nm(t ) =
∫

(1− f )E
dωJ (ω)

1 − cos(ωt )

ω2
coth

×
(

ω

2kBT

)
cos (ωτnm), (27)

�+
nm(t ) =

∫
(1− f )E

dωJ (ω)
ωt − sin(ωt )

ω2
cos(ωτnm), (28)

�−
nm(t ) = 1

2

∫
(1− f )E

dωJ (ω)
1 − cos(ωt )

ω2
sin (ωτnm), (29)

BM
nm(t )=

∫
M

dωJ (ω)
1 − cos(ωt )

ω2
tanh

(
ω

2kBT

)
cos (ωτnm).

(30)

In the above expressions (1 − f )E and M denote symbol-
ically the sets of unobserved and observed frequencies, re-
spectively. We note that in each of the above matrices all
the diagonal entries are equal as the transit times τmn drop
out of the expressions. Moreover, the matrices �(t ), �+(t ),
and BM(t ) are real symmetric, while �−(t ) is real skew-
symmetric. As the spectral density we adopt the usual for the
spin-boson model expression:

J (ω) = ωs


s−1
exp [−ω/
], (31)

where 
 is the cut-off frequency and s the Ohmicity
parameter.

There are several ways to divide environmental degrees of
freedom into observed and unobserved parts [6]. First, one
can assume that, due to their large size, both unobserved
and observed parts of the environment are described by the
full spectral density. We will refer to this case as uncut
spectral density. In this case the above integrals are solvable
analytically. Due to their length, the formulas are presented in
Appendix A. Here we will study them numerically in further
parts of the manuscript for a two-qubit register.

The second possibility is that the observed and unob-
served parts of environment are formed by given parts of the
spectrum. This situation can be pictured as an observation
of the environment via a narrow band detector (rather than
a wide band, as above). We will assume the observed fre-
quencies are formed by a spectral interval [α, β] and study
the dependence of the decoherence and the state fidelity on
the position of the interval. This case will be referred to
as cut spectral density. Based on the studies from [6], one

can assume a sharp spectral cut, as there is no qualitative
difference between the sharp and soft cuts.

Decoherence- and orthogonalization-free subspaces

Depending on the values of the decoherence factor Eq. (15)
and state fidelity Eq. (24), the structure of the partially reduced
state Eq. (12) may be a good approximation of a SBS. How-
ever, it is also possible that, for some states of the register, one
of the discussed processes will not take place. In such a case,
as in [7], we will say that a subspace S ⊆ {± 1

2 }L
exhibits a

strong decoherence-free subspace (DFS) property if

∀t∈R+∀ε,ε′∈Sγεε′ (t ) = 1 (32)

and a weak DFS if

∀t∈R+∀ε,ε′∈S|γεε′ (t )| = 1. (33)

Similarly, we define an orthogonalization-free subspace to
occur when

∀t∈R+∀ε,ε′∈S∀MBM
εε′ (t ) = 1. (34)

In general, due to the fact that expressions for decoherence
factor and state fidelity are quite involved, it is not possible
to analytically determine which states form DSF or OSF.
However, when a register’s qubits interact collectively with
the environment one may introduce conditions for DSF and
OSF. This case is discussed in detail in Sec. V.

IV. TWO-QUBIT REGISTER

A general study of the L-qubit register is quite complicated
due to the matrix character of both decoherence factor and
state fidelity. Here we study the first nontrivial register, con-
sisting of two qubits, extending the original analysis of [2]
from decoherence to SBS. For this case there is only one
transit time τ and the real decoherence factor between the
register states |ε〉 and |ε′〉 reads [cf. (16)]

− ln �εε′ (t ) = ||
ε||2�11(t ) + 2
ε1
ε2�12(t ), (35)

where ||
ε||2 = (
ε1)2 + (
ε2)2. We are interested here
only in the real part of (15), as it is sufficient for showing
damping of the off-diagonal elements. Similarly, one finds that

− ln BM
εε′ (t ) = ||
ε||2BM

11 (t ) + 2
ε1
ε2BM
12 (t ). (36)

As a result, for a two-qubit register, there are three groups
of nondiagonal density matrix elements, presented in Table I,
responsible for different types of coherence and decohering
in a different manner according to the value of 
ε1
ε2.
Similarly, the distinguishability of the environmental states
depends on 
ε1
ε2 too. We can distinguish the following
nontrivial cases:
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A. Effectively single-qubit case

This is the case when vectors ε, ε′ differ at most at one
position, e.g., ε1 = ε′

1, ε2 �= ε′
2, or equivalently, 
ε1
ε2 = 0.

This subspace is spanned by four states as shown in Table I.
One obtains

− ln �εε′ (t ) = �11(t ) (37)

and

− ln BM
εε′ (t ) = BM

11 (t ). (38)

In this case, apart from the phase, the register behaves ef-
fectively as a single spin interacting with a bosonic bath.
Therefore we will refer to it as a “single-qubit” case. This
conclusion is not restricted just to a two-qubit register. To
see this, consider two states of an L-qubit register that dif-
fers at the nth position; then it follows from Eq. (15) that
ln �εε′ (t ) = −�nn(t ) = −�11(t ), as all the diagonal elements
are equal, and a similar result holds for fidelity. A detailed
investigation of the SBS formation for a single central spin
has been performed in [6] and we refer the reader to that work.
Here, we will use this case only as a reference to highlight
novel features of the register model. For a fair comparison, we
note that the Hamiltonian of the spin-boson model is usually
defined using σz, and here we used 1

2σz, following the common
quantum register convention. Consequently, the comparison
of the result presented here with those of [6] should take
into account that in the spin-boson model Eqs. (37) and
(38) read ln �εε′ (t ) = −4�11(t ) and ln BM

εε′ (t ) = −4BM
11 (t ),

respectively.

B. True two-qubit case

The remaining nontrivial case is when the vectors ε, ε′
differ at all positions, i.e., ε1 �= ε′

1, ε2 �= ε′
2. This situation

is described by pairs of states such that 
ε1
ε2 = ±1, see
Table I. Then the corresponding expressions take a form

− ln �εε′ (t ) = 2[�11(t ) + 
ε1
ε2�12(t )] (39)

and

− ln BM
εε′ (t ) = 2

[
BM

11 (t ) + 
ε1
ε2BM
12 (t )

]
. (40)

Note that in the Dicke superradiant limit, when k
rnm =
ωτnm → 0, the right-hand side of (39) tends to 4�11(t ) or zero,
indicating, as expected, superradiance or radiation trapping,
respectively. In the latter case there will be a strong DFS
[cf. Eq. (32)]. Similarly, BM

11 (t ) = BM
12 (t ) and 
ε1
ε2 = −1

leads to an OFS [cf. Eq. (34)]. We will study such cases in
more detail in Sec. V, dedicated to collective decoherence.

We perform further studies of Eqs. (39) and (40) numer-
ically. Although for the uncut case we have the analytical
formulas in Appendix A, it is more convenient to plot them.
In Fig. 1 we present results for the uncut spectral density—the
decoherence factor and the fidelity for different values of
the transit time τ , rescaled to the cutoff 
 and assuming a
moderate temperature 0 � T � s
. In each plot there are
two curves corresponding to different values of 
ε1
ε2 and
the “single-qubit” case [cf. (37, 38)] for a comparison. One
immediately sees that both decoherence and the information
gain by the environment are more efficient for a register than

5 10 15 20
t [1� ]

5

10

15

20

25
�ln� �(t)
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FIG. 1. Uncut spectral density case, different transit times. Log-
arithm of decoherence factor [Eq. (39)] – upper trace, and fidelity
[Eq. (40)] – lower trace for different values of transit time τ

[Eq. (26)]: 
τ = 1 - upper left and lower left, 
τ = 5 - upper right
and lower right. In each plot there are three curves corresponding to
states with different values of 
ε1
ε2: minus - dashed line and plus
- dotted line as well as for the “single-qubit” case [Eq. (37)] - solid
line. In all plots T = 
/3 and s = 5.

for a single qubit. More importantly, there is also a qualita-
tively new behavior here: Around the transit time t = τ there
appears a characteristic disturbance in both the decoherence
and fidelity plots. Weather it is a dip or a peak depends on the
parity of 
ε1
ε2. In the superradiant case (
ε1
ε2 = +1)
it corresponds to a dip in the plotted curve, but a peak in
the function �εε′ (t ) [we plot − ln �εε′ (t )]; as expected, in this
case the signal comes “in phase.” Conversely, in the radiation
trapping case (
ε1
ε2 = −1) it corresponds to a peak in the
curve, but a dip in the function �εε′ (t ); as expected, in this
case the signal comes “in antiphase.” This behavior is due to a
relaxation process where the qubits exchange a quantum of the
bosonic field after the interaction has been switched on. It is
basically a simpler version of the multiple retardation effects
studied in the full model, with nontrivial qubit dynamics (see,
e.g., [8,9]). There are no multiple signals here due to the trivial
qubit Hamiltonian.

The disturbance is described by the vacuum part (see
Appendix A), common to both decoherence and fidelity fac-
tors. More precisely, by the second term in (A2),

−cos {(s − 1) arctan [
(t − τ )]}
[1 + 
2(t − τ )2]

s−1
2

. (41)

This term describes also the smaller disturbances, surrounding
the main one in time, which appear for higher Ohmicity
parameters s and 
τ due to the cosine periodicity (see Fig. 1
for 
τ = 5). These disturbances indicate the breakdown of
causality in our model for the time 
τ � 1. As discussed, for
instance, in [8,9], this is due to the introduction of the cut and
causality is restored for longer times, or for all quantities for
which the limit 
 → ∞ has a mathematical sense.

The peaks in the plots for 
ε1
ε2 = −1, i.e., for the pair
of states | 1

2 ,− 1
2 〉, |− 1

2 , 1
2 〉, imply that around t = τ both the

decoherence factor and the overlap become small for this pair.
This in turn implies that the partial state’s projection onto the
subspace spanned by | 1

2 ,− 1
2 〉, |− 1

2 , 1
2 〉 approaches SBS [7]
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FIG. 2. Uncut spectral density case, different Ohmicity param-
eter. Logarithm of the decoherence factor [Eq. (39)] – upper trace,
and fidelity [Eq. (40)] – lower trace for different values of Ohmicity
parameter [Eq. (31)] s: s = 2 - upper left and lower left, s = 3 - upper
right and lower right, which for a spin-boson model correspond to
Markovian and non-Markovian evolution [21]. In each plot there
are three curves corresponding to states with different values of

ε1
ε2: minus - dashed line and plus - dotted line as well as for
the “single-qubit” case [Eq. (37)] - solid line. In all plots T = 
/3
and 
τ = 5.

much better than at other times (a “blink of objectivity”):

ρI
S: f E (t = τ ) ≈

∑
ε=+−,−+

cεε|ε〉〈ε| ⊗
⊗
M

ρI
M(τ ; ε) + rest,

(42)

and ρI
M(τ ; 01) and ρI

M(τ ; 10) have a very small overlap.
Contrarily, the dips for 
ε1
ε2 = +1 signify that both deco-
herence and the overlap functions temporarily rise, indicating
a departure from SBS and a form of a transient recoherence.
As a result, the partially traced state has a rather complicated
structure at around t = τ , with parts well approximated by
SBS and parts with restored quantum correlations. It thus, in a
sense, simultaneously possesses classical (SBS) and quantum
(coherences) properties.

In Fig. 1 we can also see the influence of the transit
time. For low transit times compared to the cut-off timescale,
both decoherence and fidelity curves split with the parity of

ε1
ε2. In particular, for the states with 
ε1
ε2 = −1 the
decoherence and the orthogonalization processes are more
efficient, again bringing this part of ρS: f E (t ) closer to SBS
than for those with 
ε1
ε2 = +1. However, the asymptotic
values for both cases are still higher than those for the single-
qubit case. Increasing the value of the transit time to 
τ = 5,
the differences in the time behavior of both parities 
ε1
ε2 =
±1 almost disappear apart from the region around the
transit time.

Next we investigate the influence of the Ohmicity param-
eter s [cf. Eq. (31)]. In Fig. 2 we present the behavior of
decoherence and fidelity factors for s = 2 and s = 3. This
corresponds to a well-known transition between the Marko-
vian and non-Markovian evolution of the single-spin model
and manifests in the change from monotonic to nonmonotonic
behavior of the single-spin decoherence curve [21,22]. In the
case of the spin register, one can see that already for s = 2

2 4 6 8 10 [ ]
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10

14

18
�ln� '�(t)

�1

2 4 6 8 10 [ ]
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FIG. 3. Cut spectral density case. Time-asymptotic value of the
decoherence factor [Eq. (39)] – upper trace, and fidelity [Eq. (40)] –
lower trace as a function of the cut for different values of transit time
τ [Eq. (26)]: 
τ = 1 - upper left and lower left, 
τ = 5 - upper right
and lower right. In each plot there are three curves corresponding to
states with different values of 
ε1
ε2: minus - dashed line and plus -
dotted line as well as for the “single qubit” case [Eq. (37)] - solid line.
The unobserved frequencies belong to (0, α/
) ∪ [(α + 
)/
, ∞],
whereas the observed ones to [α/
, (α + 
)/
]. In all plots T =

/3, s = 5, and 
 = 2.

the decoherence curves are nonmonotonic (for off-diagonal
elements with 
ε1
ε2 = ±1) due to the relaxation process
around t = τ , and there is no qualitative change between
s = 2 and s = 3. Comparing Figs. 2 and 1, one sees that the
peak and/or dip becomes more pronounced with increasing
the Ohmicity parameter, but the differences between the de-
coherence and the fidelity curves disappear for the chosen
temperature T = 
/3. Finally, let us mention that a relation
between non-Markovianity and efficiency of SBS formation
was studied for a single-spin model in [6] and no direct
connection between the two processes was found. Let us also
mention that a quantification of non-Markovianity here would
require introduction of an appropriate, for the studied model,
non-Markovianity measure [23].

We now move to the cut spectral density case (cf. [6]).
We assume that the observed frequencies belong to a window
[α/
, (α + 
)/
] and the complement of this interval is not
observed (the traced-out part of the bosonic environment). In
Fig. 3 we present time-asymptotic (
t � 1) values of deco-
herence and fidelity factors as functions of the cut position
α and for different transit times. Although the behavior is
much more complicated than for a single spin, one can still see
a characteristic reciprocal behavior [6] between decoherence
(upper plots) and fidelity (lower plots) factors, reflecting re-
ciprocal dependence on the temperature of the two functions.
In addition, one observes small oscillations of both fidelity
and decoherence factor for states with 
ε1
ε2 = ±1 with
respect to the placement of the cut. We verified that for higher
values of transit time these oscillations vanish, so that there is
no difference in decoherence and fidelity between states with

ε1
ε2 = ±1. For transit times 
τ � 1 the “single-qubit”
case results in weaker decoherence and information transfer
to the environment than the other two discussed cases.
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V. COLLECTIVE DECOHERENCE
AND ORTHOGONALIZATION

Looking at the exact expressions for the uncut (the whole
environment traced out) case in Appendix A, one sees that the
transit times τnm always scale with other time constants: the
cut-off frequency 
 and the thermal time τT = 1/(kBT ). Let
us now consider the situation when τmn values are the shortest
timescales in the model:

τnm � τT ,
−1 (43)

for all n, m. In particular, the last condition is equivalent
through (26) to that of the qubit separation being much
smaller than the wavelengths involved, k
rnm � 1, or that the
coupling constants do not depend on the qubit positions:

gn
k ≡ gk. (44)

From (15) and (24) it follows that

− ln �εε′ (t ) = �11(t )

(∑
n


εn

)2

(45)

+i�+
11(t )

⎡
⎣(∑

n

εn

)2

−
(∑

n

ε′
n

)2
⎤
⎦ (46)

and

− ln BM
εε′ (t ) = BM

11 (t )

(∑
n


εn

)2

. (47)

The quantities �11(t ), BM
11 (t ) are just the single-qubit (L =

1) decoherence and distinguishability factors, analyzed, e.g.,
in [6]. Hence, in this regime the whole register behaves almost
like a collection of independent qubits, with the important
qualitative difference of existence of DFS and OFS (see
Sec. III). In particular, a simultaneous strong DFS and OFS
occur for all pairs ε, ε′ such that (cf. [2])

∑
n


εn =
∑

n

(εn − ε′
n) = 0, (48)

(∑
n

εn

)2

−
(∑

n

ε′
n

)2

= 0, (49)

while a simultaneous weak DFS and OFS occur when only
(48) is fulfilled. It is interesting that the same condition (48)
controls both decoherence and state fidelity. An example of a
simultaneous strong DFS and OFS is the subspace of a two-
qubit register spanned by | 1

2 ,− 1
2 〉 and |− 1

2 , 1
2 〉 (analyzed in

more detail in [2]). On the other hand, the pairs of states that
decohere most and become most distinguishable are those for
which

∑
n 
εn is the largest.

Let us investigate the structure of the partially reduced state
in the presence of a simultaneous strong DFS and OFS. Let
us denote this subspace as DFS and assume it to be strong.
For the sake of clarity, we consider it to be two-dimensional,
spanned by vectors ε̃, ε̃′ (the extension to higher dimensions
is analogous). We find that [cf. Eq. (8)]

Ûk(t ; ε̃) = Ûk(t ; ε̃′), (50)

which can be immediately verified using Eqs. (48) and (49):

U I
k (t ; ε̃)†U I

k (t ; ε̃) = D̂

(
αk(t )gk

∑
n


εn

)

× eigk [(
∑

n εn )2−(
∑

n ε′n )2]ξk (t ) = I. (51)

As a result, the controlled unitary operator has a form

Û I
S:E (t ) = �̂DFS ⊗

f N⊗
k

Û I
k (t ; DFS)

+
∑

ε/∈DFS

|ε〉〈ε| ⊗
f N⊗
k

Û I
k (t ; ε), (52)

where �̂DFS is a projector onto DFS, i.e.,

�̂DFS = |ε̃〉〈ε̃| + |ε̃′〉〈ε̃′| + |ε̃〉〈ε̃′| + |ε̃′〉〈ε̃|. (53)

Let us assume that the conditions for formation of SBS are
fulfilled for register states not belonging to DFS, so then the
partially reduced state is

ρI
S: f E = �̂DFSρ0S�̂DFS ⊗

fM⊗
M

ρI
M(t ; DFS)

+
∑

ε/∈DFS

cε,ε|ε〉〈ε| ⊗
fM⊗
M

ρI
M(t ; ε). (54)

This is what we call a coarse-grained SBS [7]: The SBS
structure is build upon subspaces rather than states (the pointer
states), and coherences are generally preserved within the
subspaces, and the information leaked into the environment
allows discrimination only between subspaces but not be-
tween the vectors they are spanned on. Further studies on
various forms of departure from SBS can be found in [7].

VI. CONCLUSIONS

We revisited the decoherence process of a multiqubit regis-
ter interacting with a bosonic thermal bath. Unlike in the pre-
vious studies [1,2], we were interested in information gained
by the environment. To this end, we employed a recently
introduced notion of spectrum broadcast structures (SBS)
[4,5], which are specific multipartite quantum state struc-
tures describing redundant encoding of system information
(here the register state) in the environment. We explicitly
calculated the relevant figures of merit describing the SBS
formation—the usual decoherence factor and mixed state
fidelities—in the simple case of a so-called uncut environ-
ment, where each observer observing the environment has
access to the full frequency spectrum. Studying in more detail
the simplest case of a two-qubit register, we pointed to the
causal disturbance propagation between the qubits, which can
de- or recohere the register state, depending on its parity.
Although this was previously known at the level of the register
state [2,8,9], here we showed that there is an accompanying
impulse in the environment causing an increase or decrease
of environment information, respectively. In another simple
case of collective decoherence corresponding to vanishingly
small transit times of the field disturbance between the qubits,
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we showed a coarse-grained SBS. These are quite interesting
structures, appearing in the presence of protected spaces.

The model considered here was quite simple with a triv-
ial dynamics of the register. One future direction would be
studies of a more realistic full model, which includes register
tunneling [8,9]. However, already at the sole central system
level the dynamics is rich and complicated, e.g., with multiple
causal impulses propagating between the qubits.

Moreover, let us further elaborate on the link between
the dynamics of the multiqubit register and Dicke superradi-
ance. The standard picture of decay of unstable states, such
as occurs in Dicke superradiance, is that the first radiated
photons are completely spontaneous and random and then
the signal amplifies and becomes classical—e.g., it can be
described to a high degree of accuracy by coherent states
[24], closely resembling properties of classical states. This
way of achieving “classicality” may likely be a mechanism
of SBS formation. Classical states achieved in such processes
are very random since they result from amplification of the
spontaneous initial part of radiation. Therefore, this process is
usually regarded as a manifestation of macroscopic quantum
fluctuations [25,26]. It would be very interesting to use a
multiqubit register to investigate this problem from an SBS
perspective, and we leave this for a further study.
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APPENDIX A: UNCUT ENVIRONMENT – ANALYTICAL
FORMULAS

In this Appendix we provide an analytical expression for
decoherence factor and mixed state fidelity. As in the main
text, we assume that the spectral density is given by the
following expression:

J (ω) = ωs


s−1
exp [−ω/
], (A1)

with s > 1. As usual [19,20], the decoherence factor factorizes
into the vacuum and thermal parts, �(t ) = �vac(t ) + �th(t ),
which in the considered model is

�vac
nm (t )

= ℘(s − 1)

2

[
2[1 + (
τnm)2]

1−s
2 cos[(s − 1) arctan(
τnm)]

−[1 + (
t−
nm)2]

1−s
2 cos[(s − 1) arctan(
t−

nm)]

−[1 + (
t+
nm)2]

1−s
2 cos[(s − 1) arctan(
t+

nm)]
]
, (A2)

�th
nm(t ) = (−1)s−1

(
τT )s−1

[
2� (s−2)

(
1 + 1


τT
+ i

τnm

τT

)

−� (s−2)

(
1 + 1


τT
− it+

nm

τT

)

−� (s−2)

(
1 + 1


τT
− it−

nm

τT

)
+ c.c.

]
, (A3)

where �m(z) is the so-called polygamma function, defined
as [27]

�m(z) ≡ dm+1

dzm+1
ln℘(z) =

∞∑
k=0

(−1)m+1m!

(z + k)m+1
, (A4)

℘(z) is the Euler gamma function, c.c. denotes complex con-
jugated part, we introduced advanced and retarded times,

t±
nm ≡ t ± τnm, (A5)

and τT = 1/(kBT ). The quantities entering the phases are

�+
nm(t ) = ℘(s − 1)

2

[
2(s − 1)
t[1 + (
τnm)2]−

s
2

× cos[s arctan(
τnm)].

− [1 + (
t−
nm)2]

1−s
2 sin[(s − 1) arctan(
t−

nm)]

− [1 + (
t+
nm)2]

1−s
2 sin[(s − 1) arctan(
t+

nm)]
]
,

(A6)

�−
nm(t ) = ℘(s − 1)

2

[
2[1+(
τnm)2]

1−s
2 sin[(s−1) arctan(
tnm)]

+ [1 + (
t−
nm)2]

1−s
2 sin[(s − 1) arctan(
t−

nm)]

+ [1 + (
t+
nm)2]

1−s
2 sin[(s − 1) arctan(
t+

nm)]
]
.

(A7)

Distinguishability can also be decomposed into a vac-
uum and thermal part BM(t ) = BM vac(t ) + BM th(t ), with
BM vac(t ) = �vac(t ) and

BM th
nm (t ) = (−1)s−1

(2
τT )s−1

[
� (s−2)

(
1 + 1

2
τT
+ iτnm

2τT

)

−� (s−2)

(
1

2
+ 1

2
τT
+ itnm

2τT

)

− 1

2
� (s−2)

(
1 + 1

2
τT
− it+

nm

2τT

)

+ 1

2
� (s−2)

(
1

2
+ 1

2
τT
− it+

nm

2τT

)

− 1

2
� (s−2)

(
1 + 1

2
τT
− it−

nm

2τT

)

+ 1

2
� (s−2)

(
1

2
+ 1

2
τT
− it−

nm

2τT

)
+ c.c.

]
. (A8)

APPENDIX B: SUPERRADIANCE
AND RADIATION TRAPPING

In 1954 Dicke [10] predicted that N emitters and/or dipoles
will radiate collectively with the rate proportional to N and
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intensity proportional to N2, provided they are confined in a
region of a size much smaller than λD in D dimensions, where
λ is the wavelength of the radiation. Only one mode of such
systems, the one in which all dipoles are parallel and have
the same phase, will exhibit collective superradiance. All the
other modes, with the total dipole moment equal to zero, will
be nonradiative, or in practice will radiate very slowly. Since
the famous paper of Dicke, a lot of work has been done on col-
lective emission from a system of many sources. In the 1970s
and 1980s the theory focused more on superfluorescence and
considered usually pencil-shape samples, of dimensions large
compared with the wavelength, for which propagation effects
play a dominant role (e.g., [25,28,29]). It was widely believed
that in a small sample limit the original Dicke’s description is
valid. Namely, in such a limit, only a global dipole moment
is coupled to the radiation; the lifetime of the excitation of
this degree of freedom is N times shorter than the lifetime
of a single atom and the excitations of all the other global
modes of the system are trapped and cannot decay through
radiative damping. This simple picture can be inadequate
due to near-zone effects, as was suggested in the paper of

Friedberg and Hartmann [30,31], which dealt with a small
spherical sample. This problem was studied for the spherical
sample composed of charged harmonic oscillators by [32]. Es-
sential for these studies was taking into account the near-zone
field in the system, and longitudinal dipole-dipole forces in
particular.

On the other hand, there are a lot of papers studying the
problem of two atoms [8,33,34]. In fact, it is known from the
paper of Stephen [35] that proper collective broadening and
narrowing of the emission line conform to a simple picture
developed by Dicke. In contrast, in Ref. [36] it was shown
that Dicke’s superradiance, strictly speaking, ceases to exist
in a system of four atoms (harmonic oscillators) located on
the vertices of a tetrahedron or equilateral triangle. This effect
results from the mode mixing due to the strong near-zone
interactions at short distances, smaller than the wavelength.

Recently, there has been a revival of interest in radiation
trapping and collective emission in the context of quantum
nanophotonics [37]. Here, the mechanisms of radiation trap-
ping are more subtle and are governed by destructive interfer-
ence patterns.
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